1
|
Albertson AJ, Winkler EA, Yang AC, Buckwalter MS, Dingman AL, Fan H, Herson PS, McCullough LD, Perez-Pinzon M, Sansing LH, Sun D, Alkayed NJ. Single-Cell Analysis in Cerebrovascular Research: Primed for Breakthroughs and Clinical Impact. Stroke 2025; 56:1082-1091. [PMID: 39772596 PMCID: PMC11932790 DOI: 10.1161/strokeaha.124.049001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Data generated using single-cell RNA-sequencing has the potential to transform understanding of the cerebral circulation and advance clinical care. However, the high volume of data, sometimes generated and presented without proper pathophysiological context, can be difficult to interpret and integrate into current understanding of the cerebral circulation and its disorders. Furthermore, heterogeneity in the representation of brain regions and vascular segments makes it difficult to compare results across studies. There are currently no standards for tissue collection and processing that allow easy comparisons across studies and analytical platforms. There are no standards either for single-cell data analysis and presentation. This topical review introduces single-cell RNA-sequencing to physicians and scientists in the cerebrovascular field, with the goals of highlighting opportunities and challenges of applying this technology in the cerebrovascular field and discussing key concepts and knowledge gaps that can be addressed by single-cell RNA-sequencing.
Collapse
Affiliation(s)
- Asher J. Albertson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Ethan A. Winkler
- Department of Neurological Surgery, University of California San Francisco, CA
| | - Andrew C. Yang
- Gladstone Institute of Neurological Disease and Department of Neurology, University of California San Francisco, CA
| | - Marion S. Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA
| | - Andra L. Dingman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Huihui Fan
- Department of Neurology, University of Texas Health Science Center, Houston, TX
| | - Paco S. Herson
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH
| | | | | | - Lauren H. Sansing
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Dandan Sun
- Department of Neurology and Pittsburgh Institute of Neurological Degeneration Diseases, University of Pittsburgh, Pittsburgh, PA
| | - Nabil J. Alkayed
- Department of Anesthesiology & Perioperative Medicine and Knight Cardiovascular Institute Portland, OR
| |
Collapse
|
2
|
Ruedas-Torres I, Findlay-Wilson S, Kennedy E, Dowall S, Salguero FJ. Pathology and host-pathogen interactions in a golden Syrian hamster model of Nipah virus infection. Front Vet Sci 2025; 12:1518358. [PMID: 40125323 PMCID: PMC11926554 DOI: 10.3389/fvets.2025.1518358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Nipah virus (NiV) is recognized as one of the key pathogens with pandemic potential. We have recently established a NiV hamster model, which reproduces a highly similar disease to that observed in human cases, including respiratory and neurological signs and lesions. The aims of this study were to describe the microscopic lesions observed in the golden Syrian hamster model after intranasal (IN) and intraperitoneal (IP) inoculation with different doses of the Malaysian strain of NiV; to describe in depth the cell composition of the pulmonary and the brain lesions and the expression of proinflammatory cytokines in-situ using a combination of histopathological techniques including immunohistochemistry (IHC) and in-situ hybridisation (ISH) via RNAscope technique. We also developed a multiplex IHC which will allow us to study the interaction of the virus with cell populations in the lung and brain in future studies. For this, we selected 28 lung and brain formalin-fixed paraffin-embedded (FFPE) samples from previous experiments performed by our research group. Histopathology revealed severe pulmonary broncho-interstitial pneumonia, mainly in animals inoculated via the IN route, accompanied by a strong acute inflammatory response (Iba1+ cells) and high levels of NiV RNA. Upregulation of proinflammatory cytokines (IL-6 and TNF) was also observed by ISH RNAscope technique in these animals. Neurological lesions, consisting of perivascular cuffing and meningitis, were observed mainly in animals inoculated via IP route. IHC results showed astrocytosis (GFAP+) and microgliosis (Iba1+) in the brain of these animals, together with mild levels of IL6 and TNF mRNA. These results have helped us to characterize the host-pathogen interaction in the golden Syrian hamster animal model of NiV infection that is being currently used in preclinical testing of antiviral and vaccine strategies. Techniques used in this study could be applied to the development and application of golden Syrian hamster models of other infections by henipaviruses, including Hendra virus (HeV), and other high consequence priority pathogens.
Collapse
Affiliation(s)
- Inés Ruedas-Torres
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | | | | | | | | |
Collapse
|
3
|
Augustine F, Doss SM, Pellicciotti J, Mahate S, Singer HS. Correlation of repetitive behaviors in deer mice with striatal mRNA expression of endogenous opioids and mu, delta, kappa, and dopamine receptors: A preliminary report. Neuroscience 2025; 568:324-332. [PMID: 39756610 PMCID: PMC11871992 DOI: 10.1016/j.neuroscience.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Repetitive motor behaviors are common in both neurotypical and developmentally delayed populations. The neural mechanisms underlying these behaviors are not fully understood, but cortical-basal ganglia-thalamo-cortical (CBGTC) circuitry is often implicated. Peromyscus maniculatus bairdii (deer mice), which exhibit spontaneous repetitive actions analogous to human motor stereotypies and obsessive-compulsive behaviors, serve as an effective model for studying repetitive behaviors. This preliminary study investigates the relationship between repetitive motor activity and striatal expression of endogenous opioids and dopamine receptors in deer mice. Behavioral assessment involved video-confirmed quantification of leaping, hopping, and rearing in seven mice. Using in-situ mRNA hybridization (RNAscope®), we quantified mRNA levels of proenkephalin, prodynorphin, mu, delta, and kappa opioid receptors, and D1 and D2 dopamine receptors in four striatal sub-regions: dorsomedial (DMS), dorsolateral (DLS), ventromedial (VMS), and ventrolateral (VLS). Associations between mRNA fluorescence and behavioral activity were evaluated using Spearman's rank correlations adjusted for false discovery rate (FDR). Results showed a significant positive correlation between D2 dopamine receptor (DRD2) mRNA expression in the DLS and total repetitive activity (p < 0.001). Additional positive DRD2 correlations in other regions did not reach significance after FDR adjustment. No significant relationships were found for DRD1 or endogenous opioid markers. These findings suggest that DRD2 expression in the DLS may modulate repetitive behaviors in deer mice, highlighting the role of dopaminergic pathways within CBGTC circuitry. However, limitations such as small sample size and lack of protein-level verification require further investigation. Future research should explore translational implications of DRD2 modulation and analyze additional brain regions.
Collapse
MESH Headings
- Animals
- Peromyscus
- RNA, Messenger/metabolism
- Corpus Striatum/metabolism
- Male
- Receptors, Dopamine/metabolism
- Receptors, Dopamine/genetics
- Stereotyped Behavior/physiology
- Receptors, Opioid/metabolism
- Receptors, Opioid/genetics
- Receptors, Opioid, kappa/metabolism
- Enkephalins/metabolism
- Receptors, Opioid, mu/metabolism
- Behavior, Animal/physiology
- Receptors, Dopamine D2/metabolism
Collapse
Affiliation(s)
- Farhan Augustine
- Johns Hopkins University School of Medicine, Department of Neurology, and the Kennedy Krieger Institute, Baltimore, MD, USA; University of Maryland Baltimore County, Department of Biological Sciences, Baltimore, MD, USA
| | | | - Justin Pellicciotti
- Johns Hopkins University School of Medicine, Department of Neurology, and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Sahar Mahate
- Johns Hopkins University School of Medicine, Department of Neurology, and the Kennedy Krieger Institute, Baltimore, MD, USA; University of Maryland Baltimore County, Department of Biological Sciences, Baltimore, MD, USA
| | - Harvey S Singer
- Johns Hopkins University School of Medicine, Department of Neurology, and the Kennedy Krieger Institute, Baltimore, MD, USA.
| |
Collapse
|
4
|
Zhang Y, Lu Z, Guo J, Wang Q, Zhang X, Yang H, Li X. Advanced Carriers for Precise Delivery and Therapeutic Mechanisms of Traditional Chinese Medicines: Integrating Spatial Multi-Omics and Delivery Visualization. Adv Healthc Mater 2025; 14:e2403698. [PMID: 39828637 DOI: 10.1002/adhm.202403698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/01/2024] [Indexed: 01/22/2025]
Abstract
The complex composition of traditional Chinese medicines (TCMs) has posed challenges for in-depth study and global application, despite their abundance of bioactive compounds that make them valuable resources for disease treatment. To overcome these obstacles, it is essential to modernize TCMs by focusing on precise disease treatment. This involves elucidating the structure-activity relationships within their complex compositions, ensuring accurate in vivo delivery, and monitoring the delivery process. This review discusses the research progress of TCMs in precision disease treatment from three perspectives: spatial multi-omics technology for precision therapeutic activity, carrier systems for precise in vivo delivery, and medical imaging technology for visualizing the delivery process. The aim is to establish a novel research paradigm that advances the precision therapy of TCMs.
Collapse
Affiliation(s)
- Yusheng Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Zhiguo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process, Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process, Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, P. R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process, Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongjun Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100029, P. R. China
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| |
Collapse
|
5
|
Lovane L, Larsson GL, Tulsidás S, Carrilho C, Andersson S, Karlsson C. Endocervical adenocarcinomas and HPV genotyping in an HIV endemic milieu - a retrospective study. BMC Womens Health 2025; 25:20. [PMID: 39815240 PMCID: PMC11734481 DOI: 10.1186/s12905-025-03555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Cervical cancer is the most prevalent cancer in Mozambique, with endocervical adenocarcinoma accounting for approximately 5.5% of cases. Knowledge regarding the most prevalent HPV genotypes in endocervical adenocarcinoma is limited, within this setting. This study aimed to investigate human papillomavirus (HPV) prevalence and genotypes within a cohort of endocervical adenocarcinoma patients in the context of Mozambique's recently introduced vaccination programme, considering the country's HIV-endemic setting. METHODS Forty consecutive cases of endocervical adenocarcinoma diagnosed at Maputo Central Hospital between 2017 and 2018, with limited clinical data available, were included. Human immunodeficiency virus (HIV) status was determined through serological data or in situ hybridisation on histopathological slides. HPV detection was performed using a multi-methodological approach, including Anyplex II, in-house polymerase chain reaction (PCR), and chromogenic and fluorescent in situ hybridisation techniques. RESULTS All 40 cases exhibited HPV-dependent morphology. Fourteen of the 40 patients were HIV-positive. No significant differences were observed between the two groups regarding age, stage, or histopathological type. hrHPV16, 18, or 45 were detected in all cases. Notably, multiple hrHPV infections were identified exclusively in HIV-negative cases (10/26, p = 0.0075), with hrHPV18/45 co-infection being the most common (n = 8). CONCLUSIONS These findings suggest that the newly implemented quadrivalent vaccination programme has the potential to prevent morbidity and mortality from endocervical adenocarcinoma, irrespective of HIV infection status, in Mozambique's HIV-endemic environment.
Collapse
Affiliation(s)
- Lucília Lovane
- Pathology Department, Maputo Central Hospital, Avenida Agostinho Neto 164, Maputo, CEP1100, Mozambique.
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
- Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique.
| | | | - Satish Tulsidás
- Medical Oncology Service, Maputo Central Hospital, Maputo, Mozambique
| | - Carla Carrilho
- Pathology Department, Maputo Central Hospital, Avenida Agostinho Neto 164, Maputo, CEP1100, Mozambique
- Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Sören Andersson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Christina Karlsson
- School of Health Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
6
|
d’Amati A, Serio G, Quaranta A, Vimercati L, De Giorgis M, Lorusso L, Errede M, Longo V, Marzullo A, Ribatti D, Annese T. Analysis of TERT mRNA Levels and Clinicopathological Features in Patients with Peritoneal Mesothelioma. Cancers (Basel) 2025; 17:252. [PMID: 39858033 PMCID: PMC11764446 DOI: 10.3390/cancers17020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Telomerase reverse transcriptase (TERT) is the catalytic subunit of the telomerase enzyme responsible for telomere length maintenance and is an important cancer hallmark. Our study aimed to clarify the mRNA expression of TERT in peritoneal mesothelioma (PeM), and to explore the relationship between its expression and the clinicopathological parameters and prognosis of patients with PeM. METHODS In a cohort of 13 MpeM patients, we evaluated histotype, nuclear grade, mitotic count, necrosis, inflammation, Ki67, BAP1, MTAP and p16 expression by immunohistochemistry, p16/CDKN2A status by FISH and TERT mRNA expression by RNAscope. RESULTS Our results showed several statistical correlations between TERT mRNA-score and other investigated features: (i) a poor positive correlation with BAP1 score (r = 0.06340; p ≤ 0.0001); (ii) a moderate positive correlation with p16 FISH del homo (r = 0.6340; p ≤ 0.0001); (iii) a fair negative correlation with p16 FISH del hetero (r = -0.3965; p ≤ 0.0001); a negative poor correlation with MTAP (r = -0.2443; p ≤ 0.0001); and (iv) a negative fair correlation with inflammatory infiltrate (r = -0.5407; p = 0.0233). Moreover, patients survive for a significantly longer time if they have a low mitotic index adjusted (2-4 mitotic figures per 2 mm2) (p ≤ 0.0001), are male (p = 0.0152), lose BAP1 (p = 0.0152), are p16 positive and present no deletion or heterozygous for p16 (p ≤ 0.01). CONCLUSIONS TERT is highly expressed in PeM, but it is not one of the crucial factors in evaluating the prognosis of patients. Nevertheless, the results validate the prognostic significance of the mitotic index, BAP1 loss and p16/CDKN2A status.
Collapse
Affiliation(s)
- Antonio d’Amati
- Department of Medicine and Surgery, LUM University, Casamassima, 70010 Bari, Italy;
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy; (M.D.G.); (L.L.); (M.E.); (D.R.)
- Department of Precision and Regenerative Medicine and Ionian Area, Pathology Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.S.); (A.Q.); (A.M.)
| | - Gabriella Serio
- Department of Precision and Regenerative Medicine and Ionian Area, Pathology Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.S.); (A.Q.); (A.M.)
| | - Andrea Quaranta
- Department of Precision and Regenerative Medicine and Ionian Area, Pathology Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.S.); (A.Q.); (A.M.)
| | - Luigi Vimercati
- Department of Interdisciplinary Medicine, Occupational Health Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Michelina De Giorgis
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy; (M.D.G.); (L.L.); (M.E.); (D.R.)
| | - Loredana Lorusso
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy; (M.D.G.); (L.L.); (M.E.); (D.R.)
| | - Mariella Errede
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy; (M.D.G.); (L.L.); (M.E.); (D.R.)
| | - Vito Longo
- Thoracic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Andrea Marzullo
- Department of Precision and Regenerative Medicine and Ionian Area, Pathology Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.S.); (A.Q.); (A.M.)
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy; (M.D.G.); (L.L.); (M.E.); (D.R.)
| | - Tiziana Annese
- Department of Medicine and Surgery, LUM University, Casamassima, 70010 Bari, Italy;
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy; (M.D.G.); (L.L.); (M.E.); (D.R.)
| |
Collapse
|
7
|
Paul ED, Huraiová B, Valková N, Matyasovska N, Gábrišová D, Gubová S, Ignačáková H, Ondris T, Gala M, Barroso L, Bendíková S, Bíla J, Buranovská K, Drobná D, Krchňáková Z, Kryvokhyzha M, Lovíšek D, Mamoilyk V, Mancikova V, Vojtaššáková N, Ristová M, Comino-Méndez I, Andrašina I, Morozov P, Tuschl T, Pareja F, Kather JN, Čekan P. The spatially informed mFISHseq assay resolves biomarker discordance and predicts treatment response in breast cancer. Nat Commun 2025; 16:226. [PMID: 39747865 PMCID: PMC11696812 DOI: 10.1038/s41467-024-55583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Current assays fail to address breast cancer's complex biology and accurately predict treatment response. On a retrospective cohort of 1082 female breast tissues, we develop and validate mFISHseq, which integrates multiplexed RNA fluorescent in situ hybridization with RNA-sequencing, guided by laser capture microdissection. This technique ensures tumor purity, unbiased whole transcriptome profiling, and explicitly quantifies intratumoral heterogeneity. Here we show mFISHseq has 93% accuracy compared to immunohistochemistry. Our consensus subtyping and risk groups mitigate single sample discordance, provide early and late prognostic information, and identify high risk patients with enriched immune signatures, which predict response to neoadjuvant immunotherapy in the multicenter, phase II, prospective I-SPY2 trial. We identify putative antibody-drug conjugate (ADC)-responsive patients, as evidenced by a 19-feature T-DM1 classifier, validated on I-SPY2. Deploying mFISHseq as a research-use only test on 48 patients demonstrates clinical feasibility, revealing insights into the efficacy of targeted therapies, like CDK4/6 inhibitors, immunotherapies, and ADCs.
Collapse
Affiliation(s)
- Evan D Paul
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia.
- MultiplexDX, Inc, Rockville, MD, USA.
| | - Barbora Huraiová
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Natália Valková
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Natalia Matyasovska
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Daniela Gábrišová
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Soňa Gubová
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Helena Ignačáková
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Tomáš Ondris
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Michal Gala
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Liliane Barroso
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Silvia Bendíková
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Jarmila Bíla
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Katarína Buranovská
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Diana Drobná
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Zuzana Krchňáková
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Maryna Kryvokhyzha
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Daniel Lovíšek
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Viktoriia Mamoilyk
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Veronika Mancikova
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Nina Vojtaššáková
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Michaela Ristová
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Iñaki Comino-Méndez
- Hospital Universitario Virgen de la Victoria, The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), Málaga, Spain
| | - Igor Andrašina
- Department of Radiotherapy and Oncology, East Slovakia Institute of Oncology, Košice, Slovakia
| | - Pavel Morozov
- Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Thomas Tuschl
- Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jakob N Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany.
- Department of Medicine I, University Hospital Dresden, Dresden, Germany.
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| | - Pavol Čekan
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia.
- MultiplexDX, Inc, Rockville, MD, USA.
| |
Collapse
|
8
|
Guazzelli PR, Britto-Júnior J, Cedano Godoy P Souza PR, Cardoso VF, Lima AT, Mathias Netto FC, Barbosa de Souza V, Antunes E, Schenka A, De Nucci G. Pharmacological and immunohistochemical characterization of dopamine D4 receptor in human umbilical artery and vein. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2025; 7:e240010. [PMID: 39908355 PMCID: PMC11883861 DOI: 10.1530/vb-24-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
To investigate the effects of the dopamine D4 receptor agonist A-412997 and the D4 antagonist sonepiprazole in human isolated umbilical artery (HUA) and vein (HUV) and the expression of the D4 receptor by immunohistochemistry in these vessels. A segment of the umbilical cord (10-20 cm) from the insertion point in the placenta and 5 cm from the umbilicus was removed by the obstetrician and placed in a container with Krebs-Henseleit solution (KHS). The Wharton's jelly was removed, and HUA and HUV rings (3 mm) were suspended in 10 mL organ baths containing oxygenated (95% O2:5% CO2) and heated (37 °C) KHS. For immunohistochemistry, the vessels were fixed in 10% formalin, embedded in paraffin wax and sectioned (4 µm). A-412997 did not induce contractions in the HUA rings. In HUA pre-contracted rings, A-412997 induced concentration-dependent relaxations, which were reduced when the HUA rings were pre-incubated with L-NAME. A-412997 caused concentration-dependent contractions of HUV rings, which were potentiated by pre-treatment with L-NAME and reduced by pre-incubation with 6-nitrodopamine. In HUV pre-contracted rings, A-412997 failed to induce relaxations. Sonepiprazole antagonized A-412997-induced contractions in HUV rings and provoked concentration-dependent relaxations in pre-contracted HUA and HUV rings. Dopamine D4 receptor was positive in both HUA and HUV, especially in the endothelium, and detected only in HUV smooth muscle cells. Activation of HUA D4 receptor is associated with relaxation, whereas in HUV, it leads to contraction. Differential expression of D4 receptors may modulate umbilical-placental blood flow.
Collapse
Affiliation(s)
- Pedro Renato Guazzelli
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - José Britto-Júnior
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Vinicius Francisco Cardoso
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Antonio Tiago Lima
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Felipe Caliani Mathias Netto
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Valéria Barbosa de Souza
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - André Schenka
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Metropolitan University of Santos (UNIMES), Santos, Brazil
| |
Collapse
|
9
|
Win R, Minto W, Mah IK, Boyd K. Integration of Chromogenic RNAscope In Situ Hybridization for Target Validation in Drug Discovery. Toxicol Pathol 2025; 53:21-30. [PMID: 39829073 DOI: 10.1177/01926233241311275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Characterizing the expression of novel targets in normal and diseased tissues is a fundamental component of a target validation data package. Often these targets are presented to the pathology team for assessment with bulk or single-cell RNAseq data and limited to no spatial tissue expression data. In situ hybridization to detect mRNA (RNAscope) is a valuable tool to (1) identify cells that may express the target protein and to corroborate protein expression during immunohistochemical (IHC) assay development or (2) to use as surrogate for single-cell expression IHC when antibodies are not available. Chromogenic RNAscope in situ hybridization (CISH) can be performed on frozen or formalin-fixed, paraffin-embedded (FFPE) tissues. This CISH workflow starts with RNA qualification of the tissue (to assess RNA integrity) by measuring the expression of housekeeping genes. RNA-qualified tissues then undergo CISH for the target in question, and positive CISH signals are quantified in VisioPharm by a combination of color deconvolution, size gating, and dot density thresholding. This RNA workflow can complement IHC or standalone in target validation for spatial characterization of novel targets.
Collapse
Affiliation(s)
- Rosanna Win
- Gilead Sciences, Foster City, California, USA
| | | | | | - Kelli Boyd
- Gilead Sciences, Foster City, California, USA
| |
Collapse
|
10
|
Ariotta V, Azzalini E, Canzonieri V, Hautaniemi S, Bonin S. Comparative Analysis of Gene Expression Analysis Methods for RNA in Situ Hybridization Images. J Mol Diagn 2024; 26:931-942. [PMID: 39068989 DOI: 10.1016/j.jmoldx.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Gene expression analysis is pivotal in cancer research and clinical practice. Although traditional methods lack spatial context, RNA in situ hybridization (RNA-ISH) is a powerful technique that retains spatial tissue information. Here, RNAscope score, RT-droplet digital PCR, and automated QuantISH and QuPath were used for quantifying RNA-ISH expression values from formalin-fixed, paraffin-embedded samples. The methods were compared using high-grade serous ovarian carcinoma samples, focusing on CCNE1, WFDC2, and PPIB genes. The findings demonstrate good concordance between automated methods and RNAscope, with RT-droplet digital PCR showing less concordance. Additionally, QuantISH exhibits robust performance, even for low-expressed genes like CCNE1, showcasing its modular design and enhancing accessibility as a viable alternative for gene expression analysis.
Collapse
Affiliation(s)
- Valeria Ariotta
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eros Azzalini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Vincenzo Canzonieri
- Department of Medical Sciences, University of Trieste, Trieste, Italy; Pathology Unit, Centro di Riferimento Oncologico IRCCS, Aviano-National Cancer Institute, Pordenone, Italy
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Serena Bonin
- Department of Medical Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
11
|
Devora PA, Johnston AN. RNAscope: a novel method for the detection of Heterobilharzia americana ova in canine liver. J Vet Diagn Invest 2024; 36:538-542. [PMID: 38520054 PMCID: PMC11185124 DOI: 10.1177/10406387241241329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024] Open
Abstract
Canine schistosomiasis caused by Heterobilharzia americana can lead to severe morbidity and eventual mortality, in part due to the deposition of fluke ova in the liver and gastrointestinal tract, which promotes an influx of peri-ova inflammatory cells. Although fluke eggs can be identified in H&E-stained histologic sections, cases exist in which only fragments of the ova persist, or the egg is obscured by inflammatory infiltrates, which can confound definitive histologic diagnosis. Unfortunately, antibodies specific to Heterobilharzia are not commercially available for immunohistochemical labeling. Therefore, we aimed to use an RNA in situ hybridization strategy to fluorescently label Heterobilharzia ova. Using the H. americana 18S rRNA sequence, we developed an RNA probe and validated its performance on archival formalin-fixed, paraffin-embedded canine tissue. A positive signal was observed for all identifiable ova, fragmented and whole. Use of this methodology could aid understanding of the pathogenesis of H. americana infection in dogs. This technique augments standard diagnostic methodology, enabling spatial colocalization of fluke ova and inflammatory infiltrates when using fluorescent techniques.
Collapse
Affiliation(s)
- Priscilla A. Devora
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Andrea N. Johnston
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
12
|
Rojas-Galvan NS, Ciotu CI, Heber S, Fischer MJ. Correlation of TRPA1 RNAscope and Agonist Responses. J Histochem Cytochem 2024; 72:275-287. [PMID: 38725415 PMCID: PMC11107437 DOI: 10.1369/00221554241251904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
The TRPA1 ion channel is a sensitive detector of reactive chemicals, found primarily on sensory neurons. The phenotype exhibited by mice lacking TRPA1 suggests its potential as a target for pharmacological intervention. Antibody-based detection for distribution analysis is a standard technique. In the case of TRPA1, however, there is no antibody with a plausible validation in knockout animals or functional studies, but many that have failed in this regard. To this end we employed the single molecule in situ hybridization technique RNAscope on sensory neurons immediately after detection of calcium responses to the TRPA1 agonist allyl isothiocyanate. There is a clearly positive correlation between TRPA1 calcium imaging and RNAscope detection (R = 0.43), although less than what might have been expected. Thus, the technique of choice should be carefully considered to suit the research question. The marginal correlation between TRPV1 RNAscope and the specific agonist capsaicin indicates that such validation is advisable for every RNAscope target. Given the recent description of a long-awaited TRPA1 reporter mouse, TRPA1 RNAscope detection might still have its use cases, for detection of RNA at particular sites, for example, defined structurally or by other molecular markers.
Collapse
Affiliation(s)
- Natalia S. Rojas-Galvan
- Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria and Randall Centre for Cell & Molecular Biophysics, King’s College London, London, UK
| | - Cosmin I. Ciotu
- Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefan Heber
- Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael J.M. Fischer
- Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Makareeva E, Sousa M, Kent T, de Castro LF, Collins MT, Leikin S. RNA-based bone histomorphometry: method and its application to explaining postpubertal bone gain in a G610C mouse model of osteogenesis imperfecta. J Bone Miner Res 2024; 39:177-189. [PMID: 38477760 PMCID: PMC11207954 DOI: 10.1093/jbmr/zjad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 03/14/2024]
Abstract
Bone histomorphometry is a well-established approach to assessing skeletal pathology, providing a standard evaluation of the cellular components, architecture, mineralization, and growth of bone tissue. However, it depends in part on the subjective interpretation of cellular morphology by an expert, which introduces bias. In addition, diseases like osteogenesis imperfecta (OI) and fibrous dysplasia are accompanied by changes in the morphology and function of skeletal tissue and cells, hindering consistent evaluation of some morphometric parameters and interpretation of the results. For instance, traditional histomorphometry combined with collagen turnover markers suggested that reduced bone formation in classical OI is accompanied by increased bone resorption. In contrast, the well-documented postpubertal reduction in fractures would be easier to explain by reduced bone resorption after puberty, highlighting the need for less ambiguous measurements. Here we propose an approach to histomorphometry based on in situ mRNA hybridization, which uses Col1a1 as osteoblast and Ctsk as osteoclast markers. This approach can be fully automated and eliminates subjective identification of bone surface cells. We validate these markers based on the expression of Bglap, Ibsp, and Acp5. Comparison with traditional histological and tartrate-resistant acid phosphatase staining of the same sections suggests that mRNA-based analysis is more reliable. Unlike inconclusive traditional histomorphometry of mice with α2(I)-Gly610 to Cys substitution in the collagen triple helix, mRNA-based measurements reveal reduced osteoclastogenesis in 11-wk-old animals consistent with the postpubertal catch-up osteogenesis observed by microCT. We optimize the technique for cryosections of mineralized bone and sections of paraffin-embedded decalcified tissue, simplifying and broadening its applications. We illustrate the application of the mRNA-based approach to human samples using the example of a McCune-Albright syndrome patient. By eliminating confounding effects of altered cellular morphology and the need for subjective morphological evaluation, this approach may provide a more reproducible and accessible evaluation of bone pathology.
Collapse
Affiliation(s)
- Elena Makareeva
- Eunice Kennedy Shriver National institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Megan Sousa
- Eunice Kennedy Shriver National institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Tristan Kent
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Luis F de Castro
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Michael T Collins
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Sergey Leikin
- Eunice Kennedy Shriver National institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
14
|
Paul ED, Huraiová B, Valková N, Birknerova N, Gábrišová D, Gubova S, Ignačáková H, Ondris T, Bendíková S, Bíla J, Buranovská K, Drobná D, Krchnakova Z, Kryvokhyzha M, Lovíšek D, Mamoilyk V, Mančíková V, Vojtaššáková N, Ristová M, Comino-Méndez I, Andrašina I, Morozov P, Tuschl T, Pareja F, Čekan P. Multiplexed RNA-FISH-guided Laser Capture Microdissection RNA Sequencing Improves Breast Cancer Molecular Subtyping, Prognostic Classification, and Predicts Response to Antibody Drug Conjugates. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.05.23299341. [PMID: 38105959 PMCID: PMC10723508 DOI: 10.1101/2023.12.05.23299341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
On a retrospective cohort of 1,082 FFPE breast tumors, we demonstrated the analytical validity of a test using multiplexed RNA-FISH-guided laser capture microdissection (LCM) coupled with RNA-sequencing (mFISHseq), which showed 93% accuracy compared to immunohistochemistry. The combination of these technologies makes strides in i) precisely assessing tumor heterogeneity, ii) obtaining pure tumor samples using LCM to ensure accurate biomarker expression and multigene testing, and iii) providing thorough and granular data from whole transcriptome profiling. We also constructed a 293-gene intrinsic subtype classifier that performed equivalent to the research based PAM50 and AIMS classifiers. By combining three molecular classifiers for consensus subtyping, mFISHseq alleviated single sample discordance, provided near perfect concordance with other classifiers (κ > 0.85), and reclassified 30% of samples into different subtypes with prognostic implications. We also use a consensus approach to combine information from 4 multigene prognostic classifiers and clinical risk to characterize high, low, and ultra-low risk patients that relapse early (< 5 years), late (> 10 years), and rarely, respectively. Lastly, to identify potential patient subpopulations that may be responsive to treatments like antibody drug-conjugates (ADC), we curated a list of 92 genes and 110 gene signatures to interrogate their association with molecular subtype and overall survival. Many genes and gene signatures related to ADC processing (e.g., antigen/payload targets, endocytosis, and lysosome activity) were independent predictors of overall survival in multivariate Cox regression models, thus highlighting potential ADC treatment-responsive subgroups. To test this hypothesis, we constructed a unique 19-feature classifier using multivariate logistic regression with elastic net that predicted response to trastuzumab emtansine (T-DM1; AUC = 0.96) better than either ERBB2 mRNA or Her2 IHC alone in the T-DM1 arm of the I-SPY2 trial. This test was deployed in a research-use only format on 26 patients and revealed clinical insights into patient selection for novel therapies like ADCs and immunotherapies and de-escalation of adjuvant chemotherapy.
Collapse
Affiliation(s)
- Evan D. Paul
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Barbora Huraiová
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Natália Valková
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Natalia Birknerova
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Daniela Gábrišová
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Sona Gubova
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Helena Ignačáková
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Tomáš Ondris
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Silvia Bendíková
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Jarmila Bíla
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Katarína Buranovská
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Diana Drobná
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Zuzana Krchnakova
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Maryna Kryvokhyzha
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Daniel Lovíšek
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Viktoriia Mamoilyk
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Veronika Mančíková
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Nina Vojtaššáková
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Michaela Ristová
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Iñaki Comino-Méndez
- Unidad de Gestión Clínica Intercentros de Oncología Medica, Hospitales Universitarios Regional y Virgen de la Victoria. The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), Málaga, Spain
| | - Igor Andrašina
- Department of Radiotherapy and Oncology, East Slovakia Institute of Oncology, Košice, Slovakia
| | - Pavel Morozov
- Laboratory for RNA Molecular Biology, The Rockefeller University, New York NY, USA
| | - Thomas Tuschl
- Laboratory for RNA Molecular Biology, The Rockefeller University, New York NY, USA
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pavol Čekan
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| |
Collapse
|
15
|
Isaka T, Miyagi Y, Yokose T, Saito H, Kasajima R, Watabe K, Shigeta N, Kikunishi N, Shigefuku S, Murakami K, Adachi H, Nagashima T, Ito H. Impact of RBM10 and PD-L1 expression on the prognosis of pathologic N1-N2 epidermal growth factor receptor mutant lung adenocarcinoma. Transl Lung Cancer Res 2023; 12:2001-2014. [PMID: 38025811 PMCID: PMC10654431 DOI: 10.21037/tlcr-23-355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/29/2023] [Indexed: 12/01/2023]
Abstract
Background Impact of RNA-binding motif protein 10 (RBM10) and programmed death-ligand 1 (PD-L1) on the postoperative prognosis of patients with epidermal growth factor receptor gene mutation (EGFR-Mt) lung adenocarcinoma with pathological lymph node metastasis is still unclear. Methods Patients who underwent curative surgery for pN1-N2 EGFR-Mt lung adenocarcinoma (n=129) harboring the EGFR exon 19 deletion mutation (Ex19) (n=66) or EGFR exon 21 L858R mutation (Ex21) (n=63) between January 2010 and December 2020 were included in this retrospective study. The prognoses of patients with low/high cytoplasmic RBM10 expression and PD-L1 negativity/positivity based on immunohistochemistry (IHC) of resected specimens were compared using the log-rank test. The effects of RBM10 and PD-L1 expression on overall survival (OS) were examined via multivariable analysis using the Cox proportional hazards regression model. The effects of RBM10 and PD-L1 expression on progression-free survival (PFS) of EGFR-tyrosine kinase inhibitors (TKIs) therapy among patients with recurrent pN1-N2 EGFR-Mt lung adenocarcinoma (n=67) were examined using log-rank tests. Results The RBM10 low expression group showed significantly better 5-year OS than the RBM10 high expression group (89.4% vs. 71.5%, P=0.020), and the PD-L1 negative group tended to have longer 5-year OS than the PD-L1 positive group (86.4% vs. 68.4%, P=0.050). Multivariable analysis showed that high RBM10 expression [hazard ratio (HR), 3.12; 95% confidence interval (CI): 1.19-8.17; P=0.021] and PD-L1 positivity (HR, 3.80; 95% CI: 1.64-8.84; P=0.002) were independent poor prognostic factors for OS. PFS of patients with relapse and first-line EGFR-TKI treatment was significantly better in the PD-L1-negative group than in the PD-L1-positive group (34.5 vs. 12.1 months, P=0.045). PFS of patients with Ex21 relapse and first-line EGFR-TKI treatment was significantly better in the RBM10 low expression group than in the RBM10 high expression group (25.5 vs. 13.0 months, P=0.025). Conclusions High RBM10 expression and PD-L1 positivity are poor prognostic factors for OS in patients with pN1-N2 EGFR-Mt lung adenocarcinoma after curative surgery. In patients with recurrent pN1-N2 EGFR-Mt lung adenocarcinoma, PD-L1 and RBM10 expression may influence response to EGFR-TKIs.
Collapse
Affiliation(s)
- Tetsuya Isaka
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Haruhiro Saito
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Rika Kasajima
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Kozue Watabe
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Naoko Shigeta
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | | | | | - Kotaro Murakami
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Hiroyuki Adachi
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Takuya Nagashima
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Hiroyuki Ito
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|
16
|
Robles-Remacho A, Sanchez-Martin RM, Diaz-Mochon JJ. Spatial Transcriptomics: Emerging Technologies in Tissue Gene Expression Profiling. Anal Chem 2023; 95:15450-15460. [PMID: 37814884 PMCID: PMC10603609 DOI: 10.1021/acs.analchem.3c02029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
In this Perspective, we discuss the current status and advances in spatial transcriptomics technologies, which allow high-resolution mapping of gene expression in intact cell and tissue samples. Spatial transcriptomics enables the creation of high-resolution maps of gene expression patterns within their native spatial context, adding an extra layer of information to the bulk sequencing data. Spatial transcriptomics has expanded significantly in recent years and is making a notable impact on a range of fields, including tissue architecture, developmental biology, cancer, and neurodegenerative and infectious diseases. The latest advancements in spatial transcriptomics have resulted in the development of highly multiplexed methods, transcriptomic-wide analysis, and single-cell resolution utilizing diverse technological approaches. In this Perspective, we provide a detailed analysis of the molecular foundations behind the main spatial transcriptomics technologies, including methods based on microdissection, in situ sequencing, single-molecule FISH, spatial capturing, selection of regions of interest, and single-cell or nuclei dissociation. We contextualize the detection and capturing efficiency, strengths, limitations, tissue compatibility, and applications of these techniques as well as provide information on data analysis. In addition, this Perspective discusses future directions and potential applications of spatial transcriptomics, highlighting the importance of the continued development to promote widespread adoption of these techniques within the research community.
Collapse
Affiliation(s)
- Agustín Robles-Remacho
- GENYO.
Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustracion,
114. 18016 Granada, Spain
- Department
of Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Rosario M. Sanchez-Martin
- GENYO.
Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustracion,
114. 18016 Granada, Spain
- Department
of Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Juan J. Diaz-Mochon
- GENYO.
Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustracion,
114. 18016 Granada, Spain
- Department
of Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
17
|
Tong H, Yang T, Liu L, Li C, Sun Y, Jia Q, Qin Y, Chen L, Zhao X, Zhou G, Yan S, Li XJ, Li S. Aberrant splicing of mutant huntingtin in Huntington's disease knock-in pigs. Neurobiol Dis 2023; 187:106291. [PMID: 37716514 DOI: 10.1016/j.nbd.2023.106291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disease caused by a CAG repeat expansion in exon1 of the huntingtin gene (HTT). This expansion leads to the production of N-terminal mutant huntingtin protein (mHtt) that contains an expanded polyglutamine tract, which is toxic to neurons and causes neurodegeneration. While the production of N-terminal mHtt can be mediated by proteolytic cleavage of full-length mHtt, abnormal splicing of exon1-intron1 of mHtt has also been identified in the brains of HD mice and patients. However, the proportion of aberrantly spliced exon1 mHTT in relation to normal mHTT exon remains to be defined. In this study, HTT exon1 production was examined in the HD knock-in (KI) pig model, which more closely recapitulates neuropathology seen in HD patient brains than HD mouse models. The study revealed that aberrant spliced HTT exon1 is also present in the brains of HD pigs, but it is expressed at a much lower level than the normally spliced HTT exon products. These findings suggest that careful consideration is needed when assessing the contribution of aberrantly spliced mHTT exon1 to HD pathogenesis, and further rigorous investigation is required.
Collapse
Affiliation(s)
- Huichun Tong
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Tianqi Yang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Li Liu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Caijuan Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Yize Sun
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Qingqing Jia
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Yiyang Qin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Xianxian Zhao
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Gongke Zhou
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Sen Yan
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
18
|
Menge TD, Durgin JS, Hrycaj SM, Brent AA, Patel RM, Harms PW, Fullen DR, Chan MP, Bresler SC. Utility of GLI1 RNA Chromogenic in Situ Hybridization in Distinguishing Basal Cell Carcinoma From Histopathologic Mimics. Mod Pathol 2023; 36:100265. [PMID: 37391171 DOI: 10.1016/j.modpat.2023.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Basal cell carcinoma (BCC) is the most common human malignancy and is a leading cause of nonmelanoma skin cancer-related morbidity. BCC has several histologic mimics which may have treatment and prognostic implications. Furthermore, BCC may show alternative differentiation toward a variety of cutaneous structures. The vast majority of BCCs harbor mutations in the hedgehog signaling pathway, resulting in increased expression of the GLI family of transcription factors. GLI1 immunohistochemistry has been shown to discriminate between several tumor types but demonstrates high background signal and lack of specificity. In this study, we evaluated the utility of GLI1 RNA chromogenic in situ hybridization (CISH) as a novel method of distinguishing between BCC and other epithelial neoplasms. Expression of GLI1 by RNA CISH was retrospectively evaluated in a total of 220 cases, including 60 BCCs, 37 squamous cell carcinomas (SCCs) including conventional, basaloid, and human papillomavirus infection (HPV)-associated tumors, 16 sebaceous neoplasms, 10 Merkel cell carcinomas, 58 benign follicular tumors, and 39 ductal tumors. The threshold for positivity was determined to be greater than or equal to 3 GLI1 signals in at least 50% of tumor cells. Positive GLI1 expression was identified in 57/60 BCCs, including metastatic BCC, collision lesions with SCC, and BCCs with squamous, ductal, or clear cell differentiation or with other unusual features compared to 1/37 SCCs, 0/11 sebaceous carcinomas, 0/5 sebaceomas, 1/10 Merkel cell carcinomas, 0/39 ductal tumors, and 28/58 follicular tumors. With careful evaluation, GLI1 RNA CISH is highly sensitive (95%) and specific (98%) in distinguishing between BCC and nonfollicular epithelial neoplasms. However, GLI1 CISH is not specific for distinguishing BCC from most benign follicular tumors. Overall, detection of GLI1 RNA by CISH may be a useful tool for precise classification of histologically challenging basaloid tumors, particularly in the setting of small biopsy specimens, metaplastic differentiation, or metastatic disease.
Collapse
Affiliation(s)
- Tyler D Menge
- CTA Pathology, Ann Arbor, Michigan; Department of Dermatology, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Joseph S Durgin
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Steven M Hrycaj
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ashley A Brent
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Rajiv M Patel
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan; Cutaneous Pathology, WCP Laboratories Inc, Maryland Heights, Missouri
| | - Paul W Harms
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Douglas R Fullen
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - May P Chan
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Scott C Bresler
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
19
|
Spencer-Dene B, Mukherjee P, Alex A, Bera K, Tseng WJ, Shi J, Chaney EJ, Spillman DR, Marjanovic M, Miranda E, Boppart SA, Hood SR. Localization of unlabeled bepirovirsen antisense oligonucleotide in murine tissues using in situ hybridization and CARS imaging. RNA (NEW YORK, N.Y.) 2023; 29:1575-1590. [PMID: 37460153 PMCID: PMC10578491 DOI: 10.1261/rna.079699.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 09/20/2023]
Abstract
Current methods for detecting unlabeled antisense oligonucleotide (ASO) drugs rely on immunohistochemistry (IHC) and/or conjugated molecules, which lack sufficient sensitivity, specificity, and resolution to fully investigate their biodistribution. Our aim was to demonstrate the qualitative and quantitative distribution of unlabeled bepirovirsen, a clinical stage ASO, in livers and kidneys of dosed mice using novel staining and imaging technologies at subcellular resolution. ASOs were detected in formalin-fixed paraffin-embedded (FFPE) and frozen tissues using an automated chromogenic in situ hybridization (ISH) assay: miRNAscope. This was then combined with immunohistochemical detection of cell lineage markers. ASO distribution in hepatocytes versus nonparenchymal cell lineages was quantified using HALO AI image analysis. To complement this, hyperspectral coherent anti-Stokes Raman scattering (HS-CARS) imaging microscopy was used to specifically detect the unique cellular Raman spectral signatures following ASO treatment. Bepirovirsen was localized primarily in nonparenchymal liver cells and proximal renal tubules. Codetection of ASO with distinct cell lineage markers of liver and kidney populations aided target cell identity facilitating quantification. Positive liver signal was quantified using HALO AI, with 12.9% of the ASO localized to the hepatocytes and 87.1% in nonparenchymal cells. HS-CARS imaging specifically detected ASO fingerprints based on the unique vibrational signatures following unlabeled ASO treatment in a totally nonperturbative manner at subcellular resolution. Together, these novel detection and imaging modalities represent a significant increase in our ability to detect unlabeled ASOs in tissues, demonstrating improved levels of specificity and resolution. These methods help us understand their underlying mechanisms of action and ultimately improve the therapeutic potential of these important drugs for treating globally significant human diseases.
Collapse
Affiliation(s)
- Bradley Spencer-Dene
- In Vitro/In Vivo Translation, BioImaging, GSK, Stevenage SG1 2NY, United Kingdom
| | - Prabuddha Mukherjee
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Aneesh Alex
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- In Vitro/In Vivo Translation, BioImaging, GSK, Upper Providence, Pennsylvania 19426, USA
| | - Kajari Bera
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Wei-Ju Tseng
- In Vitro/In Vivo Translation, BioImaging, GSK, Upper Providence, Pennsylvania 19426, USA
| | - Jindou Shi
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Eric J Chaney
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Darold R Spillman
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Marina Marjanovic
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Elena Miranda
- In Vitro/In Vivo Translation, BioImaging, GSK, Stevenage SG1 2NY, United Kingdom
| | - Stephen A Boppart
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Steve R Hood
- In Vitro/In Vivo Translation, BioImaging, GSK, Stevenage SG1 2NY, United Kingdom
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
20
|
Gaide N, Crispo M, Jbenyeni A, Bleuart C, Delverdier M, Vergne T, Le Loc’h G, Guérin JL. Validation of an RNAscope assay for the detection of avian influenza A virus. J Vet Diagn Invest 2023; 35:500-506. [PMID: 37334770 PMCID: PMC10467460 DOI: 10.1177/10406387231182385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) is an acute viral disease associated with high mortality and great economic losses. Immunohistochemistry (IHC) is a common diagnostic and research tool for the demonstration of avian influenza A virus (AIAV) antigens within affected tissues, supporting etiologic diagnosis and assessing viral distribution in both naturally and experimentally infected birds. RNAscope in situ hybridization (ISH) has been used successfully for the identification of a variety of viral nucleic acids within histologic samples. We validated RNAscope ISH for the detection of AIAV in formalin-fixed, paraffin-embedded (FFPE) tissues. RNAscope ISH targeting the AIAV matrix gene and anti-IAV nucleoprotein IHC were performed on 61 FFPE tissue sections obtained from 3 AIAV-negative, 16 H5 HPAIAV, and 1 low pathogenicity AIAV naturally infected birds, including 7 species sampled between 2009 and 2022. All AIAV-negative birds were confirmed negative by both techniques. All AIAVs were detected successfully by both techniques in all selected tissues and species. Subsequently, H-score comparison was assessed through computer-assisted quantitative analysis on a tissue microarray comprised of 132 tissue cores from 9 HPAIAV-infected domestic ducks. Pearson correlation of r = 0.95 (0.94-0.97), Lin concordance coefficient of ρc = 0.91 (0.88-0.93), and Bland-Altman analysis indicated high correlation and moderate concordance between the 2 techniques. H-score values were significantly higher with RNAscope ISH compared to IHC for brain, lung, and pancreatic tissues (p ≤ 0.05). Overall, our results indicate that RNAscope ISH is a suitable and sensitive tool for in situ detection of AIAV in FFPE tissues.
Collapse
Affiliation(s)
- Nicolas Gaide
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
- Laboratory of Anatomic Pathology, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Manuela Crispo
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Adam Jbenyeni
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Céline Bleuart
- Laboratory of Anatomic Pathology, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Maxence Delverdier
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
- Laboratory of Anatomic Pathology, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Timothée Vergne
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Guillaume Le Loc’h
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Jean-Luc Guérin
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| |
Collapse
|
21
|
Ball JB, McNulty CJ, Green-Fulgham SM, Dragavon JM, Correia Rocha IR, Finch MR, Prévost ED, Siddique II, Woodall BJ, Watkins LR, Baratta MV, Root DH. Combining RNAscope and immunohistochemistry to visualize inflammatory gene products in neurons and microglia. Front Mol Neurosci 2023; 16:1225847. [PMID: 37664240 PMCID: PMC10470653 DOI: 10.3389/fnmol.2023.1225847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
A challenge for central nervous system (CNS) tissue analysis in neuroscience research has been the difficulty to codetect and colocalize gene and protein expression in the same tissue. Given the importance of identifying gene expression relative to proteins of interest, for example, cell-type specific markers, we aimed to develop a protocol to optimize their codetection. RNAscope fluorescent in situ hybridization (FISH) combined with immunohistochemistry (IHC) in fixed (CNS) tissue sections allows for reliable quantification of gene transcripts of interest within IHC-labeled cells. This paper describes a new method for simultaneous visualization of FISH and IHC in thicker (14-μm), fixed tissue samples, using spinal cord sections. This method's effectiveness is shown by the cell-type-specific quantification of two genes, namely the proinflammatory cytokine interleukin-1beta (IL-1b) and the inflammasome NLR family pyrin domain containing 3 (NLRP3). These genes are challenging to measure accurately using immunohistochemistry (IHC) due to the nonspecificity of available antibodies and the hard-to-distinguish, dot-like visualizations of the labeled proteins within the tissue. These measurements were carried out in spinal cord sections after unilateral chronic constriction injury of the sciatic nerve to induce neuroinflammation in the spinal cord. RNAscope is used to label transcripts of genes of interest and IHC is used to label cell-type specific antigens (IBA1 for microglia, NeuN for neurons). This combination allowed for labeled RNA transcripts to be quantified within cell-type specific boundaries using confocal microscopy and standard image analysis methods. This method makes it easy to answer empirical questions that are intractable with standard IHC or in situ hybridization alone. The method, which has been optimized for spinal cord tissue and to minimize tissue preparation time and costs, is described in detail from tissue collection to image analysis. Further, the relative expression changes in inflammatory genes NLRP3 and IL-1b in spinal cord microglia vs. neurons of somatotopically relevant laminae are described for the first time.
Collapse
Affiliation(s)
- Jayson B. Ball
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Connor J. McNulty
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Suzanne M. Green-Fulgham
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Joseph M. Dragavon
- Advanced Light Microscopy Core, Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Igor R. Correia Rocha
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Maggie R. Finch
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Emily D. Prévost
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Imaad I. Siddique
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Brodie J. Woodall
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Michael V. Baratta
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - David H. Root
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
22
|
Ngoc KH, Kecskés A, Kepe E, Nabi L, Keeble J, Borbély É, Helyes Z. Expression of the Transient Receptor Potential Vanilloid 1 ion channel in the supramammillary nucleus and the antidepressant effects of its antagonist AMG9810 in mice. Eur Neuropsychopharmacol 2023; 73:96-107. [PMID: 37156112 DOI: 10.1016/j.euroneuro.2023.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
The Transient Receptor Potential Vanilloid 1 (TRPV1) non-selective cation channel predominantly expressed in primary sensory neurons of the dorsal root and trigeminal ganglia mediates pain and neurogenic inflammation. TRPV1 mRNA and immunoreactivity were described in the central nervous system (CNS), but its precise expression pattern and function have not been clarified. Here we investigated Trpv1 mRNA expression in the mouse brain using ultrasensitive RNAScope in situ hybridization. The role of TRPV1 in anxiety, depression-like behaviors and memory functions was investigated by TRPV1-deficient mice and pharmacological antagonism by AMG9810. Trpv1 mRNA is selectively expressed in the supramammillary nucleus (SuM) co-localized with Vglut2 mRNA, but not with tyrosine hydroxylase immunopositivity demonstrating its presence in glutamatergic, but not dopaminergic neurons. TRPV1-deleted mice exhibited significantly reduced anxiety in the Light-Dark box and depression-like behaviors in the Forced Swim Test, but their performance in the Elevated Plus Maze as well as their spontaneous locomotor activity, memory and learning function in the Radial Arm Maze, Y-maze and Novel Object Recognition test were not different from WTs. AMG9810 (intraperitoneal injection 50 mg/kg) induced anti-depressant, but not anxiolytic effects. It is concluded that TRPV1 in the SuM might have functional relevance in mood regulation and TRPV1 antagonism could be a novel perspective for anti-depressant drugs.
Collapse
Affiliation(s)
- Khai Huynh Ngoc
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Angéla Kecskés
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Eszter Kepe
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Liza Nabi
- King's College London, Institute of Pharmaceutical Science, London, United Kingdom
| | - Julie Keeble
- King's College London, Centre for Human & Applied Physiological Sciences, London, United Kingdom
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; Eötvös Loránd Research Network, Chronic Pain Research Group, University of Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary; PharmInVivo Ltd, Pécs, Hungary.
| |
Collapse
|
23
|
Roberts JH, Zhang J, David F, McLean A, Blumenshine K, Müller-Alander E, Halper J. Expression of genes with biomarker potential identified in skin from DSLD-affected horses increases with age. PLoS One 2023; 18:e0287740. [PMID: 37450486 PMCID: PMC10348567 DOI: 10.1371/journal.pone.0287740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Degenerative Suspensory Ligament Desmitis (DSLD) negatively impacts connective tissues in horses, which often leads to progressive chronic pain and lameness. DSLD has been shown to be a systemic disorder that affects multiple body systems, including tendons, sclerae, and the aorta. Currently, the diagnosis is confirmed by post mortem histological examination of a tendon or suspensory ligament. Histology reveals inappropriate accumulations of proteoglycans in the tendons and other tissues in DSLD-affected horses. Unfortunately, there is no reliable method to diagnose DSLD in living horses. Recently, bone morphogenetic protein 2 (BMP2) was identified in active DSLD lesions. In addition, recent data from RNA sequencing (RNA-seq) showed overexpression of numerous genes, among them BMP2, FOS and genes for keratins in DSLD skin biopsies-derived RNA. We hypothesized that some of these genes can be used as biomarkers for diagnosis of DSLD in a panel. Overexpression of some of them was verified in quantitative real time PCR. Immunohistochemistry and RNAscope in-situ hybridization (ISH) assays were used to determine the level of overexpression of specific genes in skin biopsies from control and DSLD-affected horses. The RNAscope ISH assay has shown to be more reliable and more specific that immunohistochemistry. ISH confirmed a significant increase in KRT83 and BMP-2 in hair follicles in DSLD cases, as well as abnormally high expression of FOS in the epidermis, especially in aging horses. Because statistically relevant specificity and sensitivity was documented only for FOS and BMP2, but not KRT83 we recommend the use of FOS and BMP2 panel to diagnose DSLD. We conclude that a panel of two markers from the studied group (BMP2 and FOS) can serve as an additional diagnostic tool for DSLD in living horses, especially in older animals. Further studies are necessary to confirm if this biomarker panel could be used as a prospective tool to identify DSLD in horses as they age.
Collapse
Affiliation(s)
- Jennifer Hope Roberts
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Jian Zhang
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Florent David
- Equine Care Group, Mazy, Gembloux, Belgium
- Equine Veterinary Medical Center–A member of Qatar Foundation, Doha, Qatar
| | - Amy McLean
- Department of Animal Science, College of Agricultural and Environmental Science, University of California at Davis, Davis, California, United States of America
| | - Karen Blumenshine
- Santa Barbara Equine Practice, Santa Barbara, California, United States of America
| | | | - Jaroslava Halper
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Basic Science Department, AU/UGA Medical Partnership, Athens, Georgia, United States of America
| |
Collapse
|
24
|
Schafer C, Young D, Singh H, Jayakrishnan R, Banerjee S, Song Y, Dobi A, Petrovics G, Srivastava S, Srivastava S, Sesterhenn IA, Chesnut GT, Tan SH. Development and characterization of an ETV1 rabbit monoclonal antibody for the immunohistochemical detection of ETV1 expression in cancer tissue specimens. J Immunol Methods 2023; 518:113493. [PMID: 37196930 PMCID: PMC10802095 DOI: 10.1016/j.jim.2023.113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Aberrant ETV1 overexpression arising from gene rearrangements or mutations occur frequently in prostate cancer, round cell sarcomas, gastrointestinal stromal tumors, gliomas, and other malignancies. The absence of specific monoclonal antibodies (mAb) has limited its detection and our understanding of its oncogenic function. METHODS An ETV1 specific rabbit mAb (29E4) was raised using an immunogenic peptide. Key residues essential for its binding were probed by ELISA and its binding kinetics were measured by surface plasmon resonance imaging (SPRi). Its selective binding to ETV1 was assessed by immunoblots and immunofluorescence assays (IFA), and by both single and double-immuno-histochemistry (IHC) assays on prostate cancer tissue specimens. RESULTS Immunoblot results showed that the mAb is highly specific and lacked cross-reactivity with other ETS factors. A minimal epitope with two phenylalanine residues at its core was found to be required for effective mAb binding. SPRi measurements revealed an equilibrium dissociation constant in the picomolar range, confirming its high affinity. ETV1 (+) tumors were detected in prostate cancer tissue microarray cases evaluated. IHC staining of whole-mounted sections revealed glands with a mosaic staining pattern of cells that are partly ETV1 (+) and interspersed with ETV1 (-) cells. Duplex IHC, using ETV1 and ERG mAbs, detected collision tumors containing glands with distinct ETV1 (+) and ERG (+) cells. CONCLUSIONS The selective detection of ETV1 by the 29E4 mAb in immunoblots, IFA, and IHC assays using human prostate tissue specimens reveals a potential utility for the diagnosis, the prognosis of prostate adenocarcinoma and other cancers, and the stratification of patients for treatment by ETV1 inhibitors.
Collapse
Affiliation(s)
- Cara Schafer
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Denise Young
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Harpreet Singh
- Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Rahul Jayakrishnan
- Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Sreedatta Banerjee
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Yingjie Song
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | | | - Gregory T Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Urology Service, Walter Reed National Military Medical Center, Bethesda, MD, 20852, USA
| | - Shyh-Han Tan
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| |
Collapse
|
25
|
Yang TS, Reichard MV, Thomas JE, Miller LS, Marr HS, Karounos M, Bell AJ, Birkenheuer AJ. Cytauxzoon felis in salivary glands of Amblyomma americanum. Ticks Tick Borne Dis 2023; 14:102056. [PMID: 36399958 PMCID: PMC10698755 DOI: 10.1016/j.ttbdis.2022.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Cytauxzoon felis is a tick-borne piroplasmid hemoparasite that causes life-threatening disease in cats. Despite the critical role that ticks play in pathogen transmission, our knowledge regarding the C. felis life cycle remains limited to the feline hosts. Specific life stages of C. felis within the tick host have never been visualized microscopically and previous investigations have been limited to molecular detection by polymerase chain reaction (PCR). Sporozoites are the infectious stage of piroplasmids that are transmitted by ticks. In other tick-borne piroplasmids, sporozoite-based vaccines play a key role in disease prevention and management. We believe sporozoites have similar potential for cytauxzoonosis. Therefore, the objective of this study was to use different molecular and microscopic techniques to detect and evaluate C. felis sporozoites in tick salivary glands (SG). A total of 140 Amblyomma americanum adults that were fed on C. felis-infected cats as nymphs were included for this study. Specifically, dissected SGs were quartered and subjected to C. felis RT-PCR, RNAscope® in situ hybridization (ISH), histology, direct azure staining, and transmission electron microscopy (TEM). Cytauxzoon felis RT-PCR was also performed on half tick (HT) carcasses after SG dissection. Cytauxzoon felis RNA was detected in SGs of 17/140 ticks. Of these, 7/17 ticks had microscopic visualization via ISH and/or TEM. The remaining 10/17 ticks had only molecular detection of C. felis in SGs via RT-PCR without visualization. Cytauxzoon felis RNA was detected solely in HT carcasses via RT-PCR in 9/140 ticks. In ISH-positive tick SGs, hybridization signals were present in cytoplasms of SG acinar cells. TEM captured rare C. felis organisms with characteristic ultrastructural features of sporozoites. This study describes the first direct visualization of any developing stage of C. felis in ticks. Forthcoming studies should employ a combination of molecular and microscopic techniques to investigate the C. felis life cycle in A. americanum.
Collapse
Affiliation(s)
- Tzushan S Yang
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Mason V Reichard
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jennifer E Thomas
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Laura S Miller
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Henry S Marr
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Michael Karounos
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Aaron J Bell
- Analytical Instrumentation Facility, North Carolina State University, Raleigh, NC 27695, USA
| | - Adam J Birkenheuer
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
26
|
Rouzer SK, Diaz MR. Moderate prenatal alcohol exposure modifies sex-specific CRFR1 activity in the central amygdala and anxiety-like behavior in adolescent offspring. Neuropsychopharmacology 2022; 47:2140-2149. [PMID: 35478009 PMCID: PMC9556708 DOI: 10.1038/s41386-022-01327-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/08/2023]
Abstract
Anxiety disorders are highly prevalent among individuals with a history of prenatal alcohol exposure (PAE), and adolescent rodents demonstrate anxiety-like behavior following moderate PAE on Gestational Day (G) 12. A likely systemic target of PAE is the stress peptide corticotropin-releasing factor (CRF), as activation of CRF receptor 1 (CRFR1) in the medial nucleus of the central amygdala (CeM) is known to increase anxiety-like behavior in adults. To determine if CRF-CRFR1 interactions underly PAE-induced anxiety, functional changes in CRF system activity were investigated in adolescent male and female Sprague Dawley rats following G12 PAE. Compared to air-exposed controls, PAE increased basal spontaneous (s) inhibitory postsynaptic current (IPSC) frequency in the CeM of males, but not females. Furthermore, PAE blunted CRFR1-regulated miniature (m) IPSCs in a sex- and concentration-specific manner, and only PAE males demonstrated tonic CRFR1 activity in the CeM. It was further determined that G12 PAE decreased CRFR1 mRNA in the CeM of males while increasing regional expression in females. Finally, infusion of a CRFR1 agonist into the CeM of adolescents produced a blunted expression of CRFR1-induced anxiety-like behavior exclusively in PAE males, mirroring the blunted physiology demonstrated by PAE males. Cumulatively, these data suggest that CRFR1 function within the CeM is age- and sex-specific, and PAE not only increases the expression of anxiety-like behavior, but may reduce the efficacy of treatment for PAE-induced anxiety through CRFR1-associated mechanisms. Therefore, future research will be necessary to develop targeted treatment of anxiety disorders in individuals with a history of PAE.
Collapse
Affiliation(s)
- Siara Kate Rouzer
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, USA
- Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, USA
| | - Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, USA.
- Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, USA.
| |
Collapse
|
27
|
Cheng Y, Burrack RK, Li Q. Spatially Resolved and Highly Multiplexed Protein and RNA In Situ Detection by Combining CODEX With RNAscope In Situ Hybridization. J Histochem Cytochem 2022; 70:571-581. [PMID: 35848523 PMCID: PMC9393509 DOI: 10.1369/00221554221114174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Highly multiplexed protein and RNA in situ detection on a single tissue section concurrently is highly desirable for both basic and applied biomedical research. CO-detection by inDEXing (CODEX) is a new and powerful platform to visualize up to 60 protein biomarkers in situ, and RNAscope in situ hybridization (RNAscope) is a novel RNA detection system with high sensitivity and unprecedent specificity at a single-cell level. Nevertheless, to our knowledge, the combination of CODEX and RNAscope remained unreported until this study. Here, we report a simple and reproducible combination of CODEX and RNAscope. We also determined the cross-reactivities of CODEX anti-human antibodies to rhesus macaques, a widely used animal model of human disease.
Collapse
Affiliation(s)
- Yilun Cheng
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska
| | - Rachel K. Burrack
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska
| |
Collapse
|
28
|
Chu S, Shi X, Tian Y, Gao F. pH-Responsive Polymer Nanomaterials for Tumor Therapy. Front Oncol 2022; 12:855019. [PMID: 35392227 PMCID: PMC8980858 DOI: 10.3389/fonc.2022.855019] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
The complexity of the tumor microenvironment presents significant challenges to cancer therapy, while providing opportunities for targeted drug delivery. Using characteristic signals of the tumor microenvironment, various stimuli-responsive drug delivery systems can be constructed for targeted drug delivery to tumor sites. Among these, the pH is frequently utilized, owing to the pH of the tumor microenvironment being lower than that of blood and healthy tissues. pH-responsive polymer carriers can improve the efficiency of drug delivery in vivo, allow targeted drug delivery, and reduce adverse drug reactions, enabling multifunctional and personalized treatment. pH-responsive polymers have gained increasing interest due to their advantageous properties and potential for applicability in tumor therapy. In this review, recent advances in, and common applications of, pH-responsive polymer nanomaterials for drug delivery in cancer therapy are summarized, with a focus on the different types of pH-responsive polymers. Moreover, the challenges and future applications in this field are prospected.
Collapse
Affiliation(s)
- Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Fengxiang Gao
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
29
|
Wang L, Guo S, Zeng B, Wang S, Chen Y, Cheng S, Liu B, Wang C, Wang Y, Meng Q. Draft Genome Assembly and Annotation for Cutaneotrichosporon dermatis NICC30027, an Oleaginous Yeast Capable of Simultaneous Glucose and Xylose Assimilation. MYCOBIOLOGY 2022; 50:69-81. [PMID: 35291590 PMCID: PMC8890563 DOI: 10.1080/12298093.2022.2038844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The identification of oleaginous yeast species capable of simultaneously utilizing xylose and glucose as substrates to generate value-added biological products is an area of key economic interest. We have previously demonstrated that the Cutaneotrichosporon dermatis NICC30027 yeast strain is capable of simultaneously assimilating both xylose and glucose, resulting in considerable lipid accumulation. However, as no high-quality genome sequencing data or associated annotations for this strain are available at present, it remains challenging to study the metabolic mechanisms underlying this phenotype. Herein, we report a 39,305,439 bp draft genome assembly for C. dermatis NICC30027 comprised of 37 scaffolds, with 60.15% GC content. Within this genome, we identified 524 tRNAs, 142 sRNAs, 53 miRNAs, 28 snRNAs, and eight rRNA clusters. Moreover, repeat sequences totaling 1,032,129 bp in length were identified (2.63% of the genome), as were 14,238 unigenes that were 1,789.35 bp in length on average (64.82% of the genome). The NCBI non-redundant protein sequences (NR) database was employed to successfully annotate 11,795 of these unigenes, while 3,621 and 11,902 were annotated with the Swiss-Prot and TrEMBL databases, respectively. Unigenes were additionally subjected to pathway enrichment analyses using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous Groups of proteins (COG), Clusters of orthologous groups for eukaryotic complete genomes (KOG), and Non-supervised Orthologous Groups (eggNOG) databases. Together, these results provide a foundation for future studies aimed at clarifying the mechanistic basis for the ability of C. dermatis NICC30027 to simultaneously utilize glucose and xylose to synthesize lipids.
Collapse
Affiliation(s)
- Laiyou Wang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Shuxian Guo
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Bo Zeng
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Shanshan Wang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Yan Chen
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Shuang Cheng
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Bingbing Liu
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Chunyan Wang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Yu Wang
- College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Qingshan Meng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|