1
|
Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, Haque M. Metformin: A Review of Potential Mechanism and Therapeutic Utility Beyond Diabetes. Drug Des Devel Ther 2023; 17:1907-1932. [PMID: 37397787 PMCID: PMC10312383 DOI: 10.2147/dddt.s409373] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metformin has been designated as one of the most crucial first-line therapeutic agents in the management of type 2 diabetes mellitus. Primarily being an antihyperglycemic agent, metformin also has a plethora of pleiotropic effects on various systems and processes. It acts majorly by activating AMPK (Adenosine Monophosphate-Activated Protein Kinase) in the cells and reducing glucose output from the liver. It also decreases advanced glycation end products and reactive oxygen species production in the endothelium apart from regulating the glucose and lipid metabolism in the cardiomyocytes, hence minimizing the cardiovascular risks. Its anticancer, antiproliferative and apoptosis-inducing effects on malignant cells might prove instrumental in the malignancy of organs like the breast, kidney, brain, ovary, lung, and endometrium. Preclinical studies have also shown some evidence of metformin's neuroprotective role in Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Metformin exerts its pleiotropic effects through varied pathways of intracellular signalling and exact mechanism in the majority of them remains yet to be clearly defined. This article has extensively reviewed the therapeutic benefits of metformin and the details of its mechanism for a molecule of boon in various conditions like diabetes, prediabetes, obesity, polycystic ovarian disease, metabolic derangement in HIV, various cancers and aging.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Rima B Shah
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Shubha Singhal
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Sudeshna Banerjee Dutta
- Department of Medical Surgical Nursing, Shri Anand Institute of Nursing, Rajkot, Gujarat, 360005, India
| | - Sumit Bansal
- Department of Anaesthesiology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, Bangladesh
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
2
|
A Novel Biguanide Derivative, IM176, Induces Prostate Cancer Cell Death via AMPK-mTOR Pathway and Androgen Receptor Signalling Pathway. Prostate Int 2022. [DOI: 10.1016/j.prnil.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
3
|
Meyer FB, Goebel S, Spangel SB, Leovsky C, Hoelzer D, Thierbach R. Metformin alters therapeutic effects in the BALB/c tumor therapy model. BMC Cancer 2021; 21:629. [PMID: 34044797 PMCID: PMC8161985 DOI: 10.1186/s12885-021-08354-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Despite considerable medical proceedings, cancer is still a leading cause of death. Major problems for tumor therapy are chemoresistance as well as toxic side effects. In recent years, the additional treatment with the antidiabetic drug metformin during chemotherapy showed promising results in some cases. The aim of this study was to develop an in vitro tumor therapy model in order to further investigate the potential of a combined chemotherapy with metformin. METHODS Cytotoxic effects of a combined treatment on BALB/c fibroblasts were proven by the resazurin assay. Based on the BALB/c cell transformation assay, the BALB/c tumor therapy model was established successfully with four different and widely used chemotherapeutics from different categories. Namely, Doxorubicin as a type-II isomerase inhibitor, Docetaxel as a spindle toxin, Mitomycin C as an alkylating agent and 5-Fluorouracil as an antimetabolite. Moreover, glucose consumption in the medium supernatant was measured and protein expressions were determined by Western Blotting. RESULTS Initial tests for the combined treatment with metformin indicated unexpected results as metformin could partly mitigate the cytotoxic effects of the chemotherapeutic agents. These results were further confirmed as metformin induced resistance to some of the drugs when applied simultaneously in the tumor therapy model. Mechanistically, an increased glucose consumption was observed in non-transformed cells as well as in the mixed population of malignant transformed cell foci and non-transformed monolayer cells, suggesting that metformin could also increase glucose consumption in transformed cells. CONCLUSION In conclusion, this study suggests a cautious use of metformin during chemotherapy. Moreover, the BALB/c tumor therapy model offers a potent tool for further mechanistic studies of drug-drug interactions during cancer therapy.
Collapse
Affiliation(s)
- Felix B Meyer
- Friedrich-Schiller-Universität Jena, Fakultät für Biowissenschaften, Institut für Ernährungswissenschaften, Abteilung Humanernährung, Jena, Germany
| | - Sophie Goebel
- Friedrich-Schiller-Universität Jena, Fakultät für Biowissenschaften, Institut für Ernährungswissenschaften, Abteilung Humanernährung, Jena, Germany
| | - Sonja B Spangel
- Friedrich-Schiller-Universität Jena, Fakultät für Biowissenschaften, Institut für Ernährungswissenschaften, Abteilung Humanernährung, Jena, Germany
| | - Christiane Leovsky
- Friedrich-Schiller-Universität Jena, Fakultät für Biowissenschaften, Institut für Ernährungswissenschaften, Abteilung Humanernährung, Jena, Germany
| | - Doerte Hoelzer
- Friedrich-Schiller-Universität Jena, Fakultät für Biowissenschaften, Institut für Ernährungswissenschaften, Abteilung Humanernährung, Jena, Germany
| | - René Thierbach
- Friedrich-Schiller-Universität Jena, Fakultät für Biowissenschaften, Institut für Ernährungswissenschaften, Abteilung Humanernährung, Jena, Germany.
| |
Collapse
|
4
|
Eliseev MS, Panevin TS, Zhelyabina OV, Nasonov EL. Advantages of the use of metformin in patients with impaired uric acid metabolism. TERAPEVT ARKH 2021; 93:71520. [DOI: 10.26442/00403660.2021.05.200795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 11/22/2022]
Abstract
Metformin is one of the oldest and at the same time relevant and effective drugs for the treatment of type 2 diabetes. At the same time, the mechanism of the hypoglycemic effect was not completely clear until recently. Current data suggest that the mechanism of action of metformin contributes to the development of an anti-inflammatory effect, as well as a decrease in the level of uric acid, and its use can be potentially useful in patients with hyperuricemia and gout.
Collapse
|
5
|
Tran S, Killeen DE, Qazi S, Balachandra S, Hunter JB. Association of Metformin With the Growth of Vestibular Schwannomas. Otolaryngol Head Neck Surg 2020; 164:182-187. [DOI: 10.1177/0194599820937970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective To assess whether medication use, specifically statin, metformin, and aspirin, affects the growth of vestibular schwannomas (VSs). Study Design Retrospective case series. Setting Single tertiary care academic hospital. Subjects and Methods Patients were enrolled if they were diagnosed with sporadic VS and had at least 2 magnetic resonance imaging (MRI) studies at a minimum of 6 months apart prior to any intervention. Electronic medical records were reviewed for demographic and medication data. Tumor volumes on MRI studies were assessed via BrainLab iPlan. The primary endpoint was VS tumor growth, defined as a 20% increase in tumor volume, between consecutive MRI studies or between the first and last available MRI study. Predictors of volumetric growth, specifically statin, aspirin, or metformin use, were analyzed with t tests, chi-square test, univariate logistic regression, and multivariate logistic regression. Results A total of 387 patients met inclusion criteria, 53.5% of whom were women. For all patients, the mean age was 60.6 years (range, 18.2-89.2 years); the mean axial tumor diameter, 11.9 mm (range, 1.7-32.0 mm); and the mean tumor volume, 0.85 cm3 (range, 0.01-13.1 cm3). In review of the electronic medical record, 46 patients (11.9%) were taking metformin; 145 (37.5%), a statin; and 117 (30.2%), aspirin. Among patients taking metformin, 39.1% (18/46) exhibited volumetric growth, as opposed to 58.2% (198/340) of nonusers ( P = .014). Metformin (odds ratio, 0.497; P = .036) is significantly associated with reduced VS growth when controlling for aspirin, statin, and tumor size on multivariate logistic regression. Conclusion Metformin use is associated with reduced volumetric VS growth.
Collapse
Affiliation(s)
- Sophia Tran
- University of Texas System, Austin, Texas, USA
| | - Daniel E. Killeen
- Department of Otolaryngology–Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - Jacob B. Hunter
- Department of Otolaryngology–Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Chen K, Li Y, Guo Z, Zeng Y, Zhang W, Wang H. Metformin: current clinical applications in nondiabetic patients with cancer. Aging (Albany NY) 2020; 12:3993-4009. [PMID: 32074084 PMCID: PMC7066888 DOI: 10.18632/aging.102787] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/19/2020] [Indexed: 02/06/2023]
Abstract
Metformin is one of the most commonly used first-line oral medications for type 2 diabetes mellitus. Multiple observational studies, reviewed in numerous systematic reviews, have shown that metformin treatment may not only reduce the risk of cancer but may also improve the efficacy of cancer treatment in diabetic patients. Recent studies have been conducted to determine whether a similar protective effect can be demonstrated in nondiabetic cancer patients. However, the results are controversial. The potential optimal dose, schedule, and duration of metformin treatment and the heterogeneity of histological subtypes and genotypes among cancer patients might contribute to the different clinical benefits. In addition, as the immune property of metformin was investigated, further studies of the immunomodulatory effect of metformin on cancer cells should also be taken into account to optimize its clinical use. In this review, we present and discuss the latest findings regarding the anticancer potential of metformin in nondiabetic patients with cancer.
Collapse
Affiliation(s)
- Kailin Chen
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, P.R. China
| | - Yajun Li
- Department of Lymphoma and Hematology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, P.R. China
| | - Zhen Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P.R. China
| | - Yong Zeng
- Translational Medicine Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, P.R. China.,Engineering Technology Research Center for Diagnosis-Treatment and Application of Tumor Liquid Biopsy, Changsha 410013, Hunan, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P.R. China
| | - Hui Wang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, P.R. China
| |
Collapse
|
7
|
The anti-cancer effects of phenformin in thyroid cancer cell lines and in normal thyrocytes. Oncotarget 2019; 10:6432-6443. [PMID: 31741708 PMCID: PMC6849649 DOI: 10.18632/oncotarget.27266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022] Open
Abstract
Phenformin is a biguanide drug which, besides the original anti-diabetic effect, also exerts anti-cancer effects. The aim of this study was to further characterize these latter in terms of both cell-viability and modulation of the secretion of the pro-tumorigenic chemokine CXCL8. Normal human thyrocytes in primary cultures (NHT) and thyroid cancer cell lines, TPC-1 and 8505C (RET/PTC and BRAFV600E mutated, respectively) were treated with increasing concentrations of phenformin at different times. Cell-viability was assessed by WST-1 and further characterized by AnnexinV/PI staining and cell proliferation colony-assay. CXCL8 levels were measured in cell supernatants. Phenformin reduced cell-viability in TPC-1 and 8505C and their ability to form colonies. In NHT cells, phenformin affected cell-viability only at the maximal dose but interestingly it inhibited CXCL8 secretion at all the concentrations not affecting cell-viability. Phenformin had no effect on CXCL8 secretion in thyroid cancer cell lines. Thus, phenformin exerts anti-cancer effects on both cancer cells (cell death induction) and surrounding normal cells (inhibition of CXCL8 secretion). These results highlight that the anti-cancer effects of phenformin are multifaceted and effective on both solid and soluble components of the tumor-microenvironment.
Collapse
|
8
|
Mambetsariev I, Mirzapoiazova T, Lennon F, Jolly MK, Li H, Nasser MW, Vora L, Kulkarni P, Batra SK, Salgia R. Small Cell Lung Cancer Therapeutic Responses Through Fractal Measurements: From Radiology to Mitochondrial Biology. J Clin Med 2019; 8:jcm8071038. [PMID: 31315252 PMCID: PMC6679065 DOI: 10.3390/jcm8071038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 12/29/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine disease with an overall 5 year survival rate of ~7%. Although patients tend to respond initially to therapy, therapy-resistant disease inevitably emerges. Unfortunately, there are no validated biomarkers for early-stage SCLC to aid in early detection. Here, we used readouts of lesion image characteristics and cancer morphology that were based on fractal geometry, namely fractal dimension (FD) and lacunarity (LC), as novel biomarkers for SCLC. Scanned tumors of patients before treatment had a high FD and a low LC compared to post treatment, and this effect was reversed after treatment, suggesting that these measurements reflect the initial conditions of the tumor, its growth rate, and the condition of the lung. Fractal analysis of mitochondrial morphology showed that cisplatin-treated cells showed a discernibly decreased LC and an increased FD, as compared with control. However, treatment with mdivi-1, the small molecule that attenuates mitochondrial division, was associated with an increase in FD as compared with control. These data correlated well with the altered metabolic functions of the mitochondria in the diseased state, suggesting that morphological changes in the mitochondria predicate the tumor’s future ability for mitogenesis and motogenesis, which was also observed on the CT scan images. Taken together, FD and LC present ideal tools to differentiate normal tissue from malignant SCLC tissue as a potential diagnostic biomarker for SCLC.
Collapse
Affiliation(s)
- Isa Mambetsariev
- City of Hope, Dept. of Medical Oncology and Therapeutics Research, Duarte, CA 91010, USA
| | - Tamara Mirzapoiazova
- City of Hope, Dept. of Medical Oncology and Therapeutics Research, Duarte, CA 91010, USA
| | | | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Haiqing Li
- City of Hope, Center for Informatics, Duarte, CA 91010, USA
- City of Hope, Dept. of Computational & Quantitative Medicine, Duarte, CA 91010, USA
| | - Mohd W Nasser
- University of Nebraska Medical Center, Dept. of Biochemistry and Molecular Biology, Omaha, NE 68198, USA
| | - Lalit Vora
- City of Hope, Dept. of Diagnostic Radiology, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- City of Hope, Dept. of Medical Oncology and Therapeutics Research, Duarte, CA 91010, USA
| | - Surinder K Batra
- University of Nebraska Medical Center, Dept. of Biochemistry and Molecular Biology, Omaha, NE 68198, USA
| | - Ravi Salgia
- City of Hope, Dept. of Medical Oncology and Therapeutics Research, Duarte, CA 91010, USA.
| |
Collapse
|
9
|
Ye J, Qi L, Chen K, Li R, Song S, Zhou C, Zhai W. Metformin induces TPC-1 cell apoptosis through endoplasmic reticulum stress-associated pathways in vitro and in vivo. Int J Oncol 2019; 55:331-339. [PMID: 31180536 DOI: 10.3892/ijo.2019.4820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/23/2019] [Indexed: 11/05/2022] Open
Abstract
Thyroid cancer is among the most common types of malignant tumor of the endocrine system. The role of metformin in the inhibition of cancer cell proliferation and induction of apoptosis is widely accepted. The present study explored the effect and the underlying mechanisms of metformin on human thyroid cancer TPC‑1 cells. Following treatment of TPC‑1 cells with different concentrations of metformin, cell proliferation and apoptosis were analyzed by cell counting kit‑8 (CCK‑8) assay and flow cytometry, respectively. Reverse transcription‑quantitative PCR and western blotting were used to detect alterations in the mRNA and protein expression levels, respectively, for heat shock protein family A member 5 (HSPA5, also known as Bip), DNA damage‑inducible transcript 3 (DDIT3, also known as CHOP) and caspase‑12. The results demonstrated that treatment with metformin inhibited proliferation and induced apoptosis in a concentration and time‑dependent manner. In addition, treatment with metformin increased the expression of Bip, CHOP and caspase‑12 in vitro, activating endoplasmic reticulum (ER) stress. Thapsigargin treatment enhanced the apoptosis induced by metformin. Inhibition of ER stress by 4‑phenylbutyrate reversed the metformin‑induced apoptosis. Finally, treatment with metformin inhibited thyroid cancer growth and increased the expression of Bip and CHOP in a TPC‑1 cell xenograft model. These results indicated that metformin increased the apoptotic rate of thyroid cancer cells via ER stress‑associated mechanisms.
Collapse
Affiliation(s)
- Jianwen Ye
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lei Qi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Renfeng Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shengping Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chuang Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
10
|
dos Santos PB, Gertrudes LN, Conceição FL, de Andrade BM, de Carvalho DP, Vaisman M, Teixeira PDFDS. Effects of Metformin on TSH Levels and Benign Nodular Goiter Volume in Patients Without Insulin Resistance or Iodine Insufficiency. Front Endocrinol (Lausanne) 2019; 10:465. [PMID: 31379740 PMCID: PMC6656339 DOI: 10.3389/fendo.2019.00465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 12/16/2022] Open
Abstract
Objectives: To evaluate the impact of metformin (MTF) use on TSH levels, thyroid volume and volume of benign thyroid nodules (TNs). Additionally, to study if iodine status influences the outcomes. Methods: A total of 23 euthyroid patients (42 TNs) with benign thyroid nodules, diagnosed by fine needle aspiration biopsy, were randomly assigned to MTF or placebo (P) use for 6 months. Serum TSH, homeostatic model assessment for insulin resistance (HOMA-IR), and urinary iodine concentrations (UIC) were assessed. Ultrasound was used to evaluate TNs and thyroid volumes (TV) and their variations throughout the study. Diabetic patients, those undergoing levothyroxine replacement, and/or using thyroid- or insulin level-influencing drugs were excluded. Results: The sample consisted predominantly of patients without IR. Both intervention groups were similar regarding several confounding variables and showed a comparable median UIC. Serum TSH decreased significantly after MTF (-0.21 vs. 0.09 mUI/L in the P group; p = 0.015). At 6 months, no significant variations were found between groups with respect to TN volumes, TV, HOMA-IR, or body mass index (BMI). However, a tendency toward enlargement of TV with placebo (16.0%; p = 0.09) and a protective effect of MTF on growing TN (OR: 0.25; CI 0.05-1.20) was detected after excluding patients with IR (a lower UIC subgroup). The reduction on TSH levels with MTF maintained in the population without iodine insufficiency (-0.24 vs. +0.07 in the P group; p = 0.046) and was accentuated in those with excessive or more than adequate UIC (-0.69; p = 0.043). A protective effect of MTF on growing TN was suggested (OR: 0.11; IC: 0.02-0.84) in those with higher UIC. Conclusions: This study demonstrated that MTF caused a reduction in TSH levels in benign nodular goiter. This effect was more accentuated in patients with higher levels of UIC and was accompanied by a suggested protective effect on TN enlargement.
Collapse
|
11
|
Awwad O, Coperchini F, Pignatti P, Denegri M, Massara S, Croce L, Di Buduo CA, Abbonante V, Balduini A, Chiovato L, Rotondi M. The AMPK-activator AICAR in thyroid cancer: effects on CXCL8 secretion and on CXCL8-induced neoplastic cell migration. J Endocrinol Invest 2018; 41:1275-1282. [PMID: 29546654 DOI: 10.1007/s40618-018-0862-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/05/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE The AMPK-activator AICAR recently raised great interest for its anti-cancer properties. With specific regard to thyroid cancer, AICAR reduces cancer cell growth, invasion and metastasis. CXCL8, a chemokine with several recognized tumorigenic effects, is abundantly secreted in thyroid cancer microenvironment. The aim of this study was to investigate if AICAR could inhibit the basal and the TNFα-induced CXCL8 secretion in normal human thyroid cells (NHT) and in thyroid cancer cell lines TPC-1 and BCPAP (RET/PTC and BRAFV600e mutated, respectively). METHODS The effect of AICAR on basal and CXCL8-induced cell migration was assessed. Cells were incubated with AICAR (0.05, 0.5, 1, 2 mM) alone or in combination with TNF-α (10 ng/ml) for 24 h. CXCL8 concentrations were measured in cell supernatants. Transwell migration assays were performed in NHT, TPC-1 and BCPAP, basally and after treatment with AICAR (2 mM) and rh-CXCL8 (50 ng/ml) alone or in combination. RESULTS AICAR dose dependently inhibited the basal secretion of CXCL8 in TPC-1 (F = 4.26; p < 0.007) and BCPAP (F = 6.75; p < 0.0001) but not in NHT. TNFα-induced CXCL8 secretion was dose dependently reduced by AICAR in NHT (F = 9.99; p < 0.0001), TPC-1 (F = 9.25; p < 0.0001) and BCPAP (F = 6.82; p < 0.0001). AICAR significantly reduced the basal migration of TPC-1 and BCPAP but not of NHT. CONCLUSIONS CXCL8-induced cell migration was inhibited in NHT, TPC-1 and BCPAP. This is the first demonstration of the inhibition of CXCL8 secretion exerted by AICAR in TPC-1 and BCPAP indicating that the anti-cancer properties of AICAR are, at least in part, mediated by its ability to reduce the pro-tumorigenic effects of CXCL8.
Collapse
Affiliation(s)
- O Awwad
- Department of Biopharmaceutics and Clinical Pharmacy, The University of Jordan, Amman, 11937, Jordan
| | - F Coperchini
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, ICS Maugeri I.R.C.C.S, University of Pavia, Via S. Maugeri 10, 27100, Pavia, Italy
| | - P Pignatti
- Allergy and Immunology Unit, ICS Maugeri I.R.C.C.S, 27100, Pavia, Italy
| | - M Denegri
- Molecular Cardiology, ICS-Maugeri, Via Maugeri 10/10°, 27100, Pavia, Italy
| | - S Massara
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, ICS Maugeri I.R.C.C.S, University of Pavia, Via S. Maugeri 10, 27100, Pavia, Italy
| | - L Croce
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, ICS Maugeri I.R.C.C.S, University of Pavia, Via S. Maugeri 10, 27100, Pavia, Italy
| | - C A Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - V Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - A Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - L Chiovato
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, ICS Maugeri I.R.C.C.S, University of Pavia, Via S. Maugeri 10, 27100, Pavia, Italy.
| | - M Rotondi
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, ICS Maugeri I.R.C.C.S, University of Pavia, Via S. Maugeri 10, 27100, Pavia, Italy
| |
Collapse
|
12
|
Lee TY, Martinez-Outschoorn UE, Schilder RJ, Kim CH, Richard SD, Rosenblum NG, Johnson JM. Metformin as a Therapeutic Target in Endometrial Cancers. Front Oncol 2018; 8:341. [PMID: 30211120 PMCID: PMC6121131 DOI: 10.3389/fonc.2018.00341] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy in developed countries. Its increasing incidence is thought to be related in part to the rise of metabolic syndrome, which has been shown to be a risk factor for the development of hyperestrogenic and hyperinsulinemic states. This has consequently lead to an increase in other hormone-responsive cancers as well e.g., breast and ovarian cancer. The correlation between obesity, hyperglycemia, and endometrial cancer has highlighted the important role of metabolism in cancer establishment and persistence. Tumor-mediated reprogramming of the microenvironment and macroenvironment can range from induction of cytokines and growth factors to stimulation of surrounding stromal cells to produce energy-rich catabolites, fueling the growth, and survival of cancer cells. Such mechanisms raise the prospect of the metabolic microenvironment itself as a viable target for treatment of malignancies. Metformin is a biguanide drug that is a first-line treatment for type 2 diabetes that has beneficial effects on various markers of the metabolic syndrome. Many studies suggest that metformin shows potential as an adjuvant treatment for uterine and other cancers. Here, we review the evidence for metformin as a treatment for cancers of the endometrium. We discuss the available clinical data and the molecular mechanisms by which it may exert its effects, with a focus on how it may alter the tumor microenvironment. The pleiotropic effects of metformin on cellular energy production and usage as well as intercellular and hormone-based interactions make it a promising candidate for reprogramming of the cancer ecosystem. This, along with other treatments aimed at targeting tumor metabolic pathways, may lead to novel treatment strategies for endometrial cancer.
Collapse
Affiliation(s)
- Teresa Y Lee
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Russell J Schilder
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Christine H Kim
- Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott D Richard
- Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Norman G Rosenblum
- Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jennifer M Johnson
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
13
|
Betaine treatment decreased serum glucose and lipid levels, hepatic and renal oxidative stress in streptozotocin-induced diabetic rats. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/tjb-2016-0183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Abstract
Objective
The present study was aimed to investigate the effects of betaine (BET) on streptozotocin (STZ)-induced diabetes mellitus (DM) in rats. Additionally, the efficiency of BET was compared with metformin (MET), a standard oral antidiabetic drug.
Methods
STZ (55 mg/kg body weight; i.p.) was injected to male Wistar rats. Rats with DM were treated with BET (1 g/kg body weight/day;) or MET (500 mg/kg body weight/day;) for 4 weeks. Blood glycated hemoglobin (HbA1c), serum glucose, lipids, hepatic and renal function tests and urinary protein levels were examined. Reactive oxygen species (ROS) formation, malondialdehyde (MDA), glutathione (GSH) levels, and ferric reducing antioxidant power (FRAP) were also determined in liver and kidney.
Results
Glucose, HbA1c, and serum lipids increased and liver and kidney function tests were impaired in diabetic rats. Hepatic and renal ROS formation and MDA levels were elevated, hepatic, but not renal GSH and FRAP levels were decreased. BET decreased blood HbA1c, serum glucose and lipid levels and urine protein levels. BET diminished hepatic and renal prooxidant status.
Conclusion
Our results indicate that BET may be effective in decreasing STZ-induced high levels of blood HbA1c, and serum glucose and lipid levels and prooxidant status in liver and kidney tissues.
Collapse
|
14
|
Xintaropoulou C, Ward C, Wise A, Queckborner S, Turnbull A, Michie CO, Williams ARW, Rye T, Gourley C, Langdon SP. Expression of glycolytic enzymes in ovarian cancers and evaluation of the glycolytic pathway as a strategy for ovarian cancer treatment. BMC Cancer 2018; 18:636. [PMID: 29866066 PMCID: PMC5987622 DOI: 10.1186/s12885-018-4521-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/18/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Novel therapeutic approaches are required to treat ovarian cancer and dependency on glycolysis may provide new targets for treatment. This study sought to investigate the variation of expression of molecular components (GLUT1, HKII, PKM2, LDHA) of the glycolytic pathway in ovarian cancers and the effectiveness of targeting this pathway in ovarian cancer cell lines with inhibitors. METHODS Expression of GLUT1, HKII, PKM2, LDHA were analysed by quantitative immunofluorescence in a tissue microarray (TMA) analysis of 380 ovarian cancers and associations with clinicopathological features were sought. The effect of glycolysis pathway inhibitors on the growth of a panel of ovarian cancer cell lines was assessed by use of the SRB proliferation assay. Combination studies were undertaken combining these inhibitors with cytotoxic agents. RESULTS Mean expression levels of GLUT1 and HKII were higher in high grade serous ovarian cancer (HGSOC), the most frequently occurring subtype, than in non-HGSOC. GLUT1 expression was also significantly higher in advanced stage (III/IV) ovarian cancer than early stage (I/II) disease. Growth dependency of ovarian cancer cells on glucose was demonstrated in a panel of ovarian cancer cell lines. Inhibitors of the glycolytic pathway (STF31, IOM-1190, 3PO and oxamic acid) attenuated cell proliferation in platinum-sensitive and platinum-resistant HGSOC cell line models in a concentration dependent manner. In combination with either cisplatin or paclitaxel, 3PO (a novel PFKFB3 inhibitor) enhanced the cytotoxic effect in both platinum sensitive and platinum resistant ovarian cancer cells. Furthermore, synergy was identified between STF31 (a novel GLUT1 inhibitor) or oxamic acid (an LDH inhibitor) when combined with metformin, an inhibitor of oxidative phosphorylation, resulting in marked inhibition of ovarian cancer cell growth. CONCLUSIONS The findings of this study provide further support for targeting the glycolytic pathway in ovarian cancer and several useful combinations were identified.
Collapse
Affiliation(s)
- Chrysi Xintaropoulou
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratory, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Carol Ward
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratory, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, Easter Bush, Roslin, Midlothian, EH25 9RG UK
| | - Alan Wise
- IOmet Pharma (a wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ USA, known as MSD outside the United States and Canada) Nine Edinburgh Bioquarter, Little France Road, Edinburgh, EH16 4UX UK
| | - Suzanna Queckborner
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratory, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Arran Turnbull
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratory, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Caroline O. Michie
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Alistair R. W. Williams
- Division of Pathology, University of Edinburgh Medical School, 51 Little France Crescent, Edinburgh, EH16 4SA UK
| | - Tzyvia Rye
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Charlie Gourley
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Simon P. Langdon
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratory, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| |
Collapse
|
15
|
Anagnostis P, Siolos P, Christou K, Gkekas NK, Kosmidou N, Athyros VG, Karagiannis A. The effect of antidiabetic medications on the cardiovascular system: a critical appraisal of current data. Hormones (Athens) 2018; 17:83-95. [PMID: 29858866 DOI: 10.1007/s42000-018-0017-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/23/2018] [Indexed: 02/07/2023]
Abstract
Both type 1 and type 2 diabetes are associated with increased risk for cardiovascular disease (CVD) events. This risk seems to be reduced by achievement of euglycemia. However, after the withdrawal of rosiglitazone from the market, the question arose as to whether this risk concerns simply a matter of euglycemia or the distinct role played by each antidiabetic drug with respect to its effect on CVD risk. To address this issue, many studies have been published during the last decade involving old and new antidiabetic agents, which however yielded contradictory results. Briefly, metformin is still considered safe and confers a beneficial effect on CVD risk. Conflicting data exist as concerns sulfonylureas, although the second and third generation representatives are regarded as relatively safe. Pioglitazone use seems to be associated with a reduction in CVD risk, whereas the dipeptidyl-dipeptidase-4 inhibitors (DPP-4i), lixisenatide and exenatide-LAR [from the category of glucagon-like-peptide-1 receptor (GLP-1R) agonists], confer a neutral effect. Two other GLP-1R agonists, liraglutide and semaglutide, as well as the sodium-glucose transporter-2 (SGLT2)-inhibitors, empagliflozin and cangliflozin, have shown an additional effect on CVD risk reduction, although their safety is in doubt. Insulin analogues and newer long-acting compounds are also safe for the cadiovascular system. The aim of this narrative review is to present and critically analyse the current data for each antidiabetic drug category with regard to their effect on CVD risk.
Collapse
Affiliation(s)
- Panagiotis Anagnostis
- Police Medical Center of Thessaloniki, Thessaloniki, Greece.
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Sarantaporou 10, 546 40, Thessaloniki, Greece.
| | - Pavlos Siolos
- Police Medical Center of Thessaloniki, Thessaloniki, Greece
| | | | - Nifon K Gkekas
- Police Medical Center of Thessaloniki, Thessaloniki, Greece
| | | | - Vasilios G Athyros
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Sarantaporou 10, 546 40, Thessaloniki, Greece
| | - Asterios Karagiannis
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Sarantaporou 10, 546 40, Thessaloniki, Greece
| |
Collapse
|
16
|
Saini N, Yang X. Metformin as an anti-cancer agent: actions and mechanisms targeting cancer stem cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50:133-143. [PMID: 29342230 DOI: 10.1093/abbs/gmx106] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022] Open
Abstract
Metformin, a first line medication for type II diabetes, initially entered the spotlight as a promising anti-cancer agent due to epidemiologic reports that found reduced cancer risk and improved clinical outcomes in diabetic patients taking metformin. To uncover the anti-cancer mechanisms of metformin, preclinical studies determined that metformin impairs cellular metabolism and suppresses oncogenic signaling pathways, including receptor tyrosine kinase, PI3K/Akt, and mTOR pathways. Recently, the anti-cancer potential of metformin has gained increasing interest due to its inhibitory effects on cancer stem cells (CSCs), which are associated with tumor metastasis, drug resistance, and relapse. Studies using various cancer models, including breast, pancreatic, prostate, and colon, have demonstrated the potency of metformin in attenuating CSCs through the targeting of specific pathways involved in cell differentiation, renewal, metastasis, and metabolism. In this review, we provide a comprehensive overview of the anti-cancer actions and mechanisms of metformin, including the regulation of CSCs and related pathways. We also discuss the potential anti-cancer applications of metformin as mono- or combination therapies.
Collapse
Affiliation(s)
- Nipun Saini
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| |
Collapse
|
17
|
Metformin therapy associated with survival benefit in lung cancer patients with diabetes. Oncotarget 2018; 7:35437-45. [PMID: 27105507 PMCID: PMC5085241 DOI: 10.18632/oncotarget.8881] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/11/2016] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study is to summarize the currently available evidence regarding the concerned issue by performing a comprehensive meta-analysis. Relevant publications reporting the association of metformin use with survival of lung cancer patients with diabetes were electronically searched to identify eligible studies. The meta-analysis was performed with hazard ratios (HRs) and 95% confidence intervals (95% CIs) as effect measures for disease-free survival(DFS) and overall survival(OS) estimates. A total of 17 individual studies from 10 publications were included in the meta-analysis. Overall, the results revealed a significant association of metformin use with a better survival of lung cancer patients with diabetes(for DFS: HR = 0.65, 95%CI = 0.52-0.83; for OS: HR = 0.78, 95%CI = 0.64-0.93). The subgroup analyses showed similar association in Asian region(for DFS:HR = 0.69, 95%CI = 0.59-0.80; for OS: HR = 0.55, 95%CI = 0.46-0.67) but not in Western region. Such association was also presented in small cell lung cancer (for DFS: HR = 0.54, 95%CI = 0.38-0.77; for OS: HR = 0.52, 95%CI = 0.39-0.69) and in non-small cell lung cancer(for DFS: HR = 0.70, 95%CI = 0.51-0.96; for OS: HR = 0.75, 95%CI = 0.58-0.97). Analyses stratified by treatment strategy showed a reduction in the risk of cancer-related mortality in patients receiving chemotherapy(for DFS: HR = 0.71, 95%CI = 0.64-0.83; for OS: HR = 0.58, 95%CI = 0.47-0.71) but not in patients receiving chemoradiotherapy. The meta-analysis demonstrated that metformin use was significantly associated with a favorable survival outcome of lung cancer patients with diabetes.
Collapse
|
18
|
Rotondi M, Coperchini F, Latrofa F, Chiovato L. Role of Chemokines in Thyroid Cancer Microenvironment: Is CXCL8 the Main Player? Front Endocrinol (Lausanne) 2018; 9:314. [PMID: 29977225 PMCID: PMC6021500 DOI: 10.3389/fendo.2018.00314] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/25/2018] [Indexed: 12/31/2022] Open
Abstract
Tumor-related inflammation does influence the biological behavior of neoplastic cells and ultimately the patient's outcome. With specific regard to thyroid cancer, the issue of tumor-associated inflammation has been extensively studied and recently reviewed. However, the role of chemokines, which play a crucial role in determining the immuno-phenotype of tumor-related inflammation, was not addressed in previous reviews on the topic. Experimental evidence shows that thyroid cancer cells actively secrete a wide spectrum of chemokines and, at least for some of them, solid scientific data support a role for these immune-active molecules in the aggressive behavior of the tumor. Our proposal for a review article on chemokines and thyroid cancer stems from the notion that chemokines, besides having the ability to attract and maintain immune cells at the tumor site, also produce several pro-tumorigenic actions, which include proangiogenetic, cytoproliferative, and pro-metastatic effects. Studies taking into account the role of CCL15, C-X-C motif ligand 12, CXCL16, CXCL1, CCL20, and CCL2 in the context of thyroid cancer will be reviewed with particular emphasis on CXCL8. The reason for focusing on CXCL8 is that this chemokine is the most studied one in human malignancies, displaying multifaceted pro-tumorigenic effects. These include enhancement of tumor cells growth, metastatization, and angiogenesis overall contributing to the progression of several cancers including thyroid cancer. We aim at reviewing current knowledge on the (i) ability of both normal and tumor thyroid cells to secrete CXCL8; (ii) direct/indirect pro-tumorigenic effects of CXCL8 demonstrated by in vitro and in vivo studies specifically performed on thyroid cancer cells; and (iii) pharmacologic strategies proven to be effective for lowering CXCL8 secretion and/or its effects on thyroid cancer cells.
Collapse
Affiliation(s)
- Mario Rotondi
- Unit of Internal Medicine and Endocrinology, ICS Maugeri I.R.C.C.S., Laboratory for Endocrine Disruptors, University of Pavia, Pavia, Italy
| | - Francesca Coperchini
- Unit of Internal Medicine and Endocrinology, ICS Maugeri I.R.C.C.S., Laboratory for Endocrine Disruptors, University of Pavia, Pavia, Italy
| | - Francesco Latrofa
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Chiovato
- Unit of Internal Medicine and Endocrinology, ICS Maugeri I.R.C.C.S., Laboratory for Endocrine Disruptors, University of Pavia, Pavia, Italy
- *Correspondence: Luca Chiovato,
| |
Collapse
|
19
|
Sui M, Yu Y, Zhang H, Di H, Liu C, Fan Y. Efficacy of Metformin for Benign Thyroid Nodules in Subjects With Insulin Resistance: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2018; 9:494. [PMID: 30233494 PMCID: PMC6127618 DOI: 10.3389/fendo.2018.00494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/07/2018] [Indexed: 01/23/2023] Open
Abstract
Background: To evaluate the effect of metformin therapy on decreasing benign thyroid nodule volume in subjects with insulin resistance (IR). Method: Randomized controlled trials (RCTs) and self-controlled trials for the meta-analysis published, before January 31, 2018 were selected from the PubMed, Cochrane Library, Embase, Web of Science, Chinese Biomedical Literature Database, National Knowledge Infrastructure, WANFANG and VIP Database. Pooled standard mean difference with 95% confidence interval was estimated by fixed- or random-effects model depending on heterogeneity. The risk of bias using the Cochrane Collaboration's tool was used to assess the quality of the RCTs contained. The quality of self-controlled studies was evaluated using the Methodological index for non-randomized studies (MINORS) method. Results: 7 studies (3 RCTs and 4 prospective self-controlled studies) with 240 patients were considered to be appropriate for the meta-analysis. The results of the meta-analysis indicated that the volume of thyroid nodule decreased significantly after metformin therapy (SMD -0.62, 95% CI -0.98 ~ -0.27). 6 studies reported the changes of the level of TSH. TSH levels decreased significantly after metformin therapy (SMD -0.27, 95% CI -0.47 ~ -0.07). The pooled data indicated an increase in FT3 level, and an unchanged FT4 level after metformin therapy (FT3, SMD 0.25, 95% CI 0.05 ~ 0.45; FT4, SMD -0.07, 95% CI -0.27 ~ 0.13). HOMA-IR levels decreased significantly after metformin therapy based on the pooled results of 3 RCTs and 3 prospective self-controlled studies (SMD -1.08, 95% CI -1.69 ~ -0.47). Conclusion: The meta-analysis demonstrated that metformin was safe and useful in shrinking benign thyroid nodules volume, improving thyroid function and IR. A large number of high-quality prospective studies still need to be carried out.
Collapse
Affiliation(s)
- Miao Sui
- Endocrinology Laboratory, The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Endocrinology, Xuzhou Hospital of Traditional Chinese Medicine, Xuzhou, China
| | - Yuan Yu
- Department of Gastroenterology, Jiangning District Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Huifeng Zhang
- Endocrine and Diabetes Center, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongjie Di
- Endocrine and Diabetes Center, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Liu
- Endocrine and Diabetes Center, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Chao Liu
| | - Yaofu Fan
- Endocrine and Diabetes Center, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Yaofu Fan
| |
Collapse
|
20
|
Deng Y, Ma W. Metformin inhibits HaCaT cell viability via the miR-21/PTEN/Akt signaling pathway. Mol Med Rep 2017; 17:4062-4066. [PMID: 29286158 DOI: 10.3892/mmr.2017.8364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 06/26/2017] [Indexed: 11/06/2022] Open
Abstract
Substantial preclinical evidence has indicated out a direct anti‑proliferation effect of metformin on various solid tumors; however, further and more detailed exploration into its molecular mechanism remains to be performed. The present study aimed to investigate the effect of metformin on cell viability and its underlying mechanism, in the cultured human skin keratinocyte cell line, HaCaT. In addition, it aimed to clarify the role of the microRNA-21(miR-21)/phosphatase and tensin homolog (PTEN)/AKT serine/threonine kinase 1 (Akt) signaling pathway, which has been hypothesized to be involved in the molecular mechanism of this drug. Cell Counting Kit‑8 assays were used to assess the impact of metformin on cell viability; reverse transcription‑quantitative polymerase chain reaction was used to quantify the expression of miR‑21; western blotting was used to monitor the expression level of PTEN and Akt proteins. In addition, miR‑21 expression levels were artificially manipulated in HaCaT cells using a miR‑21 inhibitor in order to observe the subsequent expression changes of miR‑21 targets and alterations in cell viability. The results indicated that metformin suppressed HaCaT cell growth in a dose‑ and time‑dependent manner (P<0.05). Metformin treatment downregulated miR‑21 expression (t=‑8.903, P<0.05). Following transfection with the miR‑21 inhibitor, HaCaT cell growth was significantly slower than in the control groups (P<0.05). In addition, reduced miR‑21 levels results in significantly increased PTEN protein expression levels and reduced Akt protein expression levels compared with control (P<0.05). Metformin was, therefore, concluded to inhibit HaCaT cell growth in a time‑and dose‑dependent manner, and the miR‑21/PTEN/Akt signaling pathway may serve a crucial role in the molecular mechanism of metformin's effect on HaCaT cells. Therefore the present study presents an advanced insight into the potential inhibitory effect of metformin on tumor cells.
Collapse
Affiliation(s)
- Yue Deng
- Hypertension Center of Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, P.R. China
| | - Weiyuan Ma
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
21
|
Nutrients in Energy and One-Carbon Metabolism: Learning from Metformin Users. Nutrients 2017; 9:nu9020121. [PMID: 28208582 PMCID: PMC5331552 DOI: 10.3390/nu9020121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
Metabolic vulnerability is associated with age-related diseases and concomitant co-morbidities, which include obesity, diabetes, atherosclerosis and cancer. Most of the health problems we face today come from excessive intake of nutrients and drugs mimicking dietary effects and dietary restriction are the most successful manipulations targeting age-related pathways. Phenotypic heterogeneity and individual response to metabolic stressors are closely related food intake. Understanding the complexity of the relationship between dietary provision and metabolic consequences in the long term might provide clinical strategies to improve healthspan. New aspects of metformin activity provide a link to many of the overlapping factors, especially the way in which organismal bioenergetics remodel one-carbon metabolism. Metformin not only inhibits mitochondrial complex 1, modulating the metabolic response to nutrient intake, but also alters one-carbon metabolic pathways. Here, we discuss findings on the mechanism(s) of action of metformin with the potential for therapeutic interpretations.
Collapse
|
22
|
Shah RR. Hyperglycaemia Induced by Novel Anticancer Agents: An Undesirable Complication or a Potential Therapeutic Opportunity? Drug Saf 2016; 40:211-228. [DOI: 10.1007/s40264-016-0485-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Vigneri R, Goldfine ID, Frittitta L. Insulin, insulin receptors, and cancer. J Endocrinol Invest 2016; 39:1365-1376. [PMID: 27368923 DOI: 10.1007/s40618-016-0508-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/23/2016] [Indexed: 12/13/2022]
Abstract
Insulin is a major regulator of cell metabolism but, in addition, is also a growth factor. Insulin effects in target cells are mediated by the insulin receptor (IR), a transmembrane protein with enzymatic (tyrosine kinase) activity. The insulin receptor, however, is represented by a heterogeneous family of proteins, including two different IR isoforms and also hybrid receptors resulting from the IR hemireceptor combination with a hemireceptor of the cognate IGF-1 receptor. These different receptors may bind insulin and its analogs with different affinity and produce different biologic effects. Since many years, it is known that many cancer cells require insulin for optimal in vitro growth. Recent data indicate that: (1) insulin stimulates growth mainly via its own receptor and not the IGF-1 receptor; (2) in many cancer cells, the IR is overexpressed and the A isoform, which has a predominant mitogenic effect, is more represented than the B isoform. These characteristics provide a selective growth advantage to malignant cells when exposed to insulin. For this reason, all conditions of hyperinsulinemia, both endogenous (prediabetes, metabolic syndrome, obesity, type 2 diabetes before pancreas exhaustion and polycystic ovary syndrome) and exogenous (type 1 diabetes) will increase the risk of cancer. Cancer-related mortality is also increased in patients exposed to hyperinsulinemia but other factors, related to the different diseases, may also contribute. The complexity of the diseases associated with hyperinsulinemia and their therapies does not allow a precise evaluation of the cancer-promoting effect of hyperinsulinemia, but its detrimental effect on cancer incidence and mortality is well documented.
Collapse
Affiliation(s)
- R Vigneri
- Endocrinology, Garibaldi-Nesima Medical Center, Via Palermo 636, 95122, Catania, Italy.
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
- Humanitas, Catania Cancer Center, Catania, Italy.
- CNR, Institute of Bioimages and Biostructures, Catania, Italy.
| | - I D Goldfine
- University of California, San Francisco, CA, USA
| | - L Frittitta
- Endocrinology, Garibaldi-Nesima Medical Center, Via Palermo 636, 95122, Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
24
|
Vaiserman AM, Lushchak OV, Koliada AK. Anti-aging pharmacology: Promises and pitfalls. Ageing Res Rev 2016; 31:9-35. [PMID: 27524412 DOI: 10.1016/j.arr.2016.08.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 08/06/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022]
Abstract
Life expectancy has grown dramatically in modern times. This increase, however, is not accompanied by the same increase in healthspan. Efforts to extend healthspan through pharmacological agents targeting aging-related pathological changes are now in the spotlight of geroscience, the main idea of which is that delaying of aging is far more effective than preventing the particular chronic disorders. Currently, anti-aging pharmacology is a rapidly developing discipline. It is a preventive field of health care, as opposed to conventional medicine which focuses on treating symptoms rather than root causes of illness. A number of pharmacological agents targeting basic aging pathways (i.e., calorie restriction mimetics, autophagy inducers, senolytics etc.) are now under investigation. This review summarizes the literature related to advances, perspectives and challenges in the field of anti-aging pharmacology.
Collapse
Affiliation(s)
| | - Oleh V Lushchak
- Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | | |
Collapse
|
25
|
Effect of Interferon-γ on the Basal and the TNFα-Stimulated Secretion of CXCL8 in Thyroid Cancer Cell Lines Bearing Either the RET/PTC Rearrangement Or the BRAF V600e Mutation. Mediators Inflamm 2016; 2016:8512417. [PMID: 27555670 PMCID: PMC4983361 DOI: 10.1155/2016/8512417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/01/2016] [Accepted: 07/10/2016] [Indexed: 11/18/2022] Open
Abstract
CXCL8 displays several tumor-promoting effects. Targeting and/or lowering CXCL8 concentrations within the tumor microenvironment would produce a therapeutic benefit. Aim of this study was to test the effect of IFNγ on the basal and TNFα-stimulated secretion of CXCL8 in TCP-1 and BCPAP thyroid cancer cell lines (harboring RET/PTC rearrangement and BRAF V600e mutation, resp.). Cells were incubated with IFNγ (1, 10, 100, and 1000 U/mL) alone or in combination with TNF-α (10 ng/mL) for 24 hours. CXCL8 and CXCL10 concentrations were measured in the cell supernatants. IFNγ inhibited in a dose-dependent and significant manner both the basal (ANOVA F: 22.759; p < 0.00001) and the TNFα-stimulated (ANOVA F: 15.309; p < 0.00001) CXCL8 secretions in BCPAP but not in TPC-1 cells (NS). On the other hand, IFNγ and IFNγ + TNF-α induced a significant secretion of CXCL10 in both BCPAP (p < 0.05) and TPC-1 (p < 0.05) cells. Transwell migration assay showed that (i) CXCL8 increased cell migration in both TPC-1 and BCPAP cells; (ii) IFNγ significantly reduced the migration only of BCPAP cells; and (iii) CXCL8 reverted the effect of IFNγ. These results constitute the first demonstration that IFNγ inhibits CXCL8 secretion and in turn the migration of a BRAF V600e mutated thyroid cell line.
Collapse
|
26
|
Unique fractal evaluation and therapeutic implications of mitochondrial morphology in malignant mesothelioma. Sci Rep 2016; 6:24578. [PMID: 27080907 PMCID: PMC4832330 DOI: 10.1038/srep24578] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/30/2016] [Indexed: 12/15/2022] Open
Abstract
Malignant mesothelioma (MM), is an intractable disease with limited therapeutic options and grim survival rates. Altered metabolic and mitochondrial functions are hallmarks of MM and most other cancers. Mitochondria exist as a dynamic network, playing a central role in cellular metabolism. MM cell lines display a spectrum of altered mitochondrial morphologies and function compared to control mesothelial cells. Fractal dimension and lacunarity measurements are a sensitive and objective method to quantify mitochondrial morphology and most importantly are a promising predictor of response to mitochondrial inhibition. Control cells have high fractal dimension and low lacunarity and are relatively insensitive to mitochondrial inhibition. MM cells exhibit a spectrum of sensitivities to mitochondrial inhibitors. Low mitochondrial fractal dimension and high lacunarity correlates with increased sensitivity to the mitochondrial inhibitor metformin. Lacunarity also correlates with sensitivity to Mdivi-1, a mitochondrial fission inhibitor. MM and control cells have similar sensitivities to cisplatin, a chemotherapeutic agent used in the treatment of MM. Neither oxidative phosphorylation nor glycolytic activity, correlated with sensitivity to either metformin or mdivi-1. Our results suggest that mitochondrial inhibition may be an effective and selective therapeutic strategy in mesothelioma, and identifies mitochondrial morphology as a possible predictor of response to targeted mitochondrial inhibition.
Collapse
|
27
|
Lee YS, Doonan BB, Wu JM, Hsieh TC. Combined metformin and resveratrol confers protection against UVC-induced DNA damage in A549 lung cancer cells via modulation of cell cycle checkpoints and DNA repair. Oncol Rep 2016; 35:3735-41. [PMID: 27109601 DOI: 10.3892/or.2016.4740] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/19/2016] [Indexed: 02/07/2023] Open
Abstract
Aging in humans is a multi-factorial cellular process that is associated with an increase in the risk of numerous diseases including diabetes, coronary heart disease and cancer. Aging is linked to DNA damage, and a persistent source of DNA damage is exposure to ultraviolet (UV) radiation. As such, identifying agents that confer protection against DNA damage is an approach that could reduce the public health burden of age-related disorders. Metformin and resveratrol have both shown effectiveness in preventing several age-related diseases; using human A549 cells, we investigated whether metformin or resveratrol, alone or combined, prevent UVC-induced DNA damage. We found that metformin inhibited UVC-induced upregulation of p53, as well as downregulated the expression of two DNA damage markers: γH2AX and p-chk2. Metformin also upregulated DNA repair as evidenced by the increase in expression of p53R2. Treatment with metformin also induced cell cycle arrest in UVC-induced cells, in correlation with a reduction in the levels of cyclin E/cdk2/Rb and cyclin B1/cdk1. Compared to metformin, resveratrol as a single agent showed less effectiveness in counteracting UVC-elicited cellular responses. However, resveratrol displayed synergism when combined with metformin as shown by the downregulation of p53/γH2AX/p-chk2. In conclusion, the results of the present study validate the effectiveness of metformin, alone or with the addition of resveratrol, in reducing the risk of aging by conferring protection against UV-induced DNA damage.
Collapse
Affiliation(s)
- Yong-Syu Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Barbara B Doonan
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Joseph M Wu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Tze-Chen Hsieh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|