1
|
Wang P, Chen Q, Wang Y, Sun X, Liu Z. Development of a Visual Assay for Detection of Viable Cronobacter sakazakii Using RT-PSR and Hydroxynaphthol Blue Indicator. BIOLOGY 2025; 14:383. [PMID: 40282248 PMCID: PMC12024772 DOI: 10.3390/biology14040383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Cronobacter sakazakii is a foodborne pathogen in powdered infant formula, which poses a significant risk to susceptible populations such as infants and the elderly. This study aims to develop a visual detection method for viable C. sakazakii using the reverse transcription-polymerase spiral reaction and hydroxynaphthol blue indicator. Under the optimized conditions, the detection process could be completed within 55 min with low equipment dependence. It was evaluated to have high specificity and sensitivity with the detection limit low to 1.2 × 101 CFU/mL. The assay also showed 100% accuracy in artificially contaminated samples.
Collapse
Affiliation(s)
- Peng Wang
- School of Life Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China; (P.W.); (Q.C.); (Y.W.)
| | - Qiming Chen
- School of Life Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China; (P.W.); (Q.C.); (Y.W.)
| | - Yikai Wang
- School of Life Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China; (P.W.); (Q.C.); (Y.W.)
| | - Xueting Sun
- Nantong Customs of the People’s Republic of China, No. 102 Chongchuan Road, Nantong 226006, China;
| | - Zhanmin Liu
- School of Life Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China; (P.W.); (Q.C.); (Y.W.)
| |
Collapse
|
2
|
Polat Yemiş G, Yemiş O, Öztürk A. Optimization of Haskap Extract and Tannic Acid Combined with Mild Heat Treatment: A Predictive Study on the Inhibition of Cronobacter sakazakii. Foods 2025; 14:562. [PMID: 40002006 PMCID: PMC11854248 DOI: 10.3390/foods14040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Cronobacter sakazakii is an opportunistic food-borne pathogen that causes severe infections with high morbidity and mortality rates in neonates, the elderly, and immunocompromised individuals. The plant extracts containing natural antibacterial compounds are currently under consideration as alternatives to synthetic artificial preservatives for the control of C. sakazakii. There has been increasing interest in using plant-derived antimicrobials in combination with mild heat to control pathogens in preservative-free foods. In this study, the individual and combined effects of four independent variables, i.e., polyphenol-rich haskap extract (HE) concentration (2-10%), tannic acid (TA) concentration (0.1-0.5), temperature (35-55 °C), and time (1-5 min), on C. sakazakii inactivation were investigated by response surface methodology (RSM) with a five-level four factor central composite design (CCD) and an optimal combination for maximum inhibition was determined. The statistic metrics of R2, R2adjusted, R2predicted, coefficient of variation (CV), Predicted Residual Error Sum of Squares (PRESSs), adequate precision, and lack-of-fit were used to reveal the prediction performance. The results revealed that all the independent variables, except time, influenced C. sakazakii inactivation. Among the independent variables, the temperature was the most effective variable (p < 0.0001) as regards inactivation. The synergistic effects of HE with TA and temperature were observed. Many possible optimum conditions of mild heat treatment that maximized the inhibition of C. sakazakii were obtained. The findings indicated that two distinct combinations were identified as the most effective inhibition of C. sakazakii: high concentration at low temperature and high temperature at low concentration. It can be concluded that haskap polyphenol extract, alone or in combination with tannic acid, has the potential to be used as a natural preservative to reduce the risk of C. sakazakii.
Collapse
Affiliation(s)
- Gökçe Polat Yemiş
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Sakarya 54187, Turkey;
| | - Oktay Yemiş
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Sakarya 54187, Turkey;
- Sakarya University Research, Development, and Application Center (SARGEM), Sakarya University, Sakarya 54050, Turkey
| | - Aysun Öztürk
- Department of Food Technology, Atatürk Horticultural Central Research Institute, Yalova 77102, Turkey;
| |
Collapse
|
3
|
Yan Y, Cao M, Ma J, Suo J, Bai X, Ge W, Lü X, Zhang Q, Chen J, Cui S, Yang B. Mechanisms of thermal, acid, desiccation and osmotic tolerance of Cronobacter spp. Crit Rev Food Sci Nutr 2025:1-23. [PMID: 39749527 DOI: 10.1080/10408398.2024.2447304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cronobacter spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions. Acid tolerance is achieved through internal pH regulation, acid efflux pumps, and acid tolerance proteins, allowing survival in acidic food matrices and the gastrointestinal tract. Desiccation tolerance is mediated by the accumulation of protective osmolytes like trehalose, stabilizing proteins and membranes to withstand dryness, especially in dry food products. Similarly, osmotic stress resilience is supported by compatible solutes such as trehalose and glycine betaine, along with metabolic adaptations to balance osmotic pressures. These mechanisms highlight the adaptability of Cronobacter spp. to diverse environments. Moreover, exposure to sublethal stresses, including heat, osmotic, dry, and pH stresses, may induce homologous or cross-resistance, complicating control strategies. Understanding these survival mechanisms is essential to mitigate the risks of Cronobacter spp., especially in powdered infant formula (PIF), and ensure food safety.
Collapse
Affiliation(s)
- Yanfei Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jia Suo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaobao Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Tong W, Yang D, Qiu S, Tian S, Ye Z, Yang S, Yan L, Li W, Li N, Pei X, Sun Z, Liu C, Peng S, Li Y, Wang Q, Peng Z. Relevance of genetic causes and environmental adaptation of Cronobacter spp. isolated from infant and follow-up formula production factories and retailed products in China: A 7-year period of continuous surveillance based on genome-wide analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174368. [PMID: 38955273 DOI: 10.1016/j.scitotenv.2024.174368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
The possible contamination routes, environmental adaptation, and genetic basis of Cronobacter spp. in infant and follow-up formula production factories and retailed products in mainland China have been determined by laboratory studies and whole-genome comparative analysis in a 7-year nationwide continuous surveillance spanning from 2012 to 2018. The 2-year continuous multicenter surveillance of the production process (conducted in 2013 and 2014) revealed that the source of Cronobacter spp. in the dry-blending process was the raw dry ingredients and manufacturing environment (particularly in the vibro sieve and vacuum cleaner), while in the combined process, the main contamination source was identified as the packing room. It is important to note that, according to the contamination control knowledge obtained from the production process surveillance, the contamination rate of retail powdered infant formula (PIF) and follow-up formula (FUF) products in China decreased significantly from 2016 onward, after improving the hygiene management practices in factories. The prevalence of Cronobacter spp. in retailed PIF and FUF in China in 2018 was dramatically reduced from 1.55 % (61/3925, in 2012) to an average as low as 0.17 % (13/7655 in 2018). Phenotype determination and genomic analysis were performed on a total of 90 Cronobacter spp. isolates obtained from the surveillance. Of the 90 isolates, only two showed resistance to either cefazolin or cefoxitin. The multilocus sequence typing results revealed that C. sakazakii sequence type 1 (ST1), ST37, and C. malonaticus ST7 were the dominant sequence types (STs) collected from the production factories, while C. sakazakii ST1, ST4, ST64, and ST8 were the main STs detected in the retailed PIF and FUF nationwide. One C. sakazakii ST4 isolate (1.1 %, 1/90) had strong biofilm-forming ability and 13 isolates (14.4 %, 13/90) had weak biofilm-forming ability. Genomic analysis revealed that Cronobacter spp. have a relatively stable core-genome and an increasing pan-genome size. Plasmid IncFIB (pCTU3) was prevalent in this genus and some contained 14 antibacterial biocide- and metal-resistance genes (BMRGs) including copper, silver, and arsenic resistant genes. Plasmid IncN_1 was predicted to contain 6 ARGs. This is the first time that a multi-drug resistance IncN_1 type plasmid has been reported in Cronobacter spp. Genomic variations with respect to BMRGs, virulence genes, antimicrobial resistance genes (ARGs), and genes involved in biofilm formation were observed among strains of this genus. There were apparent differences in copies of bcsG and flgJ between the biofilm-forming group and non-biofilm-forming group, indicating that these two genes play key roles in biofilm formation. The findings of this study have improved our understanding of the contamination characteristics and genetic basis of Cronobacter spp. in PIF and FUF and their production environment in China and provide important guidance to reduce contamination with this pathogen during the production of PIF and FUF.
Collapse
Affiliation(s)
- Wei Tong
- Jiangxi Provincial Key Laboratory of Diagnosis and Traceability of Foodborne Diseases, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, PR China
| | - Dajin Yang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China
| | - Shaofu Qiu
- Chinese PLA Center for Disease Control and Prevention, Beijing City, PR China
| | - Sai Tian
- Chinese PLA Center for Disease Control and Prevention, Beijing City, PR China
| | - Zehong Ye
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China; School of Public Health, Shandong Second Medical University, Weifang City, Shandong Province, PR China
| | - Shuran Yang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China
| | - Lin Yan
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China
| | - Weiwei Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China
| | - Ning Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China
| | - Xiaoyan Pei
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China
| | - Zhongqing Sun
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao City, Shandong Province, PR China
| | - Chengwei Liu
- Jiangxi Provincial Key Laboratory of Diagnosis and Traceability of Foodborne Diseases, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, PR China
| | - Silu Peng
- Jiangxi Provincial Key Laboratory of Diagnosis and Traceability of Foodborne Diseases, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, PR China
| | - Ying Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China.
| | - Qi Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing City, PR China.
| | - Zixin Peng
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China; Department of Nutrition and Food Safety, Peking Union Medical College; Research Unit of Food Safety, Chinese Academy of Medical Sciences, PR China.
| |
Collapse
|
5
|
Cechin CDF, Carvalho GG, Kabuki DY. Occurrence, genetic characterization, and antibiotic susceptibility of Cronobacter spp. isolated from low water activity functional foods in Brazil. Food Microbiol 2024; 122:104570. [PMID: 38839229 DOI: 10.1016/j.fm.2024.104570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Cronobacter spp. are bacterial pathogens isolated from a wide variety of foods. This study aims at evaluating the occurrence of Cronobacter spp. in low water activity functional food samples, detect the presence of virulence genes, and determine the antibiotic susceptibility of strains. From 105 samples, 38 (36.2%) were contaminated with Cronobacter spp. The species identified by polymerase chain reaction (PCR) and sequencing analyses (rpoB and fusA genes, respectively) were C. sakazakii (60.3%), C. dublinensis (25.4%), C. turincensis (9.5%), and C. malonaticus (4.8%). Nineteen fusA alleles were identified, including four new alleles. The virulence genes were identified by PCR and all isolates were positive for ompX and sodA genes, 60.3% to cpa gene, and 58.7% to hly gene. Using the disk diffusion method, antibiotic susceptibility to twelve antibiotics was assessed twice, separated by a 19-month period. In the first test, the isolates showed diverse antibiotic susceptibility profiles, with nineteen isolates (30.2%) being multi-drug resistant (resistant to three or more antibiotic classes), in the second, the isolates were susceptible to all antibiotics. Cronobacter spp. in functional foods demonstrates the need for continued investigation of this pathogen in foods, and further research is needed to clarify the loss of resistance of Cronobacter strains.
Collapse
Affiliation(s)
- Carine da Fonseca Cechin
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos, Departamento de Ciência de Alimentos e Nutrição, Campinas, São Paulo, Brazil.
| | - Gabriela Guimarães Carvalho
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos, Departamento de Ciência de Alimentos e Nutrição, Campinas, São Paulo, Brazil; Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Campinas, São Paulo, Brazil.
| | - Dirce Yorika Kabuki
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos, Departamento de Ciência de Alimentos e Nutrição, Campinas, São Paulo, Brazil.
| |
Collapse
|
6
|
Chauhan R, Tall BD, Gopinath G, Azmi W, Goel G. Environmental risk factors associated with the survival, persistence, and thermal tolerance of Cronobacter sakazakii during the manufacture of powdered infant formula. Crit Rev Food Sci Nutr 2023; 63:12224-12239. [PMID: 35838158 DOI: 10.1080/10408398.2022.2099809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cronobacter sakazakii is an opportunistic foodborne pathogen of concern for foods having low water activity such as powdered infant formula (PIF). Its survival under desiccated stress can be attributed to its ability to adapt effectively to many different environmental stresses. Due to the high risk to neonates and its sporadic outbreaks in PIF, C. sakazakii received great attention among the scientific community, food industry and health care providers. There are many extrinsic and intrinsic factors that affect C. sakazakii survival in low-moisture foods. Moreover, short- or long-term pre-exposure to sub-lethal physiological stresses which are commonly encountered in food processing environments are reported to affect the thermal resistance of C. sakazakii. Additionally, acclimation to these stresses may render C. sakazakii resistance to antibiotics and other antimicrobial agents. This article reviews the factors and the strategies responsible for the survival and persistence of C. sakazakii in PIF. Particularly, studies focused on the influence of various factors on thermal resistance, antibiotic or antimicrobial resistance, virulence potential and stress-associated gene expression are reviewed.
Collapse
Affiliation(s)
- Rajni Chauhan
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| | | | - Gopal Gopinath
- Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, USA
| | - Wamik Azmi
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| | - Gunjan Goel
- Department of Microbiology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahindra, India
| |
Collapse
|
7
|
Cechin CDF, Carvalho GG, Bastos CP, Kabuki DY. Cronobacter spp. in foods of plant origin: occurrence, contamination routes, and pathogenic potential. Crit Rev Food Sci Nutr 2023; 63:12398-12412. [PMID: 35866516 DOI: 10.1080/10408398.2022.2101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cronobacter is an emerging bacterial pathogen associated with infections such as necrotizing enterocolitis, sepsis, and meningitis in neonates and infants, related to the consumption of powdered infant formula. In addition, this bacterium can also cause infections in adults by the ingestion of other foods. Thus, this review article aims to report the occurrence and prevalence of Cronobacter spp. in foods of plant origin, as well as the possible sources and routes of contamination in these products, and the presence of pathogenic strains in these foods. Cronobacter was present in a wide variety of cereal-based foods, vegetables, herbs, spices, ready-to-eat foods, and foods from other categories. This pathogen was also found in cultivation environments, such as soils, compost, animal feces, rice and vegetable crops, as well as food processing industries, and domestic environments, thus demonstrating possible contamination routes. Furthermore, sequence types (ST) involved in clinical cases and isolates resistant to antibiotics were found in Cronobacter strains isolated from food of plant origin. The identification of Cronobacter spp. in plant-based foods is of great importance to better elucidate the vehicles and routes of contamination in the primary production chain and processing facility, until the final consumption of the food, to prevent infections.
Collapse
Affiliation(s)
- Carine da Fonseca Cechin
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriela Guimarães Carvalho
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Caroline Peixoto Bastos
- Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| | - Dirce Yorika Kabuki
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
8
|
Li Q, Li C, Chen L, Cai Z, Wu S, Gu Q, Zhang Y, Wei X, Zhang J, Yang X, Zhang S, Ye Q, Wu Q. Cronobacter spp. Isolated from Quick-Frozen Foods in China: Incidence, Genetic Characteristics, and Antibiotic Resistance. Foods 2023; 12:3019. [PMID: 37628018 PMCID: PMC10453260 DOI: 10.3390/foods12163019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Cronobacter spp. are emerging foodborne pathogens that cause severe diseases. However, information on Cronobacter contamination in quick-frozen foods in China is limited. Therefore, we studied the prevalence, molecular characterization, and antimicrobial susceptibility of Cronobacter in 576 quick-frozen food samples collected from 39 cities in China. Cronobacter spp. were found in 18.75% (108/576) of the samples, and the contamination degree of the total positive samples was 5.82 MPN/g. The contamination level of frozen flour product samples was high (44.34%). Among 154 isolates, 109 were C. sakazakii, and the main serotype was C. sakazakii O1 (44/154). Additionally, 11 serotypes existed among four species. Eighty-five sequence types (STs), including 22 novel ones, were assigned, indicating a relatively high genetic diversity of the Cronobacter in this food type. Pathogenic ST148, ST7, and ST1 were the main STs in this study. ST4, epidemiologically related to neonatal meningitis, was also identified. All strains were sensitive to cefepime, tobramycin, ciprofloxacin, and imipenem, in which the resistance to cephalothin was the highest (64.94%).Two isolates exhibited multidrug resistance to five and seven antimicrobial agents, respectively. In conclusion, these findings suggest that the comparatively high contamination level of Cronobacter spp. in quick-frozen foods is a potential risk warranting public attention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Q.L.); (C.L.); (L.C.); (Z.C.); (S.W.); (Q.G.); (Y.Z.); (X.W.); (J.Z.); (X.Y.); (S.Z.); (Q.Y.)
| |
Collapse
|
9
|
Li Q, Li C, Ye Q, Gu Q, Wu S, Zhang Y, Wei X, Xue L, Chen M, Zeng H, Zhang J, Wu Q. Occurrence, molecular characterization and antibiotic resistance of Cronobacter spp. isolated from wet rice and flour products in Guangdong, China. Curr Res Food Sci 2023; 7:100554. [PMID: 37559946 PMCID: PMC10407891 DOI: 10.1016/j.crfs.2023.100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/27/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023] Open
Abstract
This study explored the prevalence of Cronobacter spp. in wet rice and flour products from Guangdong province, China, the molecular characteristics and antimicrobial susceptibility profiles of the isolates were identified. Among 249 samples, 100 (40.16%) were positive for Cronobacter spp., including 77 wet rice and 23 wet flour products. Eleven serotypes were characterized among 136 isolates with C. sakazakii O2 (n = 32) predominating. Forty-nine MLST patterns were assigned, 15 of which were new. C. sakazakii ST4 (n = 17) was the dominant ST, which is previously reported to have caused three deaths; followed by C. malonaticus ST7 (n = 15), which is connected to adult infections. All strains presented susceptibility to ampicillin/sulbactam, imipenem, aztreonam and trimethoprim/sulfamethoxazole. The isolates showed maximum resistance to cephalothin, and the resistance and intermediate rates were 91.91% and 3.68%, each. Two strains, croM234A1 and croM283-1, displayed resistance to three antibiotics. High contamination level and predominant number of pathogenic STs of Cronobacter in wet rice and flour products implied a potential risk to public healthiness. This survey could provide comprehensive information for establishing more targeted control methods for Cronobacter spp.
Collapse
Affiliation(s)
| | | | - Qinghua Ye
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Qihui Gu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Shi Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Youxiong Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Xianhu Wei
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Liang Xue
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Moutong Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Haiyan Zeng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| |
Collapse
|
10
|
Mousavi ZE, Hunt K, Koolman L, Butler F, Fanning S. Cronobacter Species in the Built Food Production Environment: A Review on Persistence, Pathogenicity, Regulation and Detection Methods. Microorganisms 2023; 11:1379. [PMID: 37374881 DOI: 10.3390/microorganisms11061379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The powdered formula market is large and growing, with sales and manufacturing increasing by 120% between 2012 and 2021. With this growing market, there must come an increasing emphasis on maintaining a high standard of hygiene to ensure a safe product. In particular, Cronobacter species pose a risk to public health through their potential to cause severe illness in susceptible infants who consume contaminated powdered infant formula (PIF). Assessment of this risk is dependent on determining prevalence in PIF-producing factories, which can be challenging to measure with the heterogeneity observed in the design of built process facilities. There is also a potential risk of bacterial growth occurring during rehydration, given the observed persistence of Cronobacter in desiccated conditions. In addition, novel detection methods are emerging to effectively track and monitor Cronobacter species across the food chain. This review will explore the different vehicles that lead to Cronobacter species' environmental persistence in the food production environment, as well as their pathogenicity, detection methods and the regulatory framework surrounding PIF manufacturing that ensures a safe product for the global consumer.
Collapse
Affiliation(s)
- Zeinab Ebrahimzadeh Mousavi
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
- Department of Food Science and Engineering, Faculties of Agriculture and Natural Resources, University of Tehran, Karaj 6719418314, Iran
| | - Kevin Hunt
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Leonard Koolman
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Francis Butler
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
11
|
Holý O, Parra-Flores J, Bzdil J, Cabal-Rosel A, Daza-Prieto B, Cruz-Córdova A, Xicohtencatl-Cortes J, Rodríguez-Martínez R, Acuña S, Forsythe S, Ruppitsch W. Screening of Antibiotic and Virulence Genes from Whole Genome Sequenced Cronobacter sakazakii Isolated from Food and Milk-Producing Environments. Antibiotics (Basel) 2023; 12:antibiotics12050851. [PMID: 37237754 DOI: 10.3390/antibiotics12050851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The objective of this study was to use whole-genome sequencing (WGS) to screen for genes encoding for antibiotic resistance, fitness and virulence in Cronobacter sakazakii strains that had been isolated from food and powdered-milk-producing environments. Virulence (VGs) and antibiotic-resistance genes (ARGs) were detected with the Comprehensive Antibiotic Resistance Database (CARD) platform, ResFinder and PlasmidFinder tools. Susceptibility testing was performed using disk diffusion. Fifteen presumptive strains of Cronobacter spp. were identified by MALDI-TOF MS and ribosomal-MLST. Nine C. sakazakii strains were found in the meningitic pathovar ST4: two were ST83 and one was ST1. The C. sakazakii ST4 strains were further distinguished using core genome MLST based on 3678 loci. Almost all (93%) strains were resistant to cephalotin and 33% were resistant to ampicillin. In addition, 20 ARGs, mainly involved in regulatory and efflux antibiotics, were detected. Ninety-nine VGs were detected that encoded for OmpA, siderophores and genes involved in metabolism and stress. The IncFIB (pCTU3) plasmid was detected, and the prevalent mobile genetic elements (MGEs) were ISEsa1, ISEc52 and ISEhe3. The C. sakazakii isolates analyzed in this study harbored ARGs and VGs, which could have contributed to their persistence in powdered-milk-producing environments, and increase the risk of infection in susceptible population groups.
Collapse
Affiliation(s)
- Ondrej Holý
- Science and Research Center, Faculty of Health Sciences, Palacký University Olomouc, 77515 Olomouc, Czech Republic
| | - Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3800708, Chile
| | - Jaroslav Bzdil
- Ptacy s.r.o., Valasska Bystrice 194, 75627 Valasska Bystrice, Czech Republic
| | - Adriana Cabal-Rosel
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, 1220 Vienna, Austria
| | - Beatriz Daza-Prieto
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, 1220 Vienna, Austria
| | - Ariadnna Cruz-Córdova
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Juan Xicohtencatl-Cortes
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Ricardo Rodríguez-Martínez
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Sergio Acuña
- Department of Food Engineering, Universidad del Bío-Bío, Chillán 3800708, Chile
| | - Stephen Forsythe
- FoodMicrobe.com Ltd., Adams Hill, Keyworth, Nottinghamshire NG12 5GY, UK
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, 1220 Vienna, Austria
| |
Collapse
|
12
|
Deekshit VK, Srikumar S. 'To be, or not to be' - the dilemma of 'silent' antimicrobial resistance genes in bacteria. J Appl Microbiol 2022; 133:2902-2914. [PMID: 35882476 DOI: 10.1111/jam.15738] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Antimicrobial resistance is a serious threat to public health that dramatically undermines our ability to treat bacterial infections. Microorganisms exhibit resistance to different drug classes by acquiring resistance determinants through multiple mechanisms including horizontal gene transfer. The presence of drug resistance genotypes is mostly associated with corresponding phenotypic resistance against the particular antibiotic. However, bacterial communities harboring silent antimicrobial resistance genes - genes whose presence is not associated with a corresponding resistant phenotype, do exist. Under suitable conditions, the expression pattern of such genes often revert and regain resistance, and could potentially lead to therapeutic failure. We often miss the presence of silent genes, since the current experimental paradigms are focused on resistant strains. Therefore, the knowledge on the prevalence, importance, and mechanism of silent antibiotic resistance genes in bacterial pathogens is very limited. Silent genes, therefore, provide an additional level of complexity in the war against drug-resistant bacteria, reminding us that not only phenotypically resistant strains but also susceptible strains should be carefully investigated. In this review, we discuss the presence of silent antimicrobial resistance genes in bacteria, their relevance, and their importance in public health.
Collapse
Affiliation(s)
- Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Nitte University Center for Science Education and Research, Division of Infectious Diseases, Paneer Campus, Deralakatte, Mangaluru - 575018, Karnataka, India
| | - Shabarinath Srikumar
- Department of Food Science, College of Agriculture and Veterinary Medicine, UAE University, Al Ain, UAE
| |
Collapse
|
13
|
Jang H, Eshwar A, Lehner A, Gangiredla J, Patel IR, Beaubrun JJG, Chase HR, Negrete F, Finkelstein S, Weinstein LM, Ko K, Addy N, Ewing L, Woo J, Lee Y, Seo K, Jaradat Z, Srikumar S, Fanning S, Stephan R, Tall BD, Gopinath GR. Characterization of Cronobacter sakazakii Strains Originating from Plant-Origin Foods Using Comparative Genomic Analyses and Zebrafish Infectivity Studies. Microorganisms 2022; 10:microorganisms10071396. [PMID: 35889115 PMCID: PMC9319161 DOI: 10.3390/microorganisms10071396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Cronobacter sakazakii continues to be isolated from ready-to-eat fresh and frozen produce, flours, dairy powders, cereals, nuts, and spices, in addition to the conventional sources of powdered infant formulae (PIF) and PIF production environments. To understand the sequence diversity, phylogenetic relationship, and virulence of C. sakazakii originating from plant-origin foods, comparative molecular and genomic analyses, and zebrafish infection (ZI) studies were applied to 88 strains. Whole genome sequences of the strains were generated for detailed bioinformatic analysis. PCR analysis showed that all strains possessed a pESA3-like virulence plasmid similar to reference C. sakazakii clinical strain BAA-894. Core genome analysis confirmed a shared genomic backbone with other C. sakazakii strains from food, clinical and environmental strains. Emerging nucleotide diversity in these plant-origin strains was highlighted using single nucleotide polymorphic alleles in 2000 core genes. DNA hybridization analyses using a pan-genomic microarray showed that these strains clustered according to sequence types (STs) identified by multi-locus sequence typing (MLST). PHASTER analysis identified 185 intact prophage gene clusters encompassing 22 different prophages, including three intact Cronobacter prophages: ENT47670, ENT39118, and phiES15. AMRFinderPlus analysis identified the CSA family class C β-lactamase gene in all strains and a plasmid-borne mcr-9.1 gene was identified in three strains. ZI studies showed that some plant-origin C. sakazakii display virulence comparable to clinical strains. Finding virulent plant-origin C. sakazakii possessing significant genomic features of clinically relevant STs suggests that these foods can serve as potential transmission vehicles and supports widening the scope of continued surveillance for this important foodborne pathogen.
Collapse
Affiliation(s)
- Hyein Jang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Athmanya Eshwar
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland; (A.E.); (A.L.); (R.S.)
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland; (A.E.); (A.L.); (R.S.)
| | - Jayanthi Gangiredla
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Isha R. Patel
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Junia Jean-Gilles Beaubrun
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Hannah R. Chase
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Flavia Negrete
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Samantha Finkelstein
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Leah M. Weinstein
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Katie Ko
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Nicole Addy
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Laura Ewing
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Jungha Woo
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Youyoung Lee
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Kunho Seo
- Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea;
| | - Ziad Jaradat
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Shabarinath Srikumar
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin & WHO Collaborating Centre for Cronobacter, Belfield, D04 N2E5 Dublin, Ireland; (S.S.); (S.F.)
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin & WHO Collaborating Centre for Cronobacter, Belfield, D04 N2E5 Dublin, Ireland; (S.S.); (S.F.)
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland; (A.E.); (A.L.); (R.S.)
| | - Ben D. Tall
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
- Correspondence: (B.D.T.); (G.R.G.)
| | - Gopal R. Gopinath
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
- Correspondence: (B.D.T.); (G.R.G.)
| |
Collapse
|
14
|
Cao Y, Macori G, Naithani A, Tall BD, Gangiredla J, Srikumar S, Fanning S. A 16S rRNA Sequencing Study Describing the Environmental Microbiota of Two Powdered Infant Formula Built Facilities. Foodborne Pathog Dis 2022; 19:473-484. [PMID: 35766923 DOI: 10.1089/fpd.2021.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microbial safety is critically important for powdered infant formula (PIF) fed to neonates, with under-developed immune systems. The quality and safety of food products are dictated by those microorganisms found in both raw materials and the built production environment. In this study, a 2-year monitoring program of a production environment was carried out in two PIF factories located in the Republic of Ireland, and the environmental microbiome in different care areas of these sites was studied by using a 16S ribosomal RNA (rRNA)-based sequencing technique. Results highlighted a core microbiome associated with the PIF factory environment containing 24 bacterial genera representing five phyla, with Acinetobacter and Pseudomonas as the predominant genera. In different care areas of the PIF factory, as hygiene standards increased, deciphered changes in microbial community compositions became smaller over time and approached stability, and bacteria dominating the care area became less influenced by the external environment and more by human interactions and raw materials. These observations indicated that the microbial composition can be altered in response to environmental interventions. Genera Cronobacter and Salmonella were observed in trace amounts in the PIF factory environment, and bacterial genera known to be persistent in a stressed environment, such as Acinetobacter, Bacillus, Streptococcus, and Clostridium, were likely to have higher abundances in dry environment-based care areas. To our knowledge, this is the first study to characterize the PIF production environment microbiome using 16S rRNA-based sequencing. This study described the composition and changing trends of the environmental microbial communities in different care areas of the PIF manufacturing facility, and it provided valuable information to support the safer production of PIF in the future.
Collapse
Affiliation(s)
- Yu Cao
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin, Ireland
| | - Guerrino Macori
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin, Ireland
| | - Ankita Naithani
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin, Ireland
| | - Ben D Tall
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Jayanthi Gangiredla
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Shabarinath Srikumar
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin, Ireland.,Department of Food, Nutrition and Health, College of Food and Agriculture, UAE University Al Ain Campus, Al Ain, United Arab Emirates
| | - Séamus Fanning
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Parra-Flores J, Holý O, Acuña S, Lepuschitz S, Pietzka A, Contreras-Fernández A, Chavarría-Sepulveda P, Cruz-Córdova A, Xicohtencatl-Cortes J, Mancilla-Rojano J, Castillo A, Ruppitsch W, Forsythe S. Genomic Characterization of Cronobacter spp. and Salmonella spp. Strains Isolated From Powdered Infant Formula in Chile. Front Microbiol 2022; 13:884721. [PMID: 35722296 PMCID: PMC9201451 DOI: 10.3389/fmicb.2022.884721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/04/2022] [Indexed: 11/14/2022] Open
Abstract
This study characterized five Cronobacter spp. and six Salmonella spp. strains that had been isolated from 155 samples of powdered infant formula (PIF) sold in Chile and manufactured in Chile and Mexico in 2018–2020. Two strains of Cronobacter sakazakii sequence type (ST) ST1 and ST31 (serotypes O:1 and O:2) and one strain of Cronobacter malonaticus ST60 (O:1) were identified. All Salmonella strains were identified as Salmonella Typhimurium ST19 (serotype O:4) by average nucleotide identity, ribosomal multilocus sequence typing (rMLST), and core genome MLST (cgMLST). The C. sakazakii and C. malonaticus isolates were resistant to cephalothin, whereas the Salmonella isolates were resistant to oxacillin and ampicillin. Nineteen antibiotic resistance genes were detected in the C. sakazakii and C. malonaticus isolates; the most prevalent were mcr-9.1, blaCSA, and blaCMA. In Salmonella, 30 genes encoding for aminoglycoside and cephalosporin resistance were identified, including aac(6′)-Iaa, β-lactamases ampH, ampC1, and marA. In the Cronobacter isolates, 32 virulence-associated genes were detected by WGS and clustered as flagellar proteins, outer membrane proteins, chemotaxis, hemolysins, invasion, plasminogen activator, colonization, transcriptional regulator, survival in macrophages, use of sialic acid, and toxin-antitoxin genes. In the Salmonella strains, 120 virulence associated genes were detected, adherence, magnesium uptake, resistance to antimicrobial peptides, secretion system, stress protein, toxin, resistance to complement killing, and eight pathogenicity islands. The C. sakazakii and C. malonaticus strains harbored I-E and I-F CRISPR-Cas systems and carried Col(pHHAD28) and IncFIB(pCTU1) plasmids, respectively. The Salmonella strains harbored type I-E CRISPR-Cas systems and carried IncFII(S) plasmids. The presence of C. sakazakii and Salmonella in PIF is a health risk for infants aged less than 6 months. For this reason, sanitary practices should be reinforced for its production and retail surveillance.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán, Chile
| | - Ondřej Holý
- Science and Research Centre, Faculty of Health Sciences, Palacký University Olomouc, Olomouc, Czechia
| | - Sergio Acuña
- Department of Food Engineering, Universidad del Bío-Bío, Chillán, Chile
| | - Sarah Lepuschitz
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | | | | - Ariadnna Cruz-Córdova
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Juan Xicohtencatl-Cortes
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Jetsi Mancilla-Rojano
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.,Faculty of Medicine, Biological Sciences Graduate Program, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro Castillo
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, United States
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | |
Collapse
|
16
|
Microbial contaminants in powdered infant formula: what is the impact of spray-drying on microbial inactivation? Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Bourdichon F, Betts R, Dufour C, Fanning S, Farber J, McClure P, Stavropoulou DA, Wemmenhove E, Zwietering MH, Winkler A. Processing environment monitoring in low moisture food production facilities: Are we looking for the right microorganisms? Int J Food Microbiol 2021; 356:109351. [PMID: 34500287 DOI: 10.1016/j.ijfoodmicro.2021.109351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 11/27/2022]
Abstract
Processing environment monitoring is gaining increasing importance in the context of food safety management plans/HACCP programs, since past outbreaks have shown the relevance of the environment as contamination pathway, therefore requiring to ensure the safety of products. However, there are still many open questions and a lack of clarity on how to set up a meaningful program, which would provide early warnings of potential product contamination. Therefore, the current paper aims to summarize and evaluate existing scientific information on outbreaks, relevant pathogens in low moisture foods, and knowledge on indicators, including their contribution to a "clean" environment capable of limiting the spread of pathogens in dry production environments. This paper also outlines the essential elements of a processing environment monitoring program thereby supporting the design and implementation of better programs focusing on the relevant microorganisms. This guidance document is intended to help industry and regulators focus and set up targeted processing environment monitoring programs depending on their purpose, and therefore provide the essential elements needed to improve food safety.
Collapse
Affiliation(s)
- François Bourdichon
- Food Safety, Microbiology, Hygiene, 16 Rue Gaston de Caillavet, 75015 Paris, France; Facoltà di Scienze Agrarie, Alimentarie Ambientali, Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy.
| | - Roy Betts
- Campden BRI, Chipping Campden, Gloucestershire, United Kingdom
| | - Christophe Dufour
- Mérieux NutriSciences, 25 Boulevard de la Paix, 95891 Cergy Pontoise, France
| | - Séamus Fanning
- UCD - Centre for Food Safety, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Jeffrey Farber
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Peter McClure
- Mondelēz International, Bournville Lane, Birmingham B30 2LU, United Kingdom
| | | | | | - Marcel H Zwietering
- Food Microbiology, Wageningen University, PO Box 17, 6700AA, Wageningen, The Netherlands
| | - Anett Winkler
- Cargill Germany GmbH, Cerestar str. 2, D-47809 Krefeld, Germany
| |
Collapse
|
18
|
Parra-Flores J, Holý O, Riffo F, Lepuschitz S, Maury-Sintjago E, Rodríguez-Fernández A, Cruz-Córdova A, Xicohtencatl-Cortes J, Mancilla-Rojano J, Troncoso M, Figueroa G, Ruppitsch W, Forsythe S. Profiling the Virulence and Antibiotic Resistance Genes of Cronobacter sakazakii Strains Isolated From Powdered and Dairy Formulas by Whole-Genome Sequencing. Front Microbiol 2021; 12:694922. [PMID: 34276629 PMCID: PMC8278472 DOI: 10.3389/fmicb.2021.694922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Cronobacter sakazakii is an enteropathogen that causes neonatal meningitis, septicemia, and necrotizing enterocolitis in preterm infants and newborns with a mortality rate of 15 to 80%. Powdered and dairy formulas (P-DF) have been implicated as major transmission vehicles and subsequently the presence of this pathogen in P-DF led to product recalls in Chile in 2017. The objective of this study was to use whole genome sequencing (WGS) and laboratory studies to characterize Cronobacter strains from the contaminated products. Seven strains were identified as C. sakazakii, and the remaining strain was Franconibacter helveticus. All C. sakazakii strains adhered to a neuroblastoma cell line, and 31 virulence genes were predicted by WGS. The antibiograms varied between strains. and included mcr-9.1 and bla CSA genes, conferring resistance to colistin and cephalothin, respectively. The C. sakazakii strains encoded I-E and I-F CRISPR-Cas systems, and carried IncFII(pECLA), Col440I, and Col(pHHAD28) plasmids. In summary, WGS enabled the identification of C. sakazakii strains and revealed multiple antibiotic resistance and virulence genes. These findings support the decision to recall the contaminated powdered and dairy formulas from the Chilean market in 2017.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán, Chile
| | - Ondrej Holý
- Department of Public Health, Palacký University Olomouc, Olomouc, Czechia
| | | | - Sarah Lepuschitz
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | | | | - Ariadnna Cruz-Córdova
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Juan Xicohtencatl-Cortes
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Jetsi Mancilla-Rojano
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Faculty of Medicine, Biological Sciences Graduate Program, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miriam Troncoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | |
Collapse
|
19
|
Chauhan R, Singh N, Pal GK, Goel G. Trending biocontrol strategies against Cronobacter sakazakii: A recent updated review. Food Res Int 2020; 137:109385. [DOI: 10.1016/j.foodres.2020.109385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/29/2022]
|
20
|
Labchip-based diagnosis system for on-site application: Sensitive and easy-to-implement detection of single recoverable Cronobacter in infant formula without post-enrichment treatment. Int J Food Microbiol 2020; 327:108659. [PMID: 32413591 DOI: 10.1016/j.ijfoodmicro.2020.108659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/20/2022]
Abstract
Microfluidic labchips have achieved much advancement in the molecular diagnosis of foodborne pathogens. Whereas difficulties in the flow control during the transportation of liquid fluids can occur and should be overcome. Manipulations of reaction temperature and the complex procedures from sample pre-treatment to analysis in a single chip device are major obstacles for the on-site application. Thus, the efficient temperature control of samples without any flow of reaction fluids in microfluidic channels of plastic chip and the simplest protocol omitting post-enrichment processing steps may overcome these limitations represented by the stability and the complexity, respectively. This study aims to develop a novel type of labchip and thermocycler specialized for the gene amplification in microfluidic channels and to evaluate the detectability by sensing the minimum recoverable level of Cronobacter in powdered infant formula (PIF). We developed a thermocycling device accelerating reactions through dual heating-blocks optimized to control temperatures of samples in microfluidic-channels by direct contact with labchip sequentially and repetitively. The structural design of microfluidic channels was to eliminate interference factors associated with the optical detection of fluorescent signals (without distortion due to air bubbles in the reaction chamber). To improve the applicability, a portable device and simplified operation to allow direct loading of samples in the chip without post-enrichment procedures were also adopted. Detection performance was evaluated by a sensitivity/specificity tests using 50 isolates of Cronobacter. Cross-reactivity tests for non-Cronobacter organisms and gDNA [human, raw materials of PIF (cow, soybean)] showed that there was no interference-factor causing false-positive results. In terms of the applied research conducted by using PIF, the enrichment of samples without broth medium (distilled water) displayed outstanding performance and 12 h of incubation facilitated detecting target at concentration as low as 1 CFU/300 g PIF (as initial contamination level) without post-enrichment treatment. Validation of the operation conditions using 30 commercial PIF products was also consistent. The present study presents a novel approach of microfluidic technology with perspective to not only the performance and the practicability [easy-to-implement protocol, portable materials, cost-effectiveness (the use of a miniaturized plastic chip requires a minimum level of materials)] for on-site diagnosis.
Collapse
|
21
|
Jang H, Gopinath GR, Eshwar A, Srikumar S, Nguyen S, Gangiredla J, Patel IR, Finkelstein SB, Negrete F, Woo J, Lee Y, Fanning S, Stephan R, Tall BD, Lehner A. The Secretion of Toxins and Other Exoproteins of Cronobacter: Role in Virulence, Adaption, and Persistence. Microorganisms 2020; 8:E229. [PMID: 32046365 PMCID: PMC7074816 DOI: 10.3390/microorganisms8020229] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 12/29/2022] Open
Abstract
: Cronobacter species are considered an opportunistic group of foodborne pathogenic bacteria capable of causing both intestinal and systemic human disease. This review describes common virulence themes shared among the seven Cronobacter species and describes multiple exoproteins secreted by Cronobacter, many of which are bacterial toxins that may play a role in human disease. The review will particularly concentrate on the virulence factors secreted by C. sakazakii, C. malonaticus, and C. turicensis, which are the primary human pathogens of interest. It has been discovered that various species-specific virulence factors adversely affect a wide range of eukaryotic cell processes including protein synthesis, cell division, and ion secretion. Many of these factors are toxins which have been shown to also modulate the host immune response. These factors are encoded on a variety of mobile genetic elements such as plasmids and transposons; this genomic plasticity implies ongoing re-assortment of virulence factor genes which has complicated our efforts to categorize Cronobacter into sharply defined genomic pathotypes.
Collapse
Affiliation(s)
- Hyein Jang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Gopal R. Gopinath
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Athmanya Eshwar
- Institute for Food Safety and Hygiene, University of Zurich, Zurich CH-8006 Zürich, Switzerland; (A.E.); (R.S.); (A.L.)
| | - Shabarinath Srikumar
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin Belfield, Dublin 4, D04 V1W8, Ireland; (S.S.); (S.N.); (S.F.)
| | - Scott Nguyen
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin Belfield, Dublin 4, D04 V1W8, Ireland; (S.S.); (S.N.); (S.F.)
| | - Jayanthi Gangiredla
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Isha R. Patel
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Samantha B. Finkelstein
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Flavia Negrete
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - JungHa Woo
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - YouYoung Lee
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Séamus Fanning
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin Belfield, Dublin 4, D04 V1W8, Ireland; (S.S.); (S.N.); (S.F.)
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, Zurich CH-8006 Zürich, Switzerland; (A.E.); (R.S.); (A.L.)
| | - Ben D. Tall
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (F.N.); (J.W.); (Y.L.)
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, University of Zurich, Zurich CH-8006 Zürich, Switzerland; (A.E.); (R.S.); (A.L.)
| |
Collapse
|
22
|
Mousavi Khaneghah A, Abhari K, Eş I, Soares MB, Oliveira RB, Hosseini H, Rezaei M, Balthazar CF, Silva R, Cruz AG, Ranadheera CS, Sant’Ana AS. Interactions between probiotics and pathogenic microorganisms in hosts and foods: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Negrete F, Jang H, Gangiredla J, Woo J, Lee Y, Patel IR, Chase HR, Finkelstein S, Wang CZ, Srikumar S, Nguyen S, Eshwar A, Stephan R, Lehner A, Fanning S, Tall BD, Gopinath GR. Genome-wide survey of efflux pump-coding genes associated with Cronobacter survival, osmotic adaptation, and persistence. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2018.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Finkelstein S, Negrete F, Jang H, Gangiredla J, Mammel M, Patel IR, Chase HR, Woo J, Lee Y, Wang CZ, Weinstein L, Tall BD, Gopinath GR. Prevalence, Distribution, and Phylogeny of Type Two Toxin-Antitoxin Genes Possessed by Cronobacter Species where C. sakazakii Homologs Follow Sequence Type Lineages. Microorganisms 2019; 7:E554. [PMID: 31726673 PMCID: PMC6920972 DOI: 10.3390/microorganisms7110554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/04/2019] [Accepted: 11/09/2019] [Indexed: 12/28/2022] Open
Abstract
Cronobacter species are a group of foodborne pathogenic bacteria that cause both intestinal and systemic human disease in individuals of all age groups. Little is known about the mechanisms that Cronobacter employ to survive and persist in foods and other environments. Toxin-antitoxin (TA) genes are thought to play a role in bacterial stress physiology, as well as in the stabilization of horizontally-acquired re-combinatorial elements such as plasmids, phage, and transposons. TA systems have been implicated in the formation of a persistence phenotype in some bacterial species including Escherichia coli and Salmonella. This project's goal was to understand the phylogenetic relatedness among TA genes present in Cronobacter. Preliminary studies showed that two typical toxin genes, fic and hipA followed species evolutionary lines. A local database of 22 TA homologs was created for Cronobacter sakazakii and a Python version 3 shell script was generated to extract TA FASTA sequences present in 234 C. sakazakii genomes previously sequenced as part of Center for Food Safety and Applied Nutrition's (CFSAN) GenomeTrakr project. BLAST analysis showed that not every C. sakazakii strain possessed all twenty-two TA loci. Interestingly, some strains contained either a toxin or an antitoxin component, but not both. Five common toxin genes: ESA_00258 (parDE toxin-antitoxin family), ESA_00804 (relBE family), ESA_01887 (relBE family), ESA_03838 (relBE family), and ESA_04273 (YhfG-Fic family) were selected for PCR analysis and the primers were designed to detect these genes. PCR analysis showed that 55 of 63 strains possessed three of these genes Sequence analysis identified homologs of the target genes and some of the strains were PCR-negative for one or more of the genes, pointing to potential nucleotide polymorphisms in those loci or that these toxin genes were absent. Phylogenetic studies using a Cronobacter pan genomic microarray showed that for the most part TAs follow species evolutionary lines except for a few toxin genes possessed by some C. malonaticus and C. universalis strains; this demonstrates that some TA orthologues share a common phylogeny. Within the C. sakazakii strains, the prevalence and distribution of these TA homologs by C. sakazakii strain BAA-894 (a powdered infant formula isolate) followed sequence-type evolutionary lineages. Understanding the phylogeny of TAs among the Cronobacter species is essential to design future studies to realize the physiological mechanisms and roles for TAs in stress adaptation and persistence of Cronobacter within food matrices and food processing environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ben D. Tall
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, 8301 MuirKirk Rd, Laurel, MD 20708, USA; (S.F.); (F.N.); (H.J.); (J.G.); (M.M.); (I.R.P.); (H.R.C.); (J.W.); (Y.L.); (C.Z.W.); (L.W.); (G.R.G.)
| | | |
Collapse
|
25
|
Aly MA, Domig KJ, Kneifel W, Reimhult E. Whole Genome Sequencing-Based Comparison of Food Isolates of Cronobacter sakazakii. Front Microbiol 2019; 10:1464. [PMID: 31333604 PMCID: PMC6615433 DOI: 10.3389/fmicb.2019.01464] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Cronobacter sakazakii is an emerging foodborne pathogen, which is linked to life-threatening infections causing septicemia, meningitis, and necrotizing enterocolitis. These infections have been epidemiologically connected to ingestion of contaminated reconstituted powder infant formula. Even at low water activity C. sakazakii can survive for a long time; it is capable of protective biofilm formation and occasionally shows high virulence and pathogenicity even following stressful environmental conditions. Hence it is a challenging task for the food industry to control contamination of food ingredients and products through the entire production chain, since an increasing number of severe food-related outbreaks of C. sakazakii infections has been observed. The seemingly great capability of C. sakazakii to survive even strict countermeasures combined with its prevalence in many food ingredients requires a greater in depth understanding of its virulence factors to master the food safety issues related to this organism. In this context, we present the whole genome sequence (WGS) of two different C. sakazakii isolated from skimmed milk powder (C7) and ready-to-eat salad mix (C8), respectively. These are compared to other, already sequenced, C. sakazakii genomes. Sequencing of the fusA allele revealed that both isolates were C. sakazakii. We investigated the molecular characteristics of both isolates relevant for genes associated with pathogenesis and virulence factors, resistance to stressful environmental conditions (e.g., osmotic and heat), survival in desiccation as well as conducted a comparative genomic analysis. By using multi-locus sequence typing (MLST), the genetic type of both isolates is assessed and the number of unique genes is determined. DNA of C. sakazakii C8 is shown to hold a novel and unique sequence type; the number of unique genes identified in the genomic sequence of C. sakazakii C7 and C8 were 109 and 188, respectively. Some of the determined unique genes such as the rhs and VgrG genes are linked to the Type VI Secretion System cluster, which is associated with pathogenicity and virulence factors. Moreover, seven genes encoding for multi-drug resistance were found in both isolates. The finding of a number of genes linked to producing capsules and biofilm are likely related to the observed resistance to desiccation.
Collapse
Affiliation(s)
- Mohamed A Aly
- Department of Nanobiotechnology, Institute for Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.,Department of Food Science, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Konrad J Domig
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Wolfgang Kneifel
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Erik Reimhult
- Department of Nanobiotechnology, Institute for Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
26
|
Jang H, Woo J, Lee Y, Negrete F, Finkelstein S, Chase HR, Addy N, Ewing L, Beaubrun JJG, Patel I, Gangiredla J, Eshwar A, Jaradat ZW, Seo K, Shabarinath S, Fanning S, Stephan R, Lehner A, Tall BD, Gopinath GR. Draft genomes of Cronobacter sakazakii strains isolated from dried spices bring unique insights into the diversity of plant-associated strains. Stand Genomic Sci 2018; 13:35. [PMID: 30519380 PMCID: PMC6267090 DOI: 10.1186/s40793-018-0339-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/10/2018] [Indexed: 01/16/2023] Open
Abstract
Cronobacter sakazakii is a Gram-negative opportunistic pathogen that causes life- threatening infantile infections, such as meningitis, septicemia, and necrotizing enterocolitis, as well as pneumonia, septicemia, and urinary tract and wound infections in adults. Here, we report 26 draft genome sequences of C. sakazakii, which were obtained from dried spices from the USA, the Middle East, China, and the Republic of Korea. The average genome size of the C. sakazakii genomes was 4393 kb, with an average of 4055 protein coding genes, and an average genome G + C content of 56.9%. The genomes contained genes related to carbohydrate transport and metabolism, amino acid transport and metabolism, and cell wall/membrane biogenesis. In addition, we identified genes encoding proteins involved in osmotic responses such as DnaJ, Aquaproin Z, ProQ, and TreF, as well as virulence-related and heat shock-related proteins. Interestingly, a metabolic island comprised of a variably-sized xylose utilization operon was found within the spice-associated C. sakazakii genomes, which supports the hypothesis that plants may serve as transmission vectors or alternative hosts for Cronobacter species. The presence of the genes identified in this study can support the remarkable phenotypic traits of C. sakazakii such as the organism's capabilities of adaptation and survival in response to adverse growth environmental conditions (e.g. osmotic and desiccative stresses). Accordingly, the genome analyses provided insights into many aspects of physiology and evolutionary history of this important foodborne pathogen.
Collapse
Affiliation(s)
- Hyein Jang
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708 USA
| | - Jungha Woo
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708 USA
| | - Youyoung Lee
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708 USA
| | - Flavia Negrete
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708 USA
| | - Samantha Finkelstein
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708 USA
| | - Hannah R. Chase
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708 USA
| | - Nicole Addy
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708 USA
| | - Laura Ewing
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708 USA
| | - Junia Jean Gilles Beaubrun
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708 USA
| | - Isha Patel
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708 USA
| | - Jayanthi Gangiredla
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708 USA
| | - Athmanya Eshwar
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Ziad W. Jaradat
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 22110 Jordan
| | - Kunho Seo
- Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul, 05029 South Korea
| | - Srikumar Shabarinath
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College, Dublin, Ireland
- WHO Collaborating Centre for Cronobacter, Belfield, Dublin 4, Ireland
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College, Dublin, Ireland
- WHO Collaborating Centre for Cronobacter, Belfield, Dublin 4, Ireland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Ben D. Tall
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708 USA
| | - Gopal R. Gopinath
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708 USA
| |
Collapse
|
27
|
Gopinath GR, Chase HR, Gangiredla J, Eshwar A, Jang H, Patel I, Negrete F, Finkelstein S, Park E, Chung T, Yoo Y, Woo J, Lee Y, Park J, Choi H, Jeong S, Jun S, Kim M, Lee C, Jeong H, Fanning S, Stephan R, Iversen C, Reich F, Klein G, Lehner A, Tall BD. Genomic characterization of malonate positive Cronobacter sakazakii serotype O:2, sequence type 64 strains, isolated from clinical, food, and environment samples. Gut Pathog 2018; 10:11. [PMID: 29556252 PMCID: PMC5845375 DOI: 10.1186/s13099-018-0238-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/02/2018] [Indexed: 02/06/2023] Open
Abstract
Background Malonate utilization, an important differential trait, well recognized as being possessed by six of the seven Cronobacter species is thought to be largely absent in Cronobacter sakazakii (Csak). The current study provides experimental evidence that confirms the presence of a malonate utilization operon in 24 strains of sequence type (ST) 64, obtained from Europe, Middle East, China, and USA; it offers explanations regarding the genomic diversity and phylogenetic relatedness among these strains, and that of other C. sakazakii strains. Results In this study, the presence of a malonate utilization operon in these strains was initially identified by DNA microarray analysis (MA) out of a pool of 347 strains obtained from various surveillance studies involving clinical, spices, milk powder sources and powdered infant formula production facilities in Ireland and Germany, and dried dairy powder manufacturing facilities in the USA. All ST64 C. sakazakii strains tested could utilize malonate. Zebrafish embryo infection studies showed that C. sakazakii ST64 strains are as virulent as other Cronobacter species. Parallel whole genome sequencing (WGS) and MA showed that the strains phylogenetically grouped as a separate clade among the Csak species cluster. Additionally, these strains possessed the Csak O:2 serotype. The nine-gene, ~ 7.7 kbp malonate utilization operon was located in these strains between two conserved flanking genes, gyrB and katG. Plasmidotyping results showed that these strains possessed the virulence plasmid pESA3, but in contrast to the USA ST64 Csak strains, ST64 Csak strains isolated from sources in Europe and the Middle East, did not possess the type six secretion system effector vgrG gene. Conclusions Until this investigation, the presence of malonate-positive Csak strains, which are associated with foods and clinical cases, was under appreciated. If this trait was used solely to identify Cronobacter strains, many strains would likely be misidentified. Parallel WGS and MA were useful in characterizing the total genome content of these Csak O:2, ST64, malonate-positive strains and further provides an understanding of their phylogenetic relatedness among other virulent C. sakazakii strains. Electronic supplementary material The online version of this article (10.1186/s13099-018-0238-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gopal R Gopinath
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Hannah R Chase
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Jayanthi Gangiredla
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Athmanya Eshwar
- 2Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Hyein Jang
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Isha Patel
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Flavia Negrete
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Samantha Finkelstein
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Eunbi Park
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - TaeJung Chung
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - YeonJoo Yoo
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - JungHa Woo
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - YouYoung Lee
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Jihyeon Park
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Hyerim Choi
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Seungeun Jeong
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Soyoung Jun
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Mijeong Kim
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Chaeyoon Lee
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - HyeJin Jeong
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| | - Séamus Fanning
- 3UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College, Dublin & WHO Collaborating Centre for Cronobacter, Belfield, Dublin 4, Ireland
| | - Roger Stephan
- 2Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Carol Iversen
- 2Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland.,3UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College, Dublin & WHO Collaborating Centre for Cronobacter, Belfield, Dublin 4, Ireland
| | - Felix Reich
- 4Institute for Food Quality and Safety, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Günter Klein
- 4Institute for Food Quality and Safety, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Angelika Lehner
- 2Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Ben D Tall
- 1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708 USA
| |
Collapse
|