1
|
Murante D, Hogan DA. Drivers of diversification in fungal pathogen populations. PLoS Pathog 2024; 20:e1012430. [PMID: 39264909 PMCID: PMC11392411 DOI: 10.1371/journal.ppat.1012430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
To manage and treat chronic fungal diseases effectively, we require an improved understanding of their complexity. There is an increasing appreciation that chronic infection populations are often heterogeneous due to diversification and drift, even within a single microbial species. Genetically diverse populations can contribute to persistence and resistance to treatment by maintaining cells with different phenotypes capable of thriving in these dynamic environments. In chronic infections, fungal pathogens undergo prolonged challenges that can drive trait selection to convergent adapted states through restricted access to critical nutrients, assault by immune effectors, competition with other species, and antifungal drugs. This review first highlights the various genetic and epigenetic mechanisms that promote diversity in pathogenic fungal populations and provide an additional barrier to assessing the actual heterogeneity of fungal infections. We then review existing studies of evolution and genetic heterogeneity in fungal populations from lung infections associated with the genetic disease cystic fibrosis. We conclude with a discussion of open research questions that, once answered, may aid in diagnosing and treating chronic fungal infections.
Collapse
Affiliation(s)
- Daniel Murante
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Deborah Ann Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
2
|
Nenciarini S, Renzi S, di Paola M, Meriggi N, Cavalieri D. Ascomycetes yeasts: The hidden part of human microbiome. WIREs Mech Dis 2024; 16:e1641. [PMID: 38228159 DOI: 10.1002/wsbm.1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
The fungal component of the microbiota, the mycobiota, has been neglected for a long time due to its poor richness compared to bacteria. Limitations in fungal detection and taxonomic identification arise from using metagenomic approaches, often borrowed from bacteriome analyses. However, the relatively recent discoveries of the ability of fungi to modulate the host immune response and their involvement in human diseases have made mycobiota a fundamental component of the microbial communities inhabiting the human host, deserving some consideration in host-microbe interaction studies and in metagenomics. Here, we reviewed recent data on the identification of yeasts of the Ascomycota phylum across human body districts, focusing on the most representative genera, that is, Saccharomyces and Candida. Then, we explored the key factors involved in shaping the human mycobiota across the lifespan, ranging from host genetics to environment, diet, and lifestyle habits. Finally, we discussed the strengths and weaknesses of culture-dependent and independent methods for mycobiota characterization. Overall, there is still room for some improvements, especially regarding fungal-specific methodological approaches and bioinformatics challenges, which are still critical steps in mycobiota analysis, and to advance our knowledge on the role of the gut mycobiota in human health and disease. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Environmental Factors Infectious Diseases > Environmental Factors.
Collapse
Affiliation(s)
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | - Monica di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
3
|
Gago S, Mandarano M, Floridi C, Zelante T. Host, pathogenic fungi and the microbiome: A genetic triangle in infection. Front Immunol 2023; 13:1078014. [PMID: 36733397 PMCID: PMC9887327 DOI: 10.3389/fimmu.2022.1078014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Sara Gago
- Manchester Fungal Infection Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Martina Mandarano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudia Floridi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy,*Correspondence: Teresa Zelante,
| |
Collapse
|
4
|
Garvey M, Meade E, Rowan NJ. Effectiveness of front line and emerging fungal disease prevention and control interventions and opportunities to address appropriate eco-sustainable solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158284. [PMID: 36029815 DOI: 10.1016/j.scitotenv.2022.158284] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Fungal pathogens contribute to significant disease burden globally; however, the fact that fungi are eukaryotes has greatly complicated their role in fungal-mediated infections and alleviation. Antifungal drugs are often toxic to host cells and there is increasing evidence of adaptive resistance in animals and humans. Existing fungal diagnostic and treatment regimens have limitations that has contributed to the alarming high mortality rates and prolonged morbidity seen in immunocompromised cohorts caused by opportunistic invasive infections as evidenced during HIV and COVID-19 pandemics. There is a need to develop real-time monitoring and diagnostic methods for fungal pathogens and to create a greater awareness as to the contribution of fungal pathogens in disease causation. Greater information is required on the appropriate selection and dose of antifungal drugs including factors governing resistance where there is commensurate need to discover more appropriate and effective solutions. Popular azole fungal drugs are widely detected in surface water and sediment due to incomplete removal in wastewater treatment plants where they are resistant to microbial degradation and may cause toxic effects on aquatic organisms such as algae and fish. UV has limited effectiveness in destruction of anti-fungal drugs where there is increased interest in the combination approaches such as novel use of pulsed-plasma gas-discharge technologies for environmental waste management. There is growing interest in developing alternative and complementary green eco-biocides and disinfection innovation. Fungi present challenges for cleaning, disinfection and sterilization of reusable medical devices such as endoscopes where they (example, Aspergillus and Candida species) can be protected when harboured in build-up biofilm from lethal processing. Information on the efficacy of established disinfection and sterilization technologies to address fungal pathogens including bottleneck areas that present high risk to patients is lacking. There is a need to address risk mitigation and modelling to inform efficacy of appropriate intervention technologies that must consider all contributing factors where there is potential to adopt digital technologies to enable real-time analysis of big data, such as use of artificial intelligence and machine learning. International consensus on standardised protocols for developing and reporting on appropriate alternative eco-solutions must be reached, particularly in order to address fungi with increasing drug resistance where research and innovation can be enabled using a One Health approach.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, Sligo, Ireland
| | - Elaine Meade
- Department of Life Science, Atlantic Technological University, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, Sligo, Ireland
| | - Neil J Rowan
- Bioscience Research Institute, Technological University of the Shannon Midlands Midwest, Athlone, Ireland; Centre for Decontamination, Sterilization and Biosecurity, Technological University of the Shannon Midlands Midwest, Athlone, Ireland; Empower Eco Sustainability Hub, Technological University of the Shannon Midlands Midwest, Athlone, Ireland.
| |
Collapse
|
5
|
A Fun-Guide to Innate Immune Responses to Fungal Infections. J Fungi (Basel) 2022; 8:jof8080805. [PMID: 36012793 PMCID: PMC9409918 DOI: 10.3390/jof8080805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Immunocompromised individuals are at high risk of developing severe fungal infections with high mortality rates, while fungal pathogens pose little risk to most healthy people. Poor therapeutic outcomes and growing antifungal resistance pose further challenges for treatments. Identifying specific immunomodulatory mechanisms exploited by fungal pathogens is critical for our understanding of fungal diseases and development of new therapies. A gap currently exists between the large body of literature concerning the innate immune response to fungal infections and the potential manipulation of host immune responses to aid clearance of infection. This review considers the innate immune mechanisms the host deploys to prevent fungal infection and how these mechanisms fail in immunocompromised hosts. Three clinically relevant fungal pathogens (Candida albicans, Cryptococcus spp. and Aspergillus spp.) will be explored. This review will also examine potential mechanisms of targeting the host therapeutically to improve outcomes of fungal infection.
Collapse
|
6
|
Zhao C, Zhao XS, Xu LP, Zhang XH, Huang XJ, Sun YQ. Recipient and donor PTX3 rs2305619 polymorphisms increase the susceptibility to invasive fungal disease following haploidentical stem cell transplantation: a prospective study. BMC Infect Dis 2022; 22:292. [PMID: 35346077 PMCID: PMC8962575 DOI: 10.1186/s12879-022-07298-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/22/2022] [Indexed: 11/22/2022] Open
Abstract
Background Invasive fungal disease (IFD) is a severe complication after haploidentical stem cell transplantation (haplo-HSCT) and has a poor prognosis. It has been shown that genetic polymorphism may be one possible reason for the increased risk of IFD. This study aimed to assess the role of genetic polymorphism in the level of susceptibility to IFD after haplo-HSCT. Methods In this study, we prospectively enrolled 251 patients who received haplo-HSCT at the Peking University Institute of Hematology from 2016 to 2018. Forty-three single nucleotide polymorphisms (SNPs) of the genomic DNA were genotyped in blood samples from both recipient and donor. Results Twenty-two patients (8.8%) were diagnosed with proven or probable IFD. The independent risk factors for IFD were grades 3–4 acute graft-versus-host disease, cytomegalovirus reactivation, and recipient and donor rs2305619 (PTX3) (P < 0.05) in multivariate analysis. Meanwhile, we combined the variables to develop the IFD risk scoring system and stratified patients into low- (0–2) and high-risk (3–4) groups. The 30-day and 100-day cumulative incidence of IFD in the low- and high-risk groups were 2.1% and 10.2%, 4.2% and 20.3%, respectively (P = 0.015). Conclusions PTX3 rs2305619 polymorphism increase the susceptibility of IFD after haplo-HSCT in the Chinese Han population, and the IFD scoring system could be useful in risk stratification for IFD after HSCT. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07298-2.
Collapse
|
7
|
Salazar F, Bignell E, Brown GD, Cook PC, Warris A. Pathogenesis of Respiratory Viral and Fungal Coinfections. Clin Microbiol Rev 2022; 35:e0009421. [PMID: 34788127 PMCID: PMC8597983 DOI: 10.1128/cmr.00094-21] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Individuals suffering from severe viral respiratory tract infections have recently emerged as "at risk" groups for developing invasive fungal infections. Influenza virus is one of the most common causes of acute lower respiratory tract infections worldwide. Fungal infections complicating influenza pneumonia are associated with increased disease severity and mortality, with invasive pulmonary aspergillosis being the most common manifestation. Strikingly, similar observations have been made during the current coronavirus disease 2019 (COVID-19) pandemic. The copathogenesis of respiratory viral and fungal coinfections is complex and involves a dynamic interplay between the host immune defenses and the virulence of the microbes involved that often results in failure to return to homeostasis. In this review, we discuss the main mechanisms underlying susceptibility to invasive fungal disease following respiratory viral infections. A comprehensive understanding of these interactions will aid the development of therapeutic modalities against newly identified targets to prevent and treat these emerging coinfections.
Collapse
Affiliation(s)
- Fabián Salazar
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Elaine Bignell
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Peter C. Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
8
|
Ward RA, Aghaeepour N, Bhattacharyya RP, Clish CB, Gaudillière B, Hacohen N, Mansour MK, Mudd PA, Pasupneti S, Presti RM, Rhee EP, Sen P, Spec A, Tam JM, Villani AC, Woolley AE, Hsu JL, Vyas JM. Harnessing the Potential of Multiomics Studies for Precision Medicine in Infectious Disease. Open Forum Infect Dis 2021; 8:ofab483. [PMID: 34805429 PMCID: PMC8598922 DOI: 10.1093/ofid/ofab483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
The field of infectious diseases currently takes a reactive approach and treats infections as they present in patients. Although certain populations are known to be at greater risk of developing infection (eg, immunocompromised), we lack a systems approach to define the true risk of future infection for a patient. Guided by impressive gains in "omics" technologies, future strategies to infectious diseases should take a precision approach to infection through identification of patients at intermediate and high-risk of infection and deploy targeted preventative measures (ie, prophylaxis). The advances of high-throughput immune profiling by multiomics approaches (ie, transcriptomics, epigenomics, metabolomics, proteomics) hold the promise to identify patients at increased risk of infection and enable risk-stratifying approaches to be applied in the clinic. Integration of patient-specific data using machine learning improves the effectiveness of prediction, providing the necessary technologies needed to propel the field of infectious diseases medicine into the era of personalized medicine.
Collapse
Affiliation(s)
- Rebecca A Ward
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, California, USA
| | - Roby P Bhattacharyya
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cancer for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael K Mansour
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Philip A Mudd
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shravani Pasupneti
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Medical Service, Palo Alto, California, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of lnternal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eugene P Rhee
- The Nephrology Division and Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pritha Sen
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrej Spec
- Division of Infectious Diseases, Department of lnternal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jenny M Tam
- Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ann E Woolley
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joe L Hsu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Medical Service, Palo Alto, California, USA
| | - Jatin M Vyas
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Diagnostics for Fungal Infections in Solid Organ Transplants (SOT). CURRENT FUNGAL INFECTION REPORTS 2021. [DOI: 10.1007/s12281-021-00422-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Naik B, Ahmed SMQ, Laha S, Das SP. Genetic Susceptibility to Fungal Infections and Links to Human Ancestry. Front Genet 2021; 12:709315. [PMID: 34490039 PMCID: PMC8417537 DOI: 10.3389/fgene.2021.709315] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Over the ages, fungi have associated with different parts of the human body and established symbiotic associations with their host. They are mostly commensal unless there are certain not so well-defined factors that trigger the conversion to a pathogenic state. Some of the factors that induce such transition can be dependent on the fungal species, environment, immunological status of the individual, and most importantly host genetics. In this review, we discuss the different aspects of how host genetics play a role in fungal infection since mutations in several genes make hosts susceptible to such infections. We evaluate how mutations modulate the key recognition between the pathogen associated molecular patterns (PAMP) and the host pattern recognition receptor (PRR) molecules. We discuss the polymorphisms in the genes of the immune system, the way it contributes toward some common fungal infections, and highlight how the immunological status of the host determines fungal recognition and cross-reactivity of some fungal antigens against human proteins that mimic them. We highlight the importance of single nucleotide polymorphisms (SNPs) that are associated with several of the receptor coding genes and discuss how it affects the signaling cascade post-infection, immune evasion, and autoimmune disorders. As part of personalized medicine, we need the application of next-generation techniques as a feasible option to incorporate an individual’s susceptibility toward invasive fungal infections based on predisposing factors. Finally, we discuss the importance of studying genomic ancestry and reveal how genetic differences between the human race are linked to variation in fungal disease susceptibility.
Collapse
Affiliation(s)
- Bharati Naik
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sumayyah M Q Ahmed
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Suparna Laha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
11
|
Challenges and Opportunities in Understanding Genetics of Fungal Diseases: Towards a Functional Genomics Approach. Infect Immun 2021; 89:e0000521. [PMID: 34031131 DOI: 10.1128/iai.00005-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infectious diseases are a leading cause of morbidity and mortality worldwide, and human pathogens have long been recognized as one of the main sources of evolutionary pressure, resulting in a high variable genetic background in immune-related genes. The study of the genetic contribution to infectious diseases has undergone tremendous advances over the last decades. Here, focusing on genetic predisposition to fungal diseases, we provide an overview of the available approaches for studying human genetic susceptibility to infections, reviewing current methodological and practical limitations. We describe how the classical methods available, such as family-based studies and candidate gene studies, have contributed to the discovery of crucial susceptibility factors for fungal infections. We will also discuss the contribution of novel unbiased approaches to the field, highlighting their success but also their limitations for the fungal immunology field. Finally, we show how a systems genomics approach can overcome those limitations and can lead to efficient prioritization and identification of genes and pathways with a critical role in susceptibility to fungal diseases. This knowledge will help to stratify at-risk patient groups and, subsequently, develop early appropriate prophylactic and treatment strategies.
Collapse
|
12
|
Baghad B, Bousfiha AA, Chiheb S, Ailal F. [Genetic predisposition to mucocutaneous fungal infections]. Rev Med Interne 2021; 42:566-570. [PMID: 34052048 DOI: 10.1016/j.revmed.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/29/2021] [Accepted: 05/09/2021] [Indexed: 11/15/2022]
Abstract
Mucocutaneous fungal infections are common and usually occur in the presence of certain risk factors. However, these infections can occur in patients with no known risk factors. This indicates the presence of an underlying genetic susceptibility to fungi reflecting an innate or adaptive immune deficiency. In this review, we highlight genetic factors that predispose to mucocutaneous fungal infections specially candidiasis and dermatophytosis.
Collapse
Affiliation(s)
- B Baghad
- Service de dermatologie vénéréologie, CHU de Casablanca, Hassan II University of Casablanca, Maroc; Laboratoire d'immunologie clinique, inflammation et allergie, Faculté de médecine et de pharmacie de Casablanca, Hassan II University of Casablanca, Maroc.
| | - A A Bousfiha
- Laboratoire d'immunologie clinique, inflammation et allergie, Faculté de médecine et de pharmacie de Casablanca, Hassan II University of Casablanca, Maroc; Unité d'immunologie clinique, service de pédiatrie infectieuse, CHU Harrouchi, Hassan II University of Casablanca, Maroc
| | - S Chiheb
- Service de dermatologie vénéréologie, CHU de Casablanca, Hassan II University of Casablanca, Maroc
| | - F Ailal
- Laboratoire d'immunologie clinique, inflammation et allergie, Faculté de médecine et de pharmacie de Casablanca, Hassan II University of Casablanca, Maroc; Unité d'immunologie clinique, service de pédiatrie infectieuse, CHU Harrouchi, Hassan II University of Casablanca, Maroc
| |
Collapse
|
13
|
Structural and Bioactivity Characterization of Filipin Derivatives from Engineered Streptomyces filipinensis Strains Reveals Clues for Reduced Haemolytic Action. Antibiotics (Basel) 2020; 9:antibiotics9070413. [PMID: 32708546 PMCID: PMC7400637 DOI: 10.3390/antibiotics9070413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
The rise in the number of immunocompromised patients has led to an increased incidence of fungal infections, with high rates of morbidity and mortality. Furthermore, misuse of antifungals has boosted the number of resistant strains to these agents; thus, there is urgent need for new drugs against these infections. Here, the in vitro antifungal activity of filipin III metabolic intermediates has been characterized against a battery of opportunistic pathogenic fungi—Candida albicans, Candida glabrata, Candida krusei, Cryptococcus neoformans, Trichosporon cutaneum, Trichosporon asahii, Aspergillus nidulans, Aspergillus niger, and Aspergillus fumigatus—using the Clinical and Laboratory Standards Institute broth microdilution method. Structural characterization of these compounds was undertaken by mass spectrometry (MS) and nuclear magnetic resonance (NMR) following HPLC purification. Complete NMR assignments were obtained for the first time for filipins I and II. In vitro haemolytic assays revealed that the haemolytic action of these compounds relies largely on the presence of a hydroxyl function at C26, since derivatives lacking such moiety show remarkably reduced activity. Two of these derivatives, 1′-hydroxyfilipin I and filipin I, show decreased toxicity towards cholesterol-containing membranes while retaining potent antifungal activity, and could constitute excellent leads for the development of efficient pharmaceuticals, particularly against Cryptococcosis.
Collapse
|
14
|
Abstract
Mycetoma is one of the badly neglected tropical diseases, characterised by subcutaneous painless swelling, multiple sinuses, and discharge containing aggregates of the infecting organism known as grains. Risk factors conferring susceptibility to mycetoma include environmental factors and pathogen factors such as virulence and the infecting dose, in addition to host factors such as immunological and genetic predisposition. Epidemiological evidence suggests that host genetic factors may regulate susceptibility to mycetoma and other fungal infections, but they are likely to be complex genetic traits in which multiple genes interact with each other and environmental factors, as well as the pathogen, to cause disease. This paper reviews what is known about genetic predisposition to fungal infections that might be relevant to mycetoma, as well as all studies carried out to explore host genetic susceptibility to mycetoma. Most studies were investigating polymorphisms in candidate genes related to the host immune response. A total of 13 genes had allelic variants found to be associated with mycetoma, and these genes lie in different pathways and systems such as innate and adaptive immune systems, sex hormone biosynthesis, and some genes coding for host enzymes. None of these studies have been replicated. Advances in genomic science and the supporting technology have paved the way for large-scale genome-wide association and next generation sequencing (NGS) studies, underpinning a new strategy to systematically interrogate the genome for variants associated with mycetoma. Dissecting the contribution of host genetic variation to susceptibility to mycetoma will enable the identification of pathways that are potential targets for new treatments for mycetoma and will also enhance the ability to stratify ‘at-risk’ individuals, allowing the possibility of developing preventive and personalised clinical care strategies in the future.
Collapse
Affiliation(s)
- Rayan S. Ali
- The Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan
- Brighton and Sussex Centre for Global Health Research, Brighton and Sussex Medical School, Brighton, United Kingdom
- * E-mail:
| | - Melanie J. Newport
- Brighton and Sussex Centre for Global Health Research, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Sahar Mubarak Bakhiet
- The Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | | |
Collapse
|
15
|
Kalkanci A, Tug E, Fidan I, Guzel Tunccan O, Ozkurt ZN, Yegin ZA, Sahin EA, Kuralay Z. Retrospective analysis of the association of the expression and single nucleotide polymorphisms (SNPs) of the TLR4, PTX3 and Dectin-1 (CLEC/A) genes with development of invasive aspergillosis among haematopoietic stem cell transplant recipients with oncohaematological disorders. Mycoses 2020; 63:832-839. [PMID: 32291814 DOI: 10.1111/myc.13087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Several studies described single nucleotide polymorphisms (SNPs) on pattern recognition receptor (PRR) such as toll-like receptors (TLRs), dendritic cell-associated C-type lectin-1 (Dectin-1/CLEC7A) genes of patients with invasive fungal infections (IFIs) caused by Candida and Aspergillus. We screened TLR4, Dectin-1 and PTX3 polymorphisms in a Turkish population with invasive aspergillosis (IA) underlying haematological malignancies. METHODS In this case-control study, a cohort of 59 patients with haematological malignancies were included. There were 26 IA patients assigned by the EORTC-MSG criteria and 33 patients with no evidence of fungal disease. DNA and RNA were isolated from frozen bone marrow and serum samples. RNA levels and polymorphisms of TLR4 (rs4986790, rs4986791), Dectin-1 (rs16910526, rs7309123) and PTX3 (rs2305619, rs3816527) were determined. The odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated by unconditional logistic regression analysis. RESULTS AND CONCLUSIONS TLR4, PTX3 and Dectin-1 genes were downregulated in aspergillosis cohort under similar haematological conditions. TLR4 expression was 0.0626 ± 0.032 in controls when compared to IA patients as 0.0077 ± 0.014, and the difference was significant (P = .026). There was a difference in also the PTX3 gene among IA (0.0043 ± 0.004) and control (0.5265 ± 0.0043) groups (P = .035). The Dectin-1 (CLEC/A) expression was downregulated in IA group (0.1887 ± 0.072 & 0.0655 ± 0.010) but not statistically significant (P > .05). Conditional logistic regression analyses indicated that the GT genotype of rs16910526 polymorphism in Dectin-1 gene was associated with lower risk of IA (odds ratio = 3.635, 95% confidence interval = 0.690-3.138, P = .04).
Collapse
Affiliation(s)
- Ayse Kalkanci
- Department of Medical Microbiology, Gazi University School of Medicine, Ankara, Turkey
| | - Esra Tug
- Department of Medical Genetics, Gazi University School of Medicine, Ankara, Turkey
| | - Isil Fidan
- Department of Medical Microbiology, Gazi University School of Medicine, Ankara, Turkey
| | - Ozlem Guzel Tunccan
- Department of Infectious Disease and Clinical Microbiology, Gazi University School of Medicine, Ankara, Turkey
| | - Zubeyde Nur Ozkurt
- Department of Hematology, Gazi University School of Medicine, Ankara, Turkey
| | - Zeynep Arzu Yegin
- Department of Hematology, Gazi University School of Medicine, Ankara, Turkey
| | - Elif Ayça Sahin
- Department of Medical Microbiology, Gazi University School of Medicine, Ankara, Turkey.,Yenimahalle State Hospital, Ankara, Turkey
| | - Zeynep Kuralay
- Department of Medical Microbiology, Gazi University School of Medicine, Ankara, Turkey.,Palandoken State Hospital, Erzurum, Turkey
| |
Collapse
|
16
|
Polymorphisms within the ARNT2 and CX3CR1 Genes Are Associated with the Risk of Developing Invasive Aspergillosis. Infect Immun 2020; 88:IAI.00882-19. [PMID: 31964743 DOI: 10.1128/iai.00882-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/10/2020] [Indexed: 12/29/2022] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening infection that affects an increasing number of patients undergoing chemotherapy or allo-transplantation, and recent studies have shown that genetic factors contribute to disease susceptibility. In this two-stage, population-based, case-control study, we evaluated whether 7 potentially functional single nucleotide polymorphisms (SNPs) within the ARNT2 and CX3CR1 genes influence the risk of IA in high-risk hematological patients. We genotyped selected SNPs in a cohort of 500 hematological patients (103 of those had been diagnosed with proven or probable IA), and we evaluated their association with the risk of developing IA. The association of the most interesting markers of IA risk was then validated in a replication population, including 474 subjects (94 IA and 380 non-IA patients). Functional experiments were also performed to confirm the biological relevance of the most interesting markers. The meta-analysis of both populations showed that carriers of the ARNT2 rs1374213G, CX3CR1 rs7631529A, and CX3CR1 rs9823718G alleles (where the RefSeq identifier appears as a subscript) had a significantly increased risk of developing IA according to a log-additive model (P value from the meta-analysis [P Meta] = 9.8 · 10-5, P Meta = 1.5 · 10-4, and P Meta =7.9 · 10-5, respectively). Haplotype analysis also confirmed the association of the CX3CR1 haplotype with AG CGG with an increased risk of IA (P = 4.0 · 10-4). Mechanistically, we observed that monocyte-derived macrophages (MDM) from subjects carrying the ARNTR2 rs1374213G allele or the GG genotype showed a significantly impaired fungicidal activity but that MDM from carriers of the ARNT2 rs1374213G and CX3CR1 rs9823718G or CX3CR1 rs7631529A alleles had deregulated immune responses to Aspergillus conidia. These results, together with those from expression quantitative trait locus (eQTL) data browsers showing a strong correlation of the CX3CR1 rs9823718G allele with lower levels of CX3CR1 mRNA in whole peripheral blood (P = 2.46 · 10-7) and primary monocytes (P = 4.31 · 10-7), highlight the role of the ARNT2 and CX3CR1 loci in modulating and predicting IA risk and provide new insights into the host immune mechanisms involved in IA development.
Collapse
|
17
|
Dectin-1 rs3901533 and rs7309123 Polymorphisms Increase Susceptibility to Pulmonary Invasive Fungal Disease in Patients with Acute Myeloid Leukemia from a Chinese Han Population. Curr Med Sci 2019; 39:906-912. [PMID: 31845221 DOI: 10.1007/s11596-019-2122-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/15/2019] [Indexed: 02/04/2023]
Abstract
This study aimed to assess whether genetic variants of dendritic cell-associated C-type lectine-1 (Dectin-1), Toll-like receptor 2 (TLR2), Toll-like receptor 4 (TLR4), and myeloid differentiation primary response 88 (MyD88) influence the susceptibility to pulmonary invasive fungal disease (IFD) in patients with acute myeloid leukemia (AML) from a Chinese Han population. Eight single nucleotide polymorphisms (SNPs) of Dectin-1 (rs16910526, rs3901533, and rs7309123), TLR2 (rs5743708), TLR4 (rs4986790 and rs4986791) and MyD88 (rs4988453 and rs4988457) in the genomic DNA of 172 adult AML patients were genotyped. Pulmonary IFD was diagnosed as proven or probable according to the 2008 European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) consensus guidelines. SNPs that were significant in the univariate analysis were further analyzed using the multiple logistic regression analysis to determine their association with the occurrence of pulmonary IFD. The mRNA expression of Dectin-1 was detected according to the genotype by quantitative realtime PCR (qRT-PCR), and the correlation of this expression with the occurrence of pulmonary IFD in AML patients was analyzed. Two Dectin-1 intron SNPs (rs3901533 and rs7309123) were found to be significantly associated with the susceptibility to pulmonary IFD in AML patients in a Chinese Han population. Significant associations were noted between pulmonary IFD and Dectin-1 rs3901533 dominant model (G/T+G/G vs. T/T, OR: 2.158; 95% CI: 1.109-4.2, P=0.02), Dectin-1 rs3901533 G allele (OR: 2.201; 95% CI: 1.206-4.019, P=0.01), or Dectin-1 rs7309123 C allele (OR: 1.919; 95% CI: 1.047-3.518, P=0.03). There were no significant associations between pulmonary IFD and the remaining Dectin-1 SNPs (rs16910526), TLR2 (rs5743708), TLR4 (rs4986790 and rs4986791) or MyD88 (rs4988453 and rs4988457). In conclusion, two Dectin-1 SNPs (rs3901533 and rs7309123) are associated with increased susceptibility to pulmonary IFD in AML patients in a Chinese Han population.
Collapse
|
18
|
Denham ST, Wambaugh MA, Brown JCS. How Environmental Fungi Cause a Range of Clinical Outcomes in Susceptible Hosts. J Mol Biol 2019; 431:2982-3009. [PMID: 31078554 PMCID: PMC6646061 DOI: 10.1016/j.jmb.2019.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
Abstract
Environmental fungi are globally ubiquitous and human exposure is near universal. However, relatively few fungal species are capable of infecting humans, and among fungi, few exposure events lead to severe systemic infections. Systemic infections have mortality rates of up to 90%, cost the US healthcare system $7.2 billion annually, and are typically associated with immunocompromised patients. Despite this reputation, exposure to environmental fungi results in a range of outcomes, from asymptomatic latent infections to severe systemic infection. Here we discuss different exposure outcomes for five major fungal pathogens: Aspergillus, Blastomyces, Coccidioides, Cryptococcus, and Histoplasma species. These fungi include a mold, a budding yeast, and thermal dimorphic fungi. All of these species must adapt to dramatically changing environments over the course of disease. These dynamic environments include the human lung, which is the first exposure site for these organisms. Fungi must defend themselves against host immune cells while germinating and growing, which risks further exposing microbe-associated molecular patterns to the host. We discuss immune evasion strategies during early infection, from disruption of host immune cells to major changes in fungal cell morphology.
Collapse
Affiliation(s)
- Steven T Denham
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Morgan A Wambaugh
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Jessica C S Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
19
|
von Lilienfeld-Toal M, Wagener J, Einsele H, A. Cornely O, Kurzai O. Invasive Fungal Infection. DEUTSCHES ARZTEBLATT INTERNATIONAL 2019; 116:271-278. [PMID: 31159914 PMCID: PMC6549129 DOI: 10.3238/arztebl.2019.0271] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 06/29/2018] [Accepted: 02/14/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The incidence of invasive fungal infection is approximately 6 cases per 100 000 persons per year. It is estimated that only half of such infections are detected during the patient's lifetime, making this one of the more common overlooked causes of death in intensive-care patients. The low detection rate is due in part to the complexity of the diagnostic work-up, in which the clinical, radiological, and microbiological findings must be considered. Fungi with resistance to antimycotic drugs have been found to be on the rise around the world. METHODS This review is based on pertinent publications retrieved from a selective search in PubMed, with special attention to guidelines on the diagnosis and treatment of invasive fungal infections caused by Candida spp., Aspergillus spp., Mucorales, and Fusarium spp. RESULTS The clinical risk factors for invasive fungal infection include, among others, congenital immune deficiency, protracted (>10 days) marked granulocytopenia (<0.5 x 109/L), allogeneic stem-cell transplantation, and treatment with immunosuppressive drugs or corticosteroids. High-risk groups include patients in intensive care and those with structural pulmonary disease and/or compli- cated influenza. The first line of treatment, supported by the findings of randomized clinical trials, consists of echinocandins for in- fections with Candida spp. (candidemia response rates: 75.6% for anidulafungin vs. 60.2% for fluconazole) and azole antimycotic drugs for infections with Aspergillus spp. (response rates: 52.8% for voriconazole vs. 31.6% for conventional amphotericin B). The recommended first-line treatment also depends on the local epidemiology. This challenge should be met by interdisciplinary collaboration. Therapeutic decision-making should also take account of the often severe undesired effects of antimycotic drugs (including impairment of hepatic and/or renal function) and the numerous interactions that some of them have with other drugs. CONCLUSION Invasive fungal infections are often overlooked in routine hospital care. They should be incorporated into antimicro- bial stewardship programs as an essential component. There is also a pressing need for the development of new classes of antimycotic drug.
Collapse
Affiliation(s)
- Marie von Lilienfeld-Toal
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena
- Clinic of Internal Medicine II, University Hospital Jena
| | - Johannes Wagener
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena
- Institute for Hygiene and Microbiology, University of Würzburg, Chair of Medical Microbiology and Mycology, Würzburg
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg
- InfectControl 2020, Jena/Würzburg
| | - Oliver A. Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Department I of Internal Medicine, at the University Hospital of Cologne, European Excellence Center for Medical Mycology (ECMM), DGerman Center for Infection Research(DZIF) Partner Site Bonn Köln, Cologne University
| | - Oliver Kurzai
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena
- Institute for Hygiene and Microbiology, University of Würzburg, Chair of Medical Microbiology and Mycology, Würzburg
- InfectControl 2020, Jena/Würzburg
| |
Collapse
|
20
|
Alonso R, Pisa D, Carrasco L. Searching for Bacteria in Neural Tissue From Amyotrophic Lateral Sclerosis. Front Neurosci 2019; 13:171. [PMID: 30863279 PMCID: PMC6399391 DOI: 10.3389/fnins.2019.00171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/13/2019] [Indexed: 12/28/2022] Open
Abstract
Despite great efforts in the investigation, the exact etiology of amyotrophic lateral sclerosis (ALS) is a matter of intensive research. We recently advanced the idea that ALS might be caused by fungal infection. Indeed, fungal yeast and hyphal structures can be directly visualized in neural tissue of ALS patients, and a number of fungal species have been identified in the central nervous system (CNS). In the present work, we tested the possibility that bacterial infections can accompany these mycoses. Our findings establish the presence of bacterial DNA in different regions of the CNS from all ALS patients examined. Specifically, we used PCR and next generation sequencing (NGS) to precisely determine the bacterial species present in ALS tissue. Consistent with these findings, immunohistochemistry analysis of CNS sections using specific anti-bacterial antibodies identified prokaryotic cells in neural tissue. Finally, we assayed for the repeat expansion of the hexanucleotide repeat GGGGCC in C9orf72, which is considered the most common genetic cause of ALS in patients, using DNA extracted from ALS CNS tissue. We failed to find this repeated sequence in any of the eleven patients analyzed. Our results indicate that bacterial DNA and prokaryotic cells are present in CNS tissue, leading to the concept that both fungal and bacterial infections coexist in patients with ALS. These observations lay the groundwork for the use of appropriate therapies to eradicate the polymicrobial infections in ALS.
Collapse
Affiliation(s)
- Ruth Alonso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Diana Pisa
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
21
|
José P, Alvarez-Lerma F, Maseda E, Olaechea P, Pemán J, Soriano C, Zaragoza R. Invasive fungal infection in crtically ill patients: hurdles and next challenges. J Chemother 2019; 31:64-73. [PMID: 30761948 DOI: 10.1080/1120009x.2018.1557799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A narrative review from a multidisciplinary task force of experts in critical care medicine and clinical mycology was carried out. The multi drug-resistant species Candida auris has emerged simultaneously on several continents, causing hospital outbreaks, especially in critically ill patients. Although there are not enough data to support the routine use of continuous antibiotic prophylaxis in patients subjected to extracorporeal membrane oxygenator, a clear increase of invasive fungal infection (IFI) has been described with the use of this device. Possible IFI treatment failures could be related with suboptimal antifungal concentrations despite dose adjustment. Invasive aspergillosis has become an important life-threating infection in intensive care unit related with new risk factors described. IFI remain important problem in critical patients due to the appearance of new risk factors, new species, and resistance increase. Multidisciplinary packages of measures designed to reduce IFI incidence and improve diagnostics tools may reduce the high mortality associated.
Collapse
Affiliation(s)
- Peral José
- a Intensive Care Unit , Hospital General Universitario Gregorio Marañón , Madrid , Spain
| | | | - Emilio Maseda
- c Surgical Intensive Care Unit , Hospital Universitario La Paz , Madrid , Spain
| | - Pedro Olaechea
- d Intensive Care Unit , Hospital Universitario de Galdákano- Usansolo , Galdakao , Spain
| | - Javier Pemán
- e Microbiology Department , Hospital Universitari i Politecnic La Fe , Valencia , Spain
| | - Cruz Soriano
- f Intensive Care Unit , Hospital Universitario Ramón y Cajal , Madrid , Spain
| | - Rafael Zaragoza
- g Intensive Care Unit , Hospital Universitario Dr. Peset , Valencia , Spain
| |
Collapse
|
22
|
Emergence of Invasive Fungal Infection: Diagnosis and Treatment in Humans. Fungal Biol 2019. [DOI: 10.1007/978-3-030-18586-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Schwarz C, Vandeputte P, Rougeron A, Giraud S, Dugé de Bernonville T, Duvaux L, Gastebois A, Alastruey-Izquierdo A, Martín-Gomez MT, Mazuelos EM, Sole A, Cano J, Pemán J, Quindos G, Botterel F, Bougnoux ME, Chen S, Delhaès L, Favennec L, Ranque S, Sedlacek L, Steinmann J, Vazquez J, Williams C, Meyer W, Le Gal S, Nevez G, Fleury M, Papon N, Symoens F, Bouchara JP. Developing collaborative works for faster progress on fungal respiratory infections in cystic fibrosis. Med Mycol 2018. [PMID: 29538733 DOI: 10.1093/mmy/myx106] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) is the major genetic inherited disease in Caucasian populations. The respiratory tract of CF patients displays a sticky viscous mucus, which allows for the entrapment of airborne bacteria and fungal spores and provides a suitable environment for growth of microorganisms, including numerous yeast and filamentous fungal species. As a consequence, respiratory infections are the major cause of morbidity and mortality in this clinical context. Although bacteria remain the most common agents of these infections, fungal respiratory infections have emerged as an important cause of disease. Therefore, the International Society for Human and Animal Mycology (ISHAM) has launched a working group on Fungal respiratory infections in Cystic Fibrosis (Fri-CF) in October 2006, which was subsequently approved by the European Confederation of Medical Mycology (ECMM). Meetings of this working group, comprising both clinicians and mycologists involved in the follow-up of CF patients, as well as basic scientists interested in the fungal species involved, provided the opportunity to initiate collaborative works aimed to improve our knowledge on these infections to assist clinicians in patient management. The current review highlights the outcomes of some of these collaborative works in clinical surveillance, pathogenesis and treatment, giving special emphasis to standardization of culture procedures, improvement of species identification methods including the development of nonculture-based diagnostic methods, microbiome studies and identification of new biological markers, and the description of genotyping studies aiming to differentiate transient carriage and chronic colonization of the airways. The review also reports on the breakthrough in sequencing the genomes of the main Scedosporium species as basis for a better understanding of the pathogenic mechanisms of these fungi, and discusses treatment options of infections caused by multidrug resistant microorganisms, such as Scedosporium and Lomentospora species and members of the Rasamsonia argillacea species complex.
Collapse
Affiliation(s)
- Carsten Schwarz
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Center Berlin/Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Vandeputte
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France.,Laboratoire de Parasitologie-Mycologie, CHU, Angers, France
| | - Amandine Rougeron
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité UMR 5234, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; Laboratoire de Parasitologie-Mycologie, CHU, Bordeaux, France
| | - Sandrine Giraud
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Thomas Dugé de Bernonville
- Biomolécules et Biotechnologies Végétales (EA 2106), Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Université François Rabelais, Tours
| | - Ludovic Duvaux
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France.,Institut de Recherche en Horticulture et Semences (IRHS), UMR INRA 1345, Beaucouzé, France
| | - Amandine Gastebois
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Maria Teresa Martín-Gomez
- Respiratory Bacteriology Unit & Clinical Mycology Unit, Department of Microbiology, Vall D'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Amparo Sole
- Unidad de Trasplante Pulmonar y Fibrosis Quística, Hospital Universitari la Fe, Valencia, Spain
| | - Josep Cano
- Mycology Unit, Medical School/Oenology School, Universitat Rovira i Virgili, Reus, Spain
| | - Javier Pemán
- Unidad de Micología, Servicio de Microbiología, Universitari la Fe, Valencia, Spain
| | - Guillermo Quindos
- Laboratorio de Micología Médica, Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Enfermería, Universidad del País Vasco, Bilbao, Spain
| | - Françoise Botterel
- Laboratoire de Parasitologie-Mycologie, CHU Henri Mondor, Créteil, France
| | | | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, Westmead Hospital, Westmead, New South Wales, Australia
| | - Laurence Delhaès
- Center for Cardiothoracic Research of Bordeaux, Inserm U1045, Bordeaux, France
| | - Loïc Favennec
- Laboratoire de Parasitologie-Mycologie, EA 3800, CHU Charles Nicolle and Université de Rouen, Rouen, France
| | - Stéphane Ranque
- Laboratoire de Parasitologie-Mycologie, AP-HM Timone, Marseille, France
| | - Ludwig Sedlacek
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jose Vazquez
- Division of Infectious Diseases, Department of Medicine, Georgia Regents University, Augusta, GA, USA
| | - Craig Williams
- University of the West of Scotland, Institute of Healthcare Associated Infection, University Hospital Crosshouse, Kilmarnock, United Kingdom
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead Hospital, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Solène Le Gal
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Brest, France.,Laboratoire de Parasitologie-Mycologie, CHU, Brest, France
| | - Gilles Nevez
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Brest, France.,Laboratoire de Parasitologie-Mycologie, CHU, Brest, France
| | - Maxime Fleury
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Nicolas Papon
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Françoise Symoens
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Jean-Philippe Bouchara
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France.,Laboratoire de Parasitologie-Mycologie, CHU, Angers, France
| | | |
Collapse
|
24
|
Ugajin M, Kani H. A case of invasive pulmonary aspergillosis during treatment for acute exacerbation of interstitial lung disease. Infect Dis Rep 2018; 10:7785. [PMID: 30662692 PMCID: PMC6315312 DOI: 10.4081/idr.2018.7785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/09/2018] [Indexed: 11/23/2022] Open
Abstract
Prolonged immunosuppressive therapy is a risk factor for invasive pulmonary aspergillosis. We report a case of a 79-yearold man who underwent immunosuppressive therapy with methylprednisolone and cyclosporine for an acute exacerbation of interstitial lung disease. Ten days after initiation of immunosuppressive therapy, the patient reported night sweats and purulent sputum, and chest computed tomography scan revealed consolidation. He was diagnosed with invasive pulmonary aspergillosis, and required vasopressor support with oxygen therapy. After the administration of voriconazole and the modulation of immunosuppressive therapy, his condition improved. Short-term immunosuppressive therapy can also induce invasive pulmonary aspergillosis.
Collapse
Affiliation(s)
| | - Hisanori Kani
- Thoracic Surgery, Nagoya Tokushukai General Hospital, Japan
| |
Collapse
|
25
|
Acidic Mammalian Chitinase Negatively Affects Immune Responses during Acute and Chronic Aspergillus fumigatus Exposure. Infect Immun 2018; 86:IAI.00944-17. [PMID: 29712728 DOI: 10.1128/iai.00944-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
Chitin is a polysaccharide that provides structure and rigidity to the cell walls of fungi and insects. Mammals possess multiple chitinases, which function to degrade chitin, thereby supporting a role for chitinases in immune defense. However, chitin degradation has been implicated in the pathogenesis of asthma. Here, we determined the impact of acidic mammalian chitinase (AMCase) (Chia) deficiency on host defense during acute exposure to the fungal pathogen Aspergillus fumigatus as well as its contribution to A. fumigatus-associated allergic asthma. We demonstrate that chitin in the fungal cell wall was detected at low levels in A. fumigatus conidia, which emerged at the highest level during hyphal transition. In response to acute A. fumigatus challenge, Chia-/- mice unexpectedly demonstrated lower A. fumigatus lung burdens at 2 days postchallenge. The lower fungal burden correlated with decreased lung interleukin-33 (IL-33) levels yet increased IL-1β and prostaglandin E2 (PGE2) production, a phenotype that we reported previously to promote the induction of IL-17A and IL-22. During chronic A. fumigatus exposure, AMCase deficiency resulted in lower dynamic and airway lung resistance than in wild-type mice. Improved lung physiology correlated with attenuated levels of the proallergic chemokines CCL17 and CCL22. Surprisingly, examination of inflammatory responses during chronic exposure revealed attenuated IL-17A and IL-22 responses, but not type 2 responses, in the absence of AMCase. Collectively, these data suggest that AMCase functions as a negative regulator of immune responses during acute fungal exposure and is a contributor to fungal asthma severity, putatively via the induction of proinflammatory responses.
Collapse
|
26
|
Alonso R, Pisa D, Fernández-Fernández AM, Rábano A, Carrasco L. Fungal infection in neural tissue of patients with amyotrophic lateral sclerosis. Neurobiol Dis 2017; 108:249-260. [DOI: 10.1016/j.nbd.2017.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/24/2017] [Accepted: 09/03/2017] [Indexed: 12/11/2022] Open
|
27
|
Armstrong-James D, Brown GD, Netea MG, Zelante T, Gresnigt MS, van de Veerdonk FL, Levitz SM. Immunotherapeutic approaches to treatment of fungal diseases. THE LANCET. INFECTIOUS DISEASES 2017; 17:e393-e402. [PMID: 28774700 DOI: 10.1016/s1473-3099(17)30442-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/20/2016] [Accepted: 02/09/2017] [Indexed: 12/15/2022]
Abstract
Fungal infections cause morbidity worldwide and are associated with an unacceptably high mortality despite the availability of antifungal drugs. The incidence of mycoses is rising because of the HIV pandemic and because immunomodulatory drugs are increasingly used to treat autoimmune diseases and cancer. New classes of antifungal drugs have only been partly successful in improving the prognosis for patients with fungal infection. Adjunctive host-directed therapy is therefore believed to be the only option to further improve patient outcomes. Recent advances in the understanding of complex interactions between fungi and host have led to the design and exploration of novel therapeutic strategies in cytokine therapy, vaccines, and cellular immunotherapy, each of which might become viable adjuncts to existing antifungal regimens. In this report, we discuss immunotherapeutic approaches-the rationale behind their design, the challenges in their use, and the progress that is so urgently needed to overcome the devastating effect of fungal diseases.
Collapse
Affiliation(s)
- Darius Armstrong-James
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London, UK.
| | - Gordon D Brown
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, UK
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Mark S Gresnigt
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
28
|
Pianalto KM, Alspaugh JA. New Horizons in Antifungal Therapy. J Fungi (Basel) 2016; 2:jof2040026. [PMID: 29376943 PMCID: PMC5715934 DOI: 10.3390/jof2040026] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022] Open
Abstract
Recent investigations have yielded both profound insights into the mechanisms required by pathogenic fungi for virulence within the human host, as well as novel potential targets for antifungal therapeutics. Some of these studies have resulted in the identification of novel compounds that act against these pathways and also demonstrate potent antifungal activity. However, considerable effort is required to move from pre-clinical compound testing to true clinical trials, a necessary step toward ultimately bringing new drugs to market. The rising incidence of invasive fungal infections mandates continued efforts to identify new strategies for antifungal therapy. Moreover, these life-threatening infections often occur in our most vulnerable patient populations. In addition to finding completely novel antifungal compounds, there is also a renewed effort to redirect existing drugs for use as antifungal agents. Several recent screens have identified potent antifungal activity in compounds previously indicated for other uses in humans. Together, the combined efforts of academic investigators and the pharmaceutical industry is resulting in exciting new possibilities for the treatment of invasive fungal infections.
Collapse
Affiliation(s)
- Kaila M Pianalto
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - J Andrew Alspaugh
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
- Department of Medicine/Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|