1
|
Chang X, Li Z, Khac Thai PV, Minh Ha DT, Thuong Thuong NT, Wee D, Binte Mohamed Subhan AS, Silcocks M, Eng Chee CB, Quynh Nhu NT, Heng CK, Teo YY, Singal A, Oehlers SH, Yuan JM, Koh WP, Caws M, Khor CC, Dorajoo R, Dunstan SJ. Genome-wide association study reveals a novel tuberculosis susceptibility locus in multiple East Asian and European populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.03.14.24304327. [PMID: 40313261 PMCID: PMC12045432 DOI: 10.1101/2024.03.14.24304327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Background Tuberculosis (TB) continues to be a leading cause of morbidity and mortality worldwide. Past genome-wide association studies (GWAS) have explored TB susceptibility across various ethnic groups, yet a significant portion of TB heritability remains unexplained. Methods We conducted GWAS in the Singapore Chinese and Vietnamese, followed by a comprehensive meta-analysis incorporating 4 independent East Asian datasets, resulting in a total of 11,841 cases and 197,373 population controls. Findings We identified a novel susceptibility locus for pulmonary TB (PTB) at 22q12.2 in East Asians [rs6006426, OR (95%Cl) =1.097(1.066, 1.130), P meta =3.31×10 -10 ]. The association was further validated in Europeans [OR (95%Cl) =1.101(1.002, 1.211), P =0.046] and was strengthened in the combined meta-anlaysis including 12,736 PTB cases and 673,864 controls [OR (95%Cl) =1.098(1.068, 1.129), P meta =4.33×10 -11 ]. rs6006426 affected SF3A1 expression in various immune cells ( P from 0.003 to 6.17×10 -18 ) and OSM expression in monocytes post lipopolysaccharide stimulation ( P =5.57×10 -4 ). CRISPR-Cas9 edited zebrafish embryos with osm depletion resulted in decreased burden of Mycobacterium marinum ( M.marinum ) in infected embryos ( P =0.047). Interpretation Our findings offer novel insights into the genetic factors underlying TB and reveals new avenues for understanding its etiology.
Collapse
|
2
|
Shey RA, Nchanji GT, Stong TYA, Yaah NE, Shintouo CM, Yengo BN, Nebangwa DN, Efeti MT, Chick JA, Ayuk AB, Gwei KY, Lemoge AA, Vanhamme L, Ghogomu SM, Souopgui J. One Health Approach to the Computational Design of a Lipoprotein-Based Multi-Epitope Vaccine Against Human and Livestock Tuberculosis. Int J Mol Sci 2025; 26:1587. [PMID: 40004053 PMCID: PMC11855821 DOI: 10.3390/ijms26041587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Tuberculosis (TB) remains a major cause of ill health and one of the leading causes of death worldwide, with about 1.25 million deaths estimated in 2023. Control measures have focused principally on early diagnosis, the treatment of active TB, and vaccination. However, the widespread emergence of anti-tuberculosis drug resistance remains the major public health threat to progress made in global TB care and control. Moreover, the Bacillus Calmette-Guérin (BCG) vaccine, the only licensed vaccine against TB in children, has been in use for over a century, and there have been considerable debates concerning its effectiveness in TB control. A multi-epitope vaccine against TB would be an invaluable tool to attain the Global Plan to End TB 2023-2030 target. A rational approach that combines several B-cell and T-cell epitopes from key lipoproteins was adopted to design a novel multi-epitope vaccine candidate. In addition, interactions with TLR4 were implemented to assess its ability to elicit an innate immune response. The conservation of the selected proteins suggests the possibility of cross-protection in line with the One Health approach to disease control. The vaccine candidate was predicted to be both antigenic and immunogenic, and immune simulation analyses demonstrated its ability to elicit both humoral and cellular immune responses. Protein-protein docking and normal-mode analyses of the vaccine candidate with TLR4 predicted efficient binding and stable interaction. This study provides a promising One Health approach for the design of multi-epitope vaccines against human and livestock tuberculosis. Overall, the designed vaccine candidate demonstrated immunogenicity and safety features that warrant further experimental validation in vitro and in vivo.
Collapse
Affiliation(s)
- Robert Adamu Shey
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
- Tropical Disease Interventions, Diagnostics, Vaccines and Therapeutics (TroDDIVaT) Initiative, Buea P.O. Box 1022, Cameroon;
| | - Gordon Takop Nchanji
- Tropical Disease Interventions, Diagnostics, Vaccines and Therapeutics (TroDDIVaT) Initiative, Buea P.O. Box 1022, Cameroon;
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon
| | - Tangan Yanick Aqua Stong
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Ntang Emmaculate Yaah
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Cabirou Mounchili Shintouo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, 2900 W Queen Ln, Philadelphia, PA 19129, USA; (C.M.S.); (B.N.Y.)
| | - Bernis Neneyoh Yengo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, 2900 W Queen Ln, Philadelphia, PA 19129, USA; (C.M.S.); (B.N.Y.)
| | - Derrick Neba Nebangwa
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Mary Teke Efeti
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Joan Amban Chick
- Department of Computer and Information Sciences, College of Science and Technology, Covenant University, PMB 1023, Ota 112233, Ogun State, Nigeria;
| | - Abey Blessings Ayuk
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Ketura Yaje Gwei
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | | | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Gosselies, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Charleroi, Belgium; (L.V.); (J.S.)
| | - Stephen Mbigha Ghogomu
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Gosselies, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Charleroi, Belgium; (L.V.); (J.S.)
| |
Collapse
|
3
|
Sonawane NG, Thakur A, Pillai AKS, Sharma A, Gunjal AP, Sharma K. Recent Cutting-Edge Designing Strategies for Mtb-DHFR Inhibitors as Antitubercular Agents. Chem Biol Drug Des 2024; 104:e70027. [PMID: 39660864 DOI: 10.1111/cbdd.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/03/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Tuberculosis (TB) is an obstinate and infectious disease requiring a relatively longer treatment duration than other bacterial infections. The current treatment regime is prolonged and cumbersome, with adverse effects, often leading to nonadherence. The upsurge in TB's multidrug-resistant and extensively drug-resistant strains with evolved resistance to existing drugs has compounded the problems. The last two decades witnessed unprecedented progress in developing TB drugs with better efficacy and reduced toxicity. Of late, inhibitors targeting the dihydrofolate reductase (DHFR) enzyme were being explored and developed as antitubercular drugs. A plethora of diverse molecular cores, such as pteridines, diamino heterocycles, diamino triazoles, and nontraditional cores, were developed recently as Mtb-DHFR targets. Besides the characteristic binding pockets of Mtb-DHFR, an extended hydrophilic binding pocket was also studied for intermolecular interactions with the designed compounds to assess the enzyme specificity. In this study, prominent DHFR inhibitors developed in the last two decades were reported. Key features of the designed compounds, such as the structural similarities with existing pharmacophores, interactions with binding pockets, enzyme selectivity and specificity, and percentage of inhibition, were evaluated. The authors hope the study will help streamline the pharmacological pipeline of Mtb-DHFR inhibitors and bring the investigators one step closer to success.
Collapse
Affiliation(s)
- Nitin Govind Sonawane
- Department of Chemistry, School of Engineering, Amrita Vidyapeetham, Bengaluru, India
| | - Amrita Thakur
- Department of Chemistry, School of Engineering, Amrita Vidyapeetham, Bengaluru, India
| | | | - Ajay Sharma
- Department of Pharmacognosy, SPS, DPSRU, New Delhi, India
| | - Amol Pandurang Gunjal
- Department of Chemistry, School of Engineering, Amrita Vidyapeetham, Bengaluru, India
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
4
|
Wu Z, Tan Q, Jia X, Wu H, Liang J, Wen W, Wang X, Zhang C, Zhao Y, Chen Y, Luo T, Liu W, Chen X. Single molecule measurements of microRNAs in the serum of patients with pulmonary tuberculosis. Front Immunol 2024; 15:1418085. [PMID: 39286248 PMCID: PMC11402676 DOI: 10.3389/fimmu.2024.1418085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background microRNAs (miRNAs) were recognized as a promising source of diagnostic biomarker. Herein, we aim to evaluate the performance of an ultrasensitive method for detecting serum miRNAs using single molecule arrays (Simoa). Methods In this study, candidate miRNAs were trained and tested by RT-qPCR in a cohort of PTB patients. Besides that, ultrasensitive serum miRNA detection were developed using the Single Molecule Array (Simoa) platform. In this ultra-sensitive sandwich assay, two target-specific LNA-modified oligonucleotide probes can be simply designed to be complementary to the half-sequence of the target miRNA respectively. We characterized its analytical performance and measured miRNAs in the serum of patients with pulmonary tuberculosis and healthy individuals. Results We identified a five signature including three upregulated (miR-101, miR-196b, miR-29a) and two downregulated (miR-320b, miR-99b) miRNAs for distinguishing PTB patients from HCs, and validated in our 104 PTB patients. On the basis of Simoa technology, we developed a novel, fully automated digital analyser, which can be used to directly detect miRNAs in serum samples without pre-amplification. We successfully detected miRNAs at femtomolar concentrations (with limits of detection [LODs] ranging from 0.449 to 1.889 fM). Simoa-determined serum miR-29a and miR-99b concentrations in patients with PTB ((median 6.06 fM [range 0.00-75.22]), (median 2.53 fM [range 0.00-24.95]), respectively) were significantly higher than those in HCs ((median 2.42 fM [range 0.00-28.64]) (P < 0.05), (median 0.54 fM [range 0.00-9.12] (P < 0.0001), respectively). Serum levels of miR-320b were significantly reduced in patients with PTB (median 2.11 fM [range 0.00-39.30]) compared with those in the HCs (median 4.76 fM [range 0.00-25.10]) (P < 0.001). A combination of three miRNAs (miR-29a, miR-99b, and miR-320b) exhibited a good capacity to distinguish PTB from HCs, with an area under the curve (AUC) of 0.818 (sensitivity: 83.9%; specificity: 79.7%). Conclusions This study benchmarks the role of Simoa as a promising tool for monitoring miRNAs in serum and offers considerable potential as a non-invasive platform for the early diagnosis of PTB.
Collapse
Affiliation(s)
- Zhuhua Wu
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| | - Qiuchan Tan
- School of Basic Medical Sciences, Guangzhou Health Science College, Guangzhou, Guangdong, China
| | - Xiaojuan Jia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huizhong Wu
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| | - Jing Liang
- Dongguan Key Laboratory of Tuberculosis Control, The Sixth People's Hospital of Dongguan, Dongguan, Guangdong, China
| | - Wenpei Wen
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| | - Xuezhi Wang
- Department of Laboratory Medicine, Foshan Fourth People's Hospital, Foshan, Guangdong, China
| | - Chenchen Zhang
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| | - Yuchuan Zhao
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| | - Yuhui Chen
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| | - Tingrong Luo
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresourses & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
| | - Wenjun Liu
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xunxun Chen
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Lan QW, Chen HK, Huang ZM, Bao TY, Liang CJ, Yi RT, Huang YY, He YX, Huang XQ, Gu B, Guo XG, Zhang QW. Global, regional, and national time trends in incidence for tuberculosis, 1990-2019: An age-period-cohort analysis for the Global Burden of Disease 2019 study. Heart Lung 2024; 65:19-30. [PMID: 38377628 DOI: 10.1016/j.hrtlng.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Tuberculosis (TB) represents a significant global health concern, being the leading cause of mortality from a single infectious agent worldwide. The investigation of TB incidence and epidemiological trends is critical for evaluating the effectiveness of control strategies and identifying ongoing challenges. OBJECTIVES This study presents the trend in TB incidence across 204 countries and regions over a 30-year period. METHODS The study utilises data sourced from the Global Burden of Disease (GBD) database. The age cohort model and gender subgroup analysis were employed to estimate the net drift (overall annual percentage change), local drift (age annual percentage change), longitudinal age curve (expected age ratio), and cycle and cohort effect (relative risk of cycle and birth cohort) of TB incidence from 1990 to 2019. This approach facilitates the examination and differentiation of age, period, and cohort effects in TB incidence trends, potentially identifying disparities in TB prevention across different countries. RESULTS Over the past three decades, a general downward trend in TB incidence has been observed in most countries. However, in 15 of the 204 countries, the overall incidence rate is still on the rise (net drift ≥0.0 %) or stagnant decline (≥-0.5 %). From 1990 to 2019, the net drift of tuberculosis mortality ranged from -2.2 % [95 % confidence interval (CI): -2.33, -2.05] in high Socio-demographic Index (SDI) countries to -1.7 % [95 % CI: -1.81, -1.62] in low SDI countries. In some below-average SDI countries,men in the birth cohort are at a disadvantage and at risk of deterioration, necessitating comprehensive TB prevention and treatment. CONCLUSIONS While the global incidence of TB has declined, adverse period and cohort effects have been identified in numerous countries, raising questions about the adequacy of TB healthcare provision across all age groups. Furthermore, this study reveals gender disparities in TB incidence.
Collapse
Affiliation(s)
- Qi-Wen Lan
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Department of Medical Imageology, The Second Clinical School of Guangzhou Medical University, Guangzhou, PR China
| | - Hao-Kai Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, PR China
| | - Ze-Min Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, PR China
| | - Ting-Yu Bao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, PR China
| | - Chuang-Jia Liang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, PR China
| | - Rui-Ting Yi
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, PR China
| | - Yuan-Yi Huang
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, PR China
| | - Ying-Xin He
- Department of Clinical Laboratory Medicine, Guangzhou Medical University, KingMed School of Laboratory Medicine, Guangzhou Medical University,Guangzhou, PR China
| | - Xu-Qi Huang
- Department of Clinical Medicine, The Sixth Clinical School of Guangzhou Medical University, Guangzhou, PR China
| | - Bing Gu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China.
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Department of Clinical Laboratory Medicine Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Dis-eases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510000, China.
| | - Qing-Wei Zhang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases (Renji Hospital, Shanghai Jiaotong University School of Medicine), Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
6
|
Wang S, Luan J, Chen L, Liu H, Li W, Wang J. Computational characteristics of the structure-activity relationship of inhibitors targeting Pks13-TE domain. Comput Biol Chem 2023; 104:107864. [PMID: 37028177 DOI: 10.1016/j.compbiolchem.2023.107864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023]
Abstract
Multiple studies have established the Pks13-TE domain as a promising target for anti-tuberculosis drug development. However, recent findings have revealed that the lead compound currently in the pipeline for Pks13-TE has significant cardiotoxicity issues. Given the pressing need for new chemical structures for Pks13-TE inhibitors, this study aims to provide a detailed understanding of the Pks13-TE domain binding site through the application of computational chemical biology techniques. Our results highlight the size and shape of the Pks13-TE domain binding pocket, key residues including Asp1644, Asn1640, Phe1670, and Tyr1674 within the pocket, and inhibitor pharmacophore characteristics such as aromatic ring sites, positively charged sites, and hydrogen bond donors. To our knowledge, these simulation results are novel and contribute to the discovery of next-generation Pks13-TE inhibitors without similar prior studies.
Collapse
Affiliation(s)
- Shizun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiasi Luan
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haihan Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weixia Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
7
|
Rawat BS, Kumar D, Soni V, Rosenn EH. Therapeutic Potentials of Immunometabolomic Modulations Induced by Tuberculosis Vaccination. Vaccines (Basel) 2022; 10:vaccines10122127. [PMID: 36560537 PMCID: PMC9781011 DOI: 10.3390/vaccines10122127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Metabolomics is emerging as a promising tool to understand the effect of immunometabolism for the development of novel host-directed alternative therapies. Immunometabolism can modulate both innate and adaptive immunity in response to pathogens and vaccinations. For instance, infections can affect lipid and amino acid metabolism while vaccines can trigger bile acid and carbohydrate pathways. Metabolomics as a vaccinomics tool, can provide a broader picture of vaccine-induced biochemical changes and pave a path to potentiate the vaccine efficacy. Its integration with other systems biology tools or treatment modes can enhance the cure, response rate, and control over the emergence of drug-resistant strains. Mycobacterium tuberculosis (Mtb) infection can remodel the host metabolism for its survival, while there are many biochemical pathways that the host adjusts to combat the infection. Similarly, the anti-TB vaccine, Bacillus Calmette-Guerin (BCG), was also found to affect the host metabolic pathways thus modulating immune responses. In this review, we highlight the metabolomic schema of the anti-TB vaccine and its therapeutic applications. Rewiring of immune metabolism upon BCG vaccination induces different signaling pathways which lead to epigenetic modifications underlying trained immunity. Metabolic pathways such as glycolysis, central carbon metabolism, and cholesterol synthesis play an important role in these aspects of immunity. Trained immunity and its applications are increasing day by day and it can be used to develop the next generation of vaccines to treat various other infections and orphan diseases. Our goal is to provide fresh insight into this direction and connect various dots to develop a conceptual framework.
Collapse
Affiliation(s)
- Bhupendra Singh Rawat
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Deepak Kumar
- Department of Zoology, University of Rajasthan, Jaipur 302004, Rajasthan, India
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence:
| | - Eric H. Rosenn
- School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
8
|
Pépin J, Fox A, LeBlanc L, De Wals P, Rousseau MC. In the footsteps of Albert Calmette: an ecological study of TB, leprosy and potential exposure to wild-type Mycobacterium bovis. Trans R Soc Trop Med Hyg 2022; 116:1112-1122. [PMID: 35460554 DOI: 10.1093/trstmh/trac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND One hundred years ago, Albert Calmette developed an avirulent strain of Mycobacterium bovis, but there is no evidence that his BCG strain was more immunogenic than wild-type M. bovis. Geographic variations in BCG efficacy remain ill-understood. We hypothesized that exposure to M. bovis through unpasteurized milk might protect against Mycobacterium tuberculosis and Mycobacterium leprae. METHODS After excluding high-income countries (with universal milk pasteurization) and microstates, an ecological study comprising 113 countries was conducted. National data were obtained from United Nations agencies and international organizations about milk production per capita (1980-1999) as a proxy for exposure to wild-type M. bovis, TB (2000-2019) and leprosy (2005-2019) incidence, HIV prevalence (2000-2019), human development index (2010), global hunger index (2010), neonatal BCG coverage (1980-1999), urbanization (2000) and temperature (1990-2020). Multiple linear regression analyses were performed using log-transformed variables. RESULTS For TB, the association differed by region. An inverse association with milk production was seen in regions outside, but not within, sub-Saharan Africa, after adjustment for confounders. The incidence of leprosy was inversely associated with milk production when combining all countries, but the association was stronger in sub-Saharan Africa. CONCLUSIONS Exposure to wild-type M. bovis through unpasteurized milk may provide cross-protection against M. tuberculosis and M. leprae and contribute to geographic disparities in BCG efficacy. This needs to be confirmed by individual-level studies.
Collapse
Affiliation(s)
- Jacques Pépin
- Department of microbiology and infectious diseases, Université de Sherbrooke, 3001 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Aicha Fox
- Department of microbiology and infectious diseases, Université de Sherbrooke, 3001 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Louiselle LeBlanc
- Department of microbiology and infectious diseases, Université de Sherbrooke, 3001 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Philippe De Wals
- Department of social and preventive medicine, Université Laval, 2725 chemin Ste-Foy, Québec, Québec, G1V 4G5, Canada
| | - Marie-Claude Rousseau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, 531 boulevard des Prairies, Laval, Québec, H7V 1B7 Canada
| |
Collapse
|
9
|
Ntoumi F, Petersen E, Mwaba P, Aklillu E, Mfinanga S, Yeboah-Manu D, Maeurer M, Zumla A. Blue Skies research is essential for ending the Tuberculosis pandemic and advancing a personalized medicine approach for holistic management of Respiratory Tract infections. Int J Infect Dis 2022; 124 Suppl 1:S69-S74. [PMID: 35301102 PMCID: PMC8920086 DOI: 10.1016/j.ijid.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Investments into 'Blue Skies' fundamental TB research in low- and middle-income countries (LMICs) have not been forthcoming. We highlight why blue skies research will be essential for achieving global TB control and eradicating TB. METHODS We review the historical background to early TB discovery research and give examples of where investments into basic science and fundamental 'blue skies research' are delivering novel data and approaches to advance diagnosis, management and holistic care for patients with active and latent TB infection. FINDINGS The COVID-19 pandemic has shown that making available adequate funding for priority investments into 'Blue skies research' to delineate scientific understanding of a new infectious diseases threat to global health security can lead to rapid development and rollout of new diagnostic platforms, treatments, and vaccines. Several advances in new TB diagnostics, new treatments and vaccine development are underpinned by basic science research. CONCLUSIONS Blue Skies research is required to pave the way for a personalized medicine approach for management of TB and other Respiratory Tract Infections and preventing long-term functional disability. Transfer of skills and resources by wealthier nations is required to empower researchers in LMICs countries to engage in and lead Blue Skies research.
Collapse
Affiliation(s)
- Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Republic of Congo; Institute for Tropical Medicine, University of Tübingen, Germany.
| | - Eskild Petersen
- European Society for Clinical Microbiology and Infectious Diseases, Emerging Infections Task Force, ESCMID, Basel, Switzerland; Institute for Clinical Medicine, Aarhus University, Denmark; European Travel Medicine Network, Méditerranée Infection Foundation, Marseille, France.
| | - Peter Mwaba
- Lusaka Apex Medical University, Faculty of Medicine: Zambia National Public Health Institute; UNZA-UCLMS Research and Training Project, Lusaka, Zambia.
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital-Huddinge, Stockholm, Sweden.
| | - Sayoki Mfinanga
- Muhimbili Medical Research Centre National Institute for Medical Research, Dar es Salaam, Tanzania.
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal; Medizinische Klinik, Johannes Gutenberg University Mainz, Germany.
| | - Alimuddin Zumla
- Division of Infection and Immunity, Center for Clinical Microbiology, University College London, and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
10
|
Yusoof KA, García JI, Schami A, Garcia-Vilanova A, Kelley HV, Wang SH, Rendon A, Restrepo BI, Yotebieng M, Torrelles JB. Tuberculosis Phenotypic and Genotypic Drug Susceptibility Testing and Immunodiagnostics: A Review. Front Immunol 2022; 13:870768. [PMID: 35874762 PMCID: PMC9301132 DOI: 10.3389/fimmu.2022.870768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
Tuberculosis (TB), considered an ancient disease, is still killing one person every 21 seconds. Diagnosis of Mycobacterium tuberculosis (M.tb) still has many challenges, especially in low and middle-income countries with high burden disease rates. Over the last two decades, the amount of drug-resistant (DR)-TB cases has been increasing, from mono-resistant (mainly for isoniazid or rifampicin resistance) to extremely drug resistant TB. DR-TB is problematic to diagnose and treat, and thus, needs more resources to manage it. Together with+ TB clinical symptoms, phenotypic and genotypic diagnosis of TB includes a series of tests that can be used on different specimens to determine if a person has TB, as well as if the M.tb strain+ causing the disease is drug susceptible or resistant. Here, we review and discuss advantages and disadvantages of phenotypic vs. genotypic drug susceptibility testing for DR-TB, advances in TB immunodiagnostics, and propose a call to improve deployable and low-cost TB diagnostic tests to control the DR-TB burden, especially in light of the increase of the global burden of bacterial antimicrobial resistance, and the potentially long term impact of the coronavirus disease 2019 (COVID-19) disruption on TB programs.
Collapse
Affiliation(s)
- Kizil A. Yusoof
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Juan Ignacio García
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
- *Correspondence: Juan Ignacio García, ; Blanca I. Restrepo, ; Marcel Yotebieng, ; Jordi B. Torrelles,
| | - Alyssa Schami
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, United States
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Andreu Garcia-Vilanova
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Holden V. Kelley
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Shu-Hua Wang
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine and Global One Health Initiative, The Ohio State University, Columbus, OH, United States
| | - Adrian Rendon
- Centro de Investigación, Prevención y Tratamiento de Infecciones Respiratorias (CIPTIR), Hospital Universitario de Monterrey Universidad Autónoma de Nuevo León (UANL), Monterrey, Mexico
| | - Blanca I. Restrepo
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville, TX, United States
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX, United States
- *Correspondence: Juan Ignacio García, ; Blanca I. Restrepo, ; Marcel Yotebieng, ; Jordi B. Torrelles,
| | - Marcel Yotebieng
- Division of General Internal Medicine, Department of Medicine, Albert Einstein College of Medicine, New York City, NY, United States
- *Correspondence: Juan Ignacio García, ; Blanca I. Restrepo, ; Marcel Yotebieng, ; Jordi B. Torrelles,
| | - Jordi B. Torrelles
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, United States
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
- *Correspondence: Juan Ignacio García, ; Blanca I. Restrepo, ; Marcel Yotebieng, ; Jordi B. Torrelles,
| |
Collapse
|
11
|
After 100 Years of BCG Immunization against Tuberculosis, What Is New and Still Outstanding for This Vaccine? Vaccines (Basel) 2021; 10:vaccines10010057. [PMID: 35062718 PMCID: PMC8778337 DOI: 10.3390/vaccines10010057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
In 2021, most of the world was reasonably still concerned about the COVID-19 pandemic, how cases were up and down in different countries, how the vaccination campaigns were ongoing, and most people were familiar with the speed with which vaccines against SARS-Co-V2 were developed, analyzed, and started to be applied in an attempt to curb the pandemic. Because of this, it may have somehow passed relatively inadvertently for people outside of the field that the vaccine used to control tuberculosis (TB), Mycobacterium bovis Bacille Calmette-Guérin (BCG), was first applied to humans a century ago. Over these years, BCG has been the vaccine applied to most human beings in the world, despite its known lack of efficacy to fully prevent respiratory TB. Several strategies have been employed in the last 20 years to produce a novel vaccine that would replace, or boost, immunity and protection elicited by BCG. In this work, to avoid potential redundancies with recently published reviews, I only aim to present my current thoughts about some of the latest findings and outstanding questions that I consider worth investigating to help develop a replacement or modified BCG in order to successfully fight TB, based on BCG itself.
Collapse
|