1
|
Talamonti E, Davegardh J, Kalinovich A, van Beek SMM, Dehvari N, Halleskog C, Bokhari HM, Hutchinson DS, Ham S, Humphrys LJ, Dijon NC, Motso A, Sandstrom A, Zacharewicz E, Mutule I, Suna E, Spura J, Ditrychova K, Stoddart LA, Holliday ND, Wright SC, Lauschke VM, Nielsen S, Scheele C, Cheesman E, Hoeks J, Molenaar P, Summers RJ, Pelcman B, Yakala GK, Bengtsson T. The novel adrenergic agonist ATR-127 targets skeletal muscle and brown adipose tissue to tackle diabesity and steatohepatitis. Mol Metab 2024; 85:101931. [PMID: 38796310 PMCID: PMC11258667 DOI: 10.1016/j.molmet.2024.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 05/28/2024] Open
Abstract
OBJECTIVE Simultaneous activation of β2- and β3-adrenoceptors (ARs) improves whole-body metabolism via beneficial effects in skeletal muscle and brown adipose tissue (BAT). Nevertheless, high-efficacy agonists simultaneously targeting these receptors whilst limiting activation of β1-ARs - and thus inducing cardiovascular complications - are currently non-existent. Therefore, we here developed and evaluated the therapeutic potential of a novel β2-and β3-AR, named ATR-127, for the treatment of obesity and its associated metabolic perturbations in preclinical models. METHODS In the developmental phase, we assessed the impact of ATR-127's on cAMP accumulation in relation to the non-selective β-AR agonist isoprenaline across various rodent β-AR subtypes, including neonatal rat cardiomyocytes. Following these experiments, L6 muscle cells were stimulated with ATR-127 to assess the impact on GLUT4-mediated glucose uptake and intramyocellular cAMP accumulation. Additionally, in vitro, and in vivo assessments are conducted to measure ATR-127's effects on BAT glucose uptake and thermogenesis. Finally, diet-induced obese mice were treated with 5 mg/kg ATR-127 for 21 days to investigate the effects on glucose homeostasis, body weight, fat mass, skeletal muscle glucose uptake, BAT thermogenesis and hepatic steatosis. RESULTS Exposure of L6 muscle cells to ATR-127 robustly enhanced GLUT4-mediated glucose uptake despite low intramyocellular cAMP accumulation. Similarly, ATR-127 markedly increased BAT glucose uptake and thermogenesis both in vitro and in vivo. Prolonged treatment of diet-induced obese mice with ATR-127 dramatically improved glucose homeostasis, an effect accompanied by decreases in body weight and fat mass. These effects were paralleled by an enhanced skeletal muscle glucose uptake, BAT thermogenesis, and improvements in hepatic steatosis. CONCLUSIONS Our results demonstrate that ATR-127 is a highly effective, novel β2- and β3-ARs agonist holding great therapeutic promise for the treatment of obesity and its comorbidities, whilst potentially limiting cardiovascular complications. As such, the therapeutic effects of ATR-127 should be investigated in more detail in clinical studies.
Collapse
Affiliation(s)
| | - Jelena Davegardh
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | | | - Nodi Dehvari
- Atrogi AB, Tomtebodavagen 6, Solna, Stockholm, Sweden
| | | | | | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Seungmin Ham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Laura J Humphrys
- School of Life Sciences, The Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Nicola C Dijon
- School of Life Sciences, The Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Aikaterini Motso
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden
| | | | - Evelyn Zacharewicz
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ilga Mutule
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Jana Spura
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Karolina Ditrychova
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Righospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Leigh A Stoddart
- Excellerate Bioscience, The Triangle, NG2 Business Park, Nottingham, UK
| | - Nicholas D Holliday
- School of Life Sciences, The Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Excellerate Bioscience, The Triangle, NG2 Business Park, Nottingham, UK
| | - Shane C Wright
- Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden
| | - Volker M Lauschke
- Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden; Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; Tübingen University, Tübingen, Germany
| | - Soren Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Righospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Righospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Elizabeth Cheesman
- Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Peter Molenaar
- Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Avenue, Kelvin Grove, Queensland, Australia
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | | | - Tore Bengtsson
- Atrogi AB, Tomtebodavagen 6, Solna, Stockholm, Sweden; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
2
|
Baroni M, Biagioni S, Benedetti E, Scalese M, Baldini F, Potente R, Menicucci D, Molinaro S. Non-prescribed pharmaceutical stimulants use among adolescents: A way to self-care or peer success? Drug Alcohol Depend 2023; 250:110906. [PMID: 37549544 DOI: 10.1016/j.drugalcdep.2023.110906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND the use of pharmaceutical stimulants without a medical prescription (PSWMP) among adolescents is considered an established public health issue. The present study aimed to investigate the potential links between different patterns of non-medical use of pharmaceutical stimulants, psycho-social factors, and other risky behaviours (e.g. psychoactive substance use). METHODS For this purpose, data from a sample of 14,685 adolescents aged 15-19 participating in the ESPAD®Italia 2019 study were analysed by conducting descriptive analyses and multinomial logistic regressions. RESULTS The findings highlight the key role of psycho-social factors and engagement in other risky behaviours in either reducing or promoting the risk of PSWMP use. Particularly, being satisfied with peer relationships and with oneself is significantly associated with lower use of PSWMP. Conversely, the consumption of other psychoactive substances (both legal and illegal) and engagement in other risky behaviours (e.g., gambling and cyberbullying) may increase this phenomenon. CONCLUSIONS Considering their representativeness, the results of the present study could be used as groundwork for the development of effective and targeted prevention programs and interventions.
Collapse
Affiliation(s)
- Marina Baroni
- Institute of Clinical Physiology, National Research Council of Italy, Italy; Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Italy
| | - Silvia Biagioni
- Institute of Clinical Physiology, National Research Council of Italy, Italy; Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Italy
| | - Elisa Benedetti
- Institute of Clinical Physiology, National Research Council of Italy, Italy
| | - Marco Scalese
- Institute of Clinical Physiology, National Research Council of Italy, Italy
| | - Federica Baldini
- Institute of Clinical Physiology, National Research Council of Italy, Italy; Department of Social Sciences and Economics, Sapienza University of Rome, Italy
| | - Roberta Potente
- Institute of Clinical Physiology, National Research Council of Italy, Italy
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Italy
| | - Sabrina Molinaro
- Institute of Clinical Physiology, National Research Council of Italy, Italy.
| |
Collapse
|
3
|
Gürbüzer N, Ceyhun HA, Öztürk N, Kasali K. The Relationship Between Eating-Attitudes and Clinical Characteristics, Agouti-Related Peptide, and Other Biochemical Markers in Adult-Attention Deficit Hyperactivity Disorder. J Atten Disord 2023; 27:394-409. [PMID: 36642920 DOI: 10.1177/10870547221149198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE In our study, we aimed to evaluate eating-attitudes in adult-ADHD, and to examine its relationship with sociodemographic, clinical, AgRP, and biochemical parameters. METHOD The study included 70 adult-patients and 47 healthy-controls. The DIVA2.0, SCID-1 was administered to the participants. Eating-Attitudes Test (EAT), Night-Eating Questionnaire (NEQ), Barratt Impulsivity Scale (BIS-11) were filled by the participants. RESULTS We found that psychological state affect eating-attitudes in adult-ADHD (p = .013), emotional eating is more common, nocturnal chronotype is dominant (p < .001), NES is more frequent (p < .001), waist circumference measurement is higher (p = .030), and lipid profile is deteriorated (p < .001). AgRP levels were significantly lower in patients treated with methylphenidate (p = .021). Those who received methylphenidate treatment had less NES than those who did not. Deterioration in eating-attitudes and symptom severity of night eating in ADHD, it was positively correlated with clinical severity of ADHD and impulsivity. In addition, age and increase in night eating symptoms were predictors of deterioration in eating attitudes in adult-ADHD. We found that impaired eating-attitudes and impulsivity severity were also predictors of NES (p = .006, p = .034). CONCLUSION The necessity of adult-ADHD treatment has been demonstrated by the deterioration in eating-attitudes and cardiometabolic risk dimensions and the underlying mechanisms.
Collapse
|
4
|
Zhou B, Yuan Y, Shi L, Hu S, Wang D, Yang Y, Pan Y, Kong D, Shikov AN, Duez P, Jin M, Li X, Hu X. Creation of an Anti-Inflammatory, Leptin-Dependent Anti-Obesity Celastrol Mimic with Better Druggability. Front Pharmacol 2021; 12:705252. [PMID: 34526895 PMCID: PMC8435713 DOI: 10.3389/fphar.2021.705252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is characterized by an excessive body mass, but is also closely associated with metabolic syndrome. And, so far, only limited pharmacological treatments are available for obesity management. Celastrol, a pentacyclic triterpenoid from a traditional Chinese medicine (Tripterygium wilfordii Hook.f.), has shown remarkable potency against obesity, inflammation and cancer, but its high toxicity, low natural abundance and tedious chemical synthesis hindered its translation into clinics. In the present work, a triterpenoid library was screened for compounds with both high natural abundance and structural similarity to celastrol; from this library, glycyrrhetinic acid (GA), a compound present in extremely high yields in Glycyrrhiza uralensis Fisch. ex DC., was selected as a possible scaffold for a celastrol mimic active against obesity. A simple chemical modification of GA resulted in GA-02, a derivative that suppressed 68% of food intake in diet-induced obesity mice and led to 26.4% weight loss in 2 weeks. GA-02 plays a role in obesity treatment by re-activating leptin signaling and reducing systemic and, more importantly, hypothalamic inflammation. GA-02 was readily bioavailable with unnoticeable in vitro and in vivo toxicities. The strategy of scaffold search and modification on the basis of bio-content and structural similarity has proved to be a green, economic, efficient and practical way of widening the medicinal applications of “imperfect” bioactive natural compounds.
Collapse
Affiliation(s)
- Bo Zhou
- Laboratory of Natural Medicine and Molecular Engineering, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yaxia Yuan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Le Shi
- Laboratory of Natural Medicine and Molecular Engineering, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sheng Hu
- Hubei Cancer Hospital, Wuhan, China
| | - Dong Wang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yang Yang
- Laboratory of Natural Medicine and Molecular Engineering, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Dexin Kong
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Alexander N Shikov
- Department of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons, Mons, Belgium
| | - Moonsoo Jin
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Xiaohua Li
- Laboratory of Natural Medicine and Molecular Engineering, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuebo Hu
- Laboratory of Natural Medicine and Molecular Engineering, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Kleinendorst L, van Haelst MM, van den Akker ELT. Genetics of Obesity. EXPERIENTIA SUPPLEMENTUM (2012) 2019; 111:419-441. [PMID: 31588542 DOI: 10.1007/978-3-030-25905-1_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Obesity is caused by an imbalance between energy intake and output, influenced by numerous environmental, biological, and genetic factors. Only a minority of people with obesity have a genetic defect that is the main cause of their obesity. A key symptom for most of these disorders is early-onset obesity and hyperphagia. For some genetic obesity disorders, the hyperphagia is the main characteristic, often caused by disruptions of the leptin-melanocortin pathway, the central pathway that regulates the body's satiety and energy balance. For other disorders, obesity is part of a distinct combination of other clinical features such as intellectual disability, dysmorphic facial features, or organ abnormalities. This chapter focuses on genetic obesity disorders and also summarizes the present knowledge on the genetics of the more common polygenic/multifactorial obesity.
Collapse
Affiliation(s)
- Lotte Kleinendorst
- Obesity Center CGG, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Mieke M van Haelst
- Department of Clinical Genetics, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Erica L T van den Akker
- Obesity Center CGG, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
- Division of Endocrinology, Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|