1
|
De-Simone SG, Napoleão-Pêgo P, Lechuga GC, Carvalho JPRS, Monteiro ME, Morel CM, Provance DW. Mapping IgA Epitope and Cross-Reactivity between Severe Acute Respiratory Syndrome-Associated Coronavirus 2 and DENV. Vaccines (Basel) 2023; 11:1749. [PMID: 38140154 PMCID: PMC10747746 DOI: 10.3390/vaccines11121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The newly introduced COVID-19 vaccines have reduced disease severity and hospitalizations. However, they do not significantly prevent infection or transmission. In the same context, measuring IgM and IgG antibody levels is important, but it does not provide information about the status of the mucosal immune response. This article describes a comprehensive mapping of IgA epitopes of the S protein, its cross-reactivity, and the development of an ELISA-peptide assay. METHODS IgA epitope mapping was conducted using SPOT synthesis and sera from RT-qPCR COVID-19-positive patients. Specific and cross-reacting epitopes were identified, and an evolutionary analysis from the early Wuhan strain to the Omicron variant was performed using bioinformatics tools and a microarray of peptides. The selected epitopes were chemically synthesized and evaluated using ELISA-IgA. RESULTS A total of 40 IgA epitopes were identified with 23 in S1 and 17 in the S2 subunit. Among these, at least 23 epitopes showed cross-reactivity with DENV and other organisms and 24 showed cross-reactivity with other associated coronaviruses. Three MAP4 polypeptides were validated by ELISA, demonstrating a sensitivity of 90-99.96% and a specificity of 100%. Among the six IgA-RBD epitopes, only the SC/18 epitope of the Omicron variants (BA.2 and BA.2.12.1) presented a single IgA epitope. CONCLUSIONS This research unveiled the IgA epitome of the S protein and identified many epitopes that exhibit cross-reactivity with DENV and other coronaviruses. The S protein of variants from Wuhan to Omicron retains many conserved IgA epitopes except for one epitope (#SCov/18). The cross-reactivity with DENV suggests limitations in using the whole S protein or the S1/S2/RBD segment for IgA serological diagnostic tests for COVID-19. The expression of these identified specific epitopes as diagnostic biomarkers could facilitate monitoring mucosal immunity to COVID-19, potentially leading to more accurate diagnoses and alternative mucosal vaccines.
Collapse
Affiliation(s)
- Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (G.C.L.); (J.P.R.S.C.); (M.E.M.); (C.M.M.); (D.W.P.J.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (G.C.L.); (J.P.R.S.C.); (M.E.M.); (C.M.M.); (D.W.P.J.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (G.C.L.); (J.P.R.S.C.); (M.E.M.); (C.M.M.); (D.W.P.J.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - João P. R. S. Carvalho
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (G.C.L.); (J.P.R.S.C.); (M.E.M.); (C.M.M.); (D.W.P.J.)
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| | - Maria E. Monteiro
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (G.C.L.); (J.P.R.S.C.); (M.E.M.); (C.M.M.); (D.W.P.J.)
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (G.C.L.); (J.P.R.S.C.); (M.E.M.); (C.M.M.); (D.W.P.J.)
| | - David W. Provance
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (G.C.L.); (J.P.R.S.C.); (M.E.M.); (C.M.M.); (D.W.P.J.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
2
|
Kiseleva I, Ksenafontov A. COVID-19 Shuts Doors to Flu but Keeps Them Open to Rhinoviruses. BIOLOGY 2021; 10:biology10080733. [PMID: 34439965 PMCID: PMC8389621 DOI: 10.3390/biology10080733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Ten years have passed since the beginning of the H1N1pdm09 flu pandemic. No sooner had humanity recovered from its consequences than a new attack came—the COVID-19 pandemic. What happens to other respiratory infectious diseases during a global disaster such as the COVID-19 pandemic? The pandemic brought about by the novel SARS-CoV-2 virus has disrupted many well-established epidemiological and pathogenetic relationships, as well as mechanisms affecting infections with other respiratory viruses. The level of circulation of many respiratory pathogens has changed significantly. For instance, global influenza activity is at much lower levels than expected. In many regions, the influenza season has not started. Intriguingly, the COVID-19 pandemic did not substantially affect the spread of human rhinoviruses. In this review, the main properties of epidemiologically significant respiratory viruses such as SARS-CoV-2, influenza virus, and human rhinovirus are described. Abstract It is well known that rhinoviruses are distributed across the globe and are the most common cause of the common cold in all age groups. Rhinoviruses are widely considered to be harmless because they are generally perceived as respiratory viruses only capable of causing mild disease. However, they may also infect the lower respiratory tract, inducing chronic obstructive pulmonary disease and exacerbations of asthma, bronchiolitis, etc. The role of rhinoviruses in pathogenesis and the epidemiological process is underestimated, and they need to be intensively studied. In the light of recent data, it is now known that rhinoviruses could be one of the key epidemiological barriers that may influence the spread of influenza and novel coronaviruses. It has been reported that endemic human rhinoviruses delayed the development of the H1N1pdm09 influenza pandemic through viral interference. Moreover, human rhinoviruses have been suggested to block SARS-CoV-2 replication in the airways by triggering an interferon response. In this review, we summarized the main biological characteristics of genetically distinct viruses such as rhinoviruses, influenza viruses, and SARS-CoV-2 in an attempt to illuminate their main discrepancies and similarities. We hope that this comparative analysis will help us to better understand in which direction research in this area should move.
Collapse
Affiliation(s)
- Irina Kiseleva
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
- Correspondence:
| | - Andrey Ksenafontov
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia;
| |
Collapse
|
3
|
Al-Halhouli A, Albagdady A, Alawadi J, Abeeleh MA. Monitoring Symptoms of Infectious Diseases: Perspectives for Printed Wearable Sensors. MICROMACHINES 2021; 12:620. [PMID: 34072174 PMCID: PMC8229808 DOI: 10.3390/mi12060620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/23/2022]
Abstract
Infectious diseases possess a serious threat to the world's population, economies, and healthcare systems. In this review, we cover the infectious diseases that are most likely to cause a pandemic according to the WHO (World Health Organization). The list includes COVID-19, Crimean-Congo Hemorrhagic Fever (CCHF), Ebola Virus Disease (EBOV), Marburg Virus Disease (MARV), Lassa Hemorrhagic Fever (LHF), Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS), Nipah Virus diseases (NiV), and Rift Valley fever (RVF). This review also investigates research trends in infectious diseases by analyzing published research history on each disease from 2000-2020 in PubMed. A comprehensive review of sensor printing methods including flexographic printing, gravure printing, inkjet printing, and screen printing is conducted to provide guidelines for the best method depending on the printing scale, resolution, design modification ability, and other requirements. Printed sensors for respiratory rate, heart rate, oxygen saturation, body temperature, and blood pressure are reviewed for the possibility of being used for disease symptom monitoring. Printed wearable sensors are of great potential for continuous monitoring of vital signs in patients and the quarantined as tools for epidemiological screening.
Collapse
Affiliation(s)
- Ala’aldeen Al-Halhouli
- NanoLab/Mechatronics Engineering Department, School of Applied Technical Sciences, German Jordanian University (GJU), Amman 11180, Jordan; (A.A.); (J.A.)
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany
- Faculty of Engineering, Middle East University, Amman 11831, Jordan
| | - Ahmed Albagdady
- NanoLab/Mechatronics Engineering Department, School of Applied Technical Sciences, German Jordanian University (GJU), Amman 11180, Jordan; (A.A.); (J.A.)
| | - Ja’far Alawadi
- NanoLab/Mechatronics Engineering Department, School of Applied Technical Sciences, German Jordanian University (GJU), Amman 11180, Jordan; (A.A.); (J.A.)
| | - Mahmoud Abu Abeeleh
- Department of Surgery, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan;
| |
Collapse
|
4
|
Banerjee A, El-Sayes N, Budylowski P, Jacob RA, Richard D, Maan H, Aguiar JA, Demian WL, Baid K, D'Agostino MR, Ang JC, Murdza T, Tremblay BJM, Afkhami S, Karimzadeh M, Irving AT, Yip L, Ostrowski M, Hirota JA, Kozak R, Capellini TD, Miller MS, Wang B, Mubareka S, McGeer AJ, McArthur AG, Doxey AC, Mossman K. Experimental and natural evidence of SARS-CoV-2-infection-induced activation of type I interferon responses. iScience 2021; 24:102477. [PMID: 33937724 PMCID: PMC8074517 DOI: 10.1016/j.isci.2021.102477] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/26/2021] [Accepted: 04/23/2021] [Indexed: 12/22/2022] Open
Abstract
Type I interferons (IFNs) are our first line of defense against virus infection. Recent studies have suggested the ability of SARS-CoV-2 proteins to inhibit IFN responses. Emerging data also suggest that timing and extent of IFN production is associated with manifestation of COVID-19 severity. In spite of progress in understanding how SARS-CoV-2 activates antiviral responses, mechanistic studies into wild-type SARS-CoV-2-mediated induction and inhibition of human type I IFN responses are scarce. Here we demonstrate that SARS-CoV-2 infection induces a type I IFN response in vitro and in moderate cases of COVID-19. In vitro stimulation of type I IFN expression and signaling in human airway epithelial cells is associated with activation of canonical transcriptions factors, and SARS-CoV-2 is unable to inhibit exogenous induction of these responses. Furthermore, we show that physiological levels of IFNα detected in patients with moderate COVID-19 is sufficient to suppress SARS-CoV-2 replication in human airway cells.
Collapse
Affiliation(s)
- Arinjay Banerjee
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Corresponding author
| | - Nader El-Sayes
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Patrick Budylowski
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rajesh Abraham Jacob
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Daniel Richard
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hassaan Maan
- Vector Institute for Artificial Intelligence, Toronto, ON M5G 1M1, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Jennifer A. Aguiar
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Wael L. Demian
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Kaushal Baid
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Michael R. D'Agostino
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jann Catherine Ang
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Tetyana Murdza
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | | | - Sam Afkhami
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mehran Karimzadeh
- Vector Institute for Artificial Intelligence, Toronto, ON M5G 1M1, Canada
| | - Aaron T. Irving
- Zhejiang University – University of Edinburgh Institute, Haining, Zhejiang 314400, China
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310027, China
| | - Lily Yip
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Mario Ostrowski
- Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, UnityHealth, Toronto, ON M5B 1W8, Canada
| | - Jeremy A. Hirota
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Division of Respiratory Medicine, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Robert Kozak
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Terence D. Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Matthew S. Miller
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Bo Wang
- Vector Institute for Artificial Intelligence, Toronto, ON M5G 1M1, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Allison J. McGeer
- Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Andrew G. McArthur
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Andrew C. Doxey
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Karen Mossman
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Corresponding author
| |
Collapse
|
5
|
Limsakul P, Charupanit K, Moonla C, Jeerapan I. Advances in emergent biological recognition elements and bioelectronics for diagnosing COVID-19. EMERGENT MATERIALS 2021; 4:231-247. [PMID: 33718775 PMCID: PMC7937783 DOI: 10.1007/s42247-021-00175-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 05/04/2023]
Abstract
Coronaviruses pose a serious threat to public health. Tremendous efforts are dedicated to advance reliable and effective detection of coronaviruses. Currently, the coronavirus disease 2019 (COVID-19) diagnosis mainly relies on the detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic materials by using reverse transcription-polymerase chain reaction (RT-PCR) assay. However, simpler and more rapid and reliable alternatives are needed to meet high demand during the pandemic. Biosensor-based diagnosis approaches become alternatives for selectively and rapidly detecting virus particles because of their biorecognition elements consisting of biomaterials that are specific to virus biomarkers. Here, we summarize biorecognition materials, including antibodies and antibody-like molecules, that are designed to recognize SARS-CoV-2 biomarkers and the advances of recently developed biosensors for COVID-19 diagnosis. The design of biorecognition materials or layers is crucial to maximize biosensing performances, such as high selectivity and sensitivity of virus detection. Additionally, the recent representative achievements in developing bioelectronics for sensing coronavirus are included. This review includes scholarly articles, mainly published in 2020 and early 2021. In addition to capturing the fast development in the fields of applied materials and biodiagnosis, the outlook of this rapidly evolving technology is summarized. Early diagnosis of COVID-19 could help prevent the spread of this contagious disease and provide significant information to medical teams to treat patients.
Collapse
Affiliation(s)
- Praopim Limsakul
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| | - Krit Charupanit
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110 Thailand
| | - Chochanon Moonla
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111, University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Itthipon Jeerapan
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| |
Collapse
|
6
|
Hasan Ali O, Bomze D, Risch L, Brugger SD, Paprotny M, Weber M, Thiel S, Kern L, Albrich WC, Kohler P, Kahlert CR, Vernazza P, Bühler PK, Schüpbach RA, Gómez-Mejia A, Popa AM, Bergthaler A, Penninger JM, Flatz L. Severe COVID-19 is associated with elevated serum IgA and antiphospholipid IgA-antibodies. Clin Infect Dis 2020; 73:e2869-e2874. [PMID: 32997739 PMCID: PMC7543315 DOI: 10.1093/cid/ciaa1496] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/29/2020] [Indexed: 01/15/2023] Open
Abstract
Background Severe coronavirus disease 2019 (COVID-19) frequently entails complications that bear similarities to autoimmune diseases. To date, there is little data on possible IgA-mediated autoimmune responses. Here, we aim to determine whether COVID-19 is associated with a vigorous total IgA response and if IgA antibodies are associated with complications of severe illness. Since thrombotic events are frequent in severe COVID-19 and resemble hypercoagulation of antiphospholipid syndrome (APS), our approach focused on antiphospholipid antibodies (aPL). Methods In this retrospective cohort study clinical data and aPL from 64 patients with COVID-19 were compared from three independent tertiary hospitals (one in Liechtenstein, two in Switzerland). Samples were collected from April 9 th to May 1 st, 2020. Results Clinical records of 64 patients with COVID-19 were reviewed and divided into a cohort with mild illness (mCOVID) (41%), a discovery cohort with severe illness (sdCOVID) (22%) and a confirmation cohort with severe illness (scCOVID) (38%). Total IgA, IgG and aPL were measured with clinical diagnostic kits. Severe illness was significantly associated with increased total IgA (sdCOVID, P=0.01; scCOVID, p-value<0.001), but not total IgG. Among aPL, both cohorts with severe illness significantly correlated with elevated anti-Cardiolipin IgA (sdCOVID and scCOVID, p-value<0.001), anti-Cardiolipin IgM (sdCOVID, P=0.003; scCOVID, P<0.001), and anti-Beta2 Glycoprotein-1 IgA (sdCOVID and scCOVID, P<0.001). Systemic lupus erythematosus was excluded from all patients as a potential confounder. Conclusions Higher total IgA and IgA-aPL were consistently associated with severe illness. These novel data strongly suggest that a vigorous antiviral IgA-response, possibly triggered in the bronchial mucosa, induces systemic autoimmunity.
Collapse
Affiliation(s)
- Omar Hasan Ali
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.,Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - David Bomze
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lorenz Risch
- Labormedizinisches Zentrum Dr. Risch, Vaduz, Liechtenstein.,Center of Laboratory Medicine, University Institute of Clinical Chemistry, University of Bern, Bern, Switzerland
| | - Silvio D Brugger
- Department of Infectious Diseases and Hospital Hygiene, University Hospital Zurich, Zurich, Switzerland
| | - Matthias Paprotny
- Department of General Internal Medicine, Landesspital Liechtenstein, Vaduz, Liechtenstein
| | - Myriam Weber
- Department of General Internal Medicine, Landesspital Liechtenstein, Vaduz, Liechtenstein
| | - Sarah Thiel
- Department of General Internal Medicine, Landesspital Liechtenstein, Vaduz, Liechtenstein
| | - Lukas Kern
- Department of Pulmonology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Werner C Albrich
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Philipp Kohler
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Christian R Kahlert
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Department of Infectious Diseases and Hospital Epidemiology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Pietro Vernazza
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Philipp K Bühler
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Reto A Schüpbach
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Alejandro Gómez-Mejia
- Department of Infectious Diseases and Hospital Hygiene, University Hospital Zurich, Zurich, Switzerland
| | - Alexandra M Popa
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andreas Bergthaler
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Josef M Penninger
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada.,IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Lukas Flatz
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.,Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Department of Dermatology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Department of Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
7
|
Kumar V. Emerging Human Coronavirus Infections (SARS, MERS, and COVID-19): Where They Are Leading Us. Int Rev Immunol 2020; 40:5-53. [PMID: 32744465 DOI: 10.1080/08830185.2020.1800688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coronavirus infections are responsible for mild, moderate, and severe infections in birds and mammals. These were first isolated in humans as causal microorganisms responsible for common cold. The 2002-2003 SARS epidemic caused by SARS-CoV and 2012 MERS epidemic (64 countries affected) caused by MERS-CoV showed their acute and fatal side. These two CoV infections killed thousands of patients infected worldwide. However, WHO has still reported the MERS case in December 2019 in middle-eastern country (Saudi Arabia), indicating the MERS epidemic has not ended completely yet. Although we have not yet understood completely these two CoV epidemics, a third most dangerous and severe CoV infection has been originated in the Wuhan city, Hubei district of China in December 2019. This CoV infection called COVID-19 or SARS-CoV2 infection has now spread to 210 countries and territories around the world. COVID-19 has now been declared a pandemic by the World Health Organization (WHO). It has infected more than 16.69 million people with more than 663,540 deaths across the world. Thus the current manuscript aims to describe all three (SARS, MERS, and COVID-19) in terms of their causal organisms (SARS-CoV, MERS-CoV, and SARS-CoV2), similarities and differences in their clinical symptoms, outcomes, immunology, and immunopathogenesis, and possible future therapeutic approaches.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Kaslow DC. Certainty of success: three critical parameters in coronavirus vaccine development. NPJ Vaccines 2020; 5:42. [PMID: 32509338 PMCID: PMC7248068 DOI: 10.1038/s41541-020-0193-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 01/24/2023] Open
Abstract
Vaccines for 17 viral pathogens have been licensed for use in humans. Previously, two critical biological parameters of the pathogen and the host–pathogen interaction—incubation period and broadly protective, relative immunogenicity—were proposed to account for much of the past successes in vaccine development, and to be useful in estimating the “certainty of success” of developing an effective vaccine for viral pathogens for which a vaccine currently does not exist. In considering the “certainty of success” in development of human coronavirus vaccines, particularly SARS-CoV-2, a third, related critical parameter is proposed—infectious inoculum intensity, at an individual-level, and force of infection, at a population-level. Reducing the infectious inoculum intensity (and force of infection, at a population-level) is predicted to lengthen the incubation period, which in turn is predicted to reduce the severity of illness, and increase the opportunity for an anamnestic response upon exposure to the circulating virus. Similarly, successfully implementing individual- and population-based behaviors that reduce the infectious inoculum intensity and force of infection, respectively, while testing and deploying COVID-19 vaccines is predicted to increase the “certainty of success” of demonstrating vaccine efficacy and controlling SARS-CoV-2 infection, disease, death, and the pandemic itself.
Collapse
Affiliation(s)
- David C Kaslow
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121 USA
| |
Collapse
|
9
|
Iyer P, Aziz K, Ojcius DM. Impact of COVID-19 on dental education in the United States. J Dent Educ 2020; 84:718-722. [DOI: 10.1002/jdd.12163] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Parvati Iyer
- Arthur A. Dugoni School of Dentistry; University of the Pacific; San Francisco California USA
| | - Kalid Aziz
- Arthur A. Dugoni School of Dentistry; University of the Pacific; San Francisco California USA
| | - David M. Ojcius
- Arthur A. Dugoni School of Dentistry; University of the Pacific; San Francisco California USA
| |
Collapse
|