1
|
Cui G, Liu W, Sun X, Bai Y, Ding M, Zhao N, Guo J, Qu D, Wang S, Qin L, Yang Y. RNA-seq shows Angiopoietin-like 4 promotes hepatocellular carcinoma progression by inducing M2 polarization of tumor-associated macrophages. Int J Biol Macromol 2025; 287:138523. [PMID: 39653221 DOI: 10.1016/j.ijbiomac.2024.138523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Hepatocellular carcinoma (HCC) represents a particularly aggressive form of cancer, characterized by its rapid progression and a complex interplay with the surrounding immune cellular environment. The primary objective of this study was to comprehensively investigate the role of ANGPTL4 in the context of HCC, utilizing RNA sequencing (RNA-seq) techniques to explore its impact on the M2 polarization of tumor-associated macrophages (TAM) and to uncover potential mechanisms driving HCC progression. To achieve this, we performed a transcriptome analysis of HCC cell lines, alongside cells obtained after co-culturing these lines with macrophages. By comparing gene expression profiles between the experimental groups exposed to ANGPTL4 and control groups, we aimed to identify specific molecular pathways associated with ANGPTL4's function. In addition to gene expression analysis, we employed flow cytometry to assess the polarization status of TAM. Furthermore, we utilized immunohistochemistry to evaluate the distribution of macrophages within HCC tissues and to quantify the expression levels of M2 macrophage markers. The results derived from RNA-seq analysis were particularly revealing; treatment with ANGPTL4 led to a significant upregulation of genes linked to M2 polarization, notably including CD206 and Arg1. In subsequent experimental observations, it became evident that ANGPTL4 not only facilitated the M2 polarization of macrophages but also enhanced the proliferation and migratory capacity of HCC cells through the upregulation of these same cytokines.
Collapse
Affiliation(s)
- Guanghua Cui
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Wei Liu
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, China
| | - Xiaoke Sun
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Yun Bai
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Meijuan Ding
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Ning Zhao
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Jialu Guo
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Di Qu
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Song Wang
- Department of Oncology, Mudanjiang Oncology Hospital, Mudanjiang 157041, China
| | - Luyao Qin
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Yu Yang
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
Hezarkhani S, Hajighaderi A, Hosseinzadeh S, Behnampour N, Veghari G, Fathabadi F, Hesari Z, Joshaghani HR. The serum levels of angiopoietin-like protein 3 and 4 in type 2 diabetic patients with and without metabolic syndrome compared to the control group. Endocrinol Diabetes Metab 2024; 7:e466. [PMID: 38140923 PMCID: PMC10782050 DOI: 10.1002/edm2.466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
INTRODUCTION ANGPTLs (Angiopoietin-like proteins) 3 and 4 play an important role in the development of type 2 diabetes. These glycoproteins affect the modulation of glucose and lipid metabolism. They inhibit lipoprotein lipase (LPL) activity and provoke lipolysis. This study was aimed to investigate the protein levels of ANGPTL3 and 4 in the serum of type 2 diabetic patients with metabolic syndrome in comparison to the type 2 diabetic patients without metabolic syndrome and the control group. METHODS Three groups of individuals were included in this study; Group I: 47 patients with type 2 diabetes and metabolic syndrome; Group II: 25 patients with type 2 diabetes without metabolic syndrome; Group III: 40 non-diabetic healthy people without metabolic syndrome as a control group. After collection of 5 mL fasting blood samples, serum concentrations of fasting blood sugar (FBS), cholesterol (Chol), triglyceride (TG), HDL-C (High-density lipoprotein-Cholesterol) and LDL-C (Low-density lipoprotein-Cholesterol) were measured by the enzymatic method; blood pressure (BP), height and weight with stadiometers; and ANGPTL3 and 4 by the enzyme-linked immunosorbent assay (ELISA). RESULTS The serum levels of ANGPTL3 was significantly different among our three groups (p = .000). In patients with type 2 diabetes and metabolic syndrome (Group I), ANGPTL3 and 4 levels were lower than the control group. The serum levels of the parameters evaluated in this study (except HDL-C) was lower in the group II in comparison with the group I, and this difference was significant for TG, Chol, BP and BMI between these two groups. Also, our results revealed that there was a negative correlation between FBS, TG, Chol, LDL-C and BMI with ANGPTL3 and 4. While, there was a significant positive correlation between ANGPTL4 and ANGPTL3. CONCLUSION Altogether, our findings suggest that the decreased levels of ANGPTL3 and 4 may be a causative factor for type 2 diabetes.
Collapse
Affiliation(s)
- Sharabeh Hezarkhani
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
| | - Aytekin Hajighaderi
- Laboratory Sciences Research CenterGolestan University of Medical SciencesGorganIran
| | - Sara Hosseinzadeh
- Laboratory Sciences Research CenterGolestan University of Medical SciencesGorganIran
| | - Naser Behnampour
- Department of Biostatistics, Faculty of HealthGolestan University of Medical SciencesGorganIran
| | - Gholamreza Veghari
- Ischemic Disorders Research CenterGolestan University of Medical SciencesGorganIran
| | - Farshid Fathabadi
- Laboratory Sciences Research CenterGolestan University of Medical SciencesGorganIran
| | - Zahra Hesari
- Laboratory Sciences Research CenterGolestan University of Medical SciencesGorganIran
| | - Hamid Reza Joshaghani
- Laboratory Sciences Research CenterGolestan University of Medical SciencesGorganIran
| |
Collapse
|
3
|
Cirelli T, Nicchio IG, Bussaneli DG, Silva BR, Nepomuceno R, Orrico SRP, Cirelli JA, Theodoro LH, Barros SP, Scarel-Caminaga RM. Evidence Linking PPARG Genetic Variants with Periodontitis and Type 2 Diabetes Mellitus in a Brazilian Population. Int J Mol Sci 2023; 24:ijms24076760. [PMID: 37047733 PMCID: PMC10095581 DOI: 10.3390/ijms24076760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 04/14/2023] Open
Abstract
The peroxisome proliferator-activated receptor gamma (PPARG) gene encodes a transcription factor involved in the regulation of complex metabolic and inflammatory diseases. We investigated whether single nucleotide polymorphisms (SNPs) and haplotypes of the PPARG gene could contribute with susceptibility to develop periodontitis alone or together with type 2 diabetes mellitus (T2DM). Moreover, we evaluated the gene-phenotype association by assessing the subjects' biochemical and periodontal parameters, and the expression of PPARG and other immune response-related genes. We examined 345 subjects with a healthy periodontium and without T2DM, 349 subjects with moderate or severe periodontitis but without T2DM, and 202 subjects with moderate or severe periodontitis and T2DM. PPARG SNPs rs12495364, rs1801282, rs1373640, and rs1151999 were investigated. Multiple logistic regressions adjusted for age, sex, and smoking status showed that individuals carrying rs1151999-GG had a 64% lower chance of developing periodontitis together with T2DM. The CCGT haplotype increased the risk of developing periodontitis together with T2DM. The rs1151999-GG and rs12495364-TC were associated with reduced risk of obesity, periodontitis, elevated triglycerides, and elevated glycated hemoglobin, but there was no association with gene expression. Polymorphisms of the PPARG gene were associated with developing periodontitis together with T2DM, and with obesity, lipid, glycemic, and periodontal characteristics.
Collapse
Affiliation(s)
- Thamiris Cirelli
- Department of Dentistry, School of Dentistry, University Center-UNIFAE, São João da Boa Vista 13870-377, SP, Brazil
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
| | - Ingra G Nicchio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
| | - Diego G Bussaneli
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
| | - Bárbara R Silva
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
| | - Rafael Nepomuceno
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
| | - Silvana R P Orrico
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
- Advanced Research Center in Medicine, Union of the Colleges of the Great Lakes-UNILAGO, São José do Rio Preto 15030-070, SP, Brazil
| | - Joni A Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
| | - Letícia H Theodoro
- Department of Diagnosis and Surgery, School of Dentistry at Araçatuba, São Paulo State University-UNESP, Araçatuba 16015-050, SP, Brazil
| | - Silvana P Barros
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill-UNC, Chapel Hill, NC 27599, USA
| | - Raquel M Scarel-Caminaga
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
| |
Collapse
|
4
|
McAleer JP. Obesity and the microbiome in atopic dermatitis: Therapeutic implications for PPAR-γ agonists. FRONTIERS IN ALLERGY 2023; 4:1167800. [PMID: 37051264 PMCID: PMC10083318 DOI: 10.3389/falgy.2023.1167800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease characterized by epidermal barrier disruption, Th2 immune responses to skin allergens and microbial dysbiosis within affected lesions. Studies within the past decade have revealed genetic and environmental factors contributing to AD in children. Obesity is a metabolic disorder that often manifests early in life and is associated with reduced bacterial diversity, leading to skin colonization with lipophilic bacteria and intestinal colonization with pro-inflammatory species. These changes impair epithelial barriers and promote Th17 responses, which may worsen the severity of AD symptoms. While few studies have examined the contribution of microbiota in obesity-induced allergies, there is emerging evidence that PPAR-γ may be an effective therapeutic target. This review discusses the microbiome in pediatric AD, treatment with probiotics, how disease is altered by obesity and potential therapeutic effects of PPAR-γ agonists. While healthy skin contains diverse species adapted for specific niches, lesional skin is highly colonized with Staphylococcus aureus which perpetuates the inflammatory reaction. Treatments for AD should help to restore microbial diversity in the skin and intestine, as well as epithelial barrier function. Pre-clinical models have shown that PPAR-γ agonists can suppress Th17 responses, IgE production and mast cell function, while improving the epidermal barrier and microbial homeostasis. Overall, PPAR-γ agonists may be effective in a subset of patients with AD, and future studies should distinguish their metabolic and anti-inflammatory effects in order to inform the best therapies.
Collapse
|
5
|
Mohseni R, Teimouri M, Safaei M, Arab Sadeghabadi Z. AMP-activated protein kinase is a key regulator of obesity-associated factors. Cell Biochem Funct 2023; 41:20-32. [PMID: 36468539 DOI: 10.1002/cbf.3767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/29/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022]
Abstract
An imbalance between caloric intake and energy expenditure leads to obesity. Obesity is an important risk factor for the development of several metabolic diseases including insulin resistance, metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. So, controlling obesity could be effective in the improvement of obesity-related diseases. Various factors are involved in obesity, such as AMP-activated protein kinases (AMPK), silent information regulators, inflammatory mediators, oxidative stress parameters, gastrointestinal hormones, adipokines, angiopoietin-like proteins, and microRNAs. These factors play an important role in obesity by controlling fat metabolism, energy homeostasis, food intake, and insulin sensitivity. AMPK is a heterotrimeric serine/threonine protein kinase known as a fuel-sensing enzyme. The central role of AMPK in obesity makes it an attractive molecule to target obesity and related metabolic diseases. In this review, the critical role of AMPK in obesity and the interplay between AMPK and obesity-associated factors were elaborated.
Collapse
Affiliation(s)
- Roohollah Mohseni
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Clinical Biochemistry & Nutrition, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Teimouri
- Department of Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohsen Safaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Arab Sadeghabadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Clinical Biochemistry & Nutrition, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
6
|
Mateus Pellenz F, Crispim D, Silveira Assmann T. Systems biology approach identifies key genes and related pathways in childhood obesity. Gene X 2022; 830:146512. [PMID: 35447237 DOI: 10.1016/j.gene.2022.146512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/18/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Childhood obesity is triggered by a complex interplay of environmental, genetic, and epigenetic factors; however, the molecular mechanisms behind this disease are not completely elucidated. Thus, the aim of this study was to investigate molecular mechanisms involved in childhood obesity by implementing a systems biology approach. METHODS Experimentally validated and computationally predicted genes related to childhood obesity were downloaded from DisGeNET database. A protein-protein interaction (PPI) network was constructed using the STRING database and analyzed at Cytoscape web-tool. Hub-bottleneck genes and functional clusters were identified through CytoHubba and MCODE plugins, respectively. Functional enrichment analyses were performed based on Gene Ontology terms and KEGG Pathways. RESULTS The DisGeNET search retrieved 191 childhood obesity-related genes. The resulting PPI network contained 12 hub-bottleneck genes (INS, LEP, STAT3, POMC, ALB, TNF, BDNF, CAT, GCG, PPARG, VEGFA, and ADIPOQ) and 4 functional clusters, with cluster 1 showing the highest interaction score. Genes at this cluster were enriched at inflammation, carbohydrate, and lipid metabolism pathways. With exception of POMC, all hub-bottleneck genes were found in cluster 1, which contains highly connected genes that possibly play key roles in obesity-related pathways. CONCLUSIONS Our systems biology approach revealed a set of highly interconnected genes associated with childhood obesity, providing comprehensive information regarding genetic and molecular factors involved in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Felipe Mateus Pellenz
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Taís Silveira Assmann
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
7
|
Arab Sadeghabadi Z, Abbasalipourkabir R, Mohseni R, Ziamajidi N. Chicoric acid does not restore palmitate-induced decrease in irisin levels in PBMCs of newly diagnosed patients with T2D and healthy subjects. Arch Physiol Biochem 2022; 128:532-538. [PMID: 31855067 DOI: 10.1080/13813455.2019.1702060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Targeting irisin as a myokine/adipokine is a new therapeutic approach in the improvement of insulin-resistance (IR) during type 2 diabetes (T2D). In present study we evaluated the effects of palmitate and chicoric acid (CA) on irisin production in peripheral blood mononuclear cells (PBMCs) of patients with T2D. This study performed on 20 newly diagnosed patients with T2D and 20 healthy subjects. PBMCs treated with palmitate and CA. PPARGC1A and FNDC5 genes expression assessed using qRT-PCR. Irisin levels in cell culture medium measured by ELISA. Palmitate decreased PPARGC1A and FNDC5 genes expression, as well as irisin levels in PBMCs from T2D and healthy volunteers. CA significantly restored palmitate-induced decrease in PPARGC1A gene expression in PBMCs of healthy subjects. Although, FNDC5 gene expression and irisin levels were not induced significantly by CA. In conclusion, palmitate decreases irisin production through down-regulation of PPARGC1A and FNDC5 expressions. However, CA does not effect on irisin pathway.Key pointsPalmitate reduced PPARGC1A and FNDC5 genes expression, as well as irisin secretion in PBMCs.Palmitate-induced decrease in PPARGC1A gene expression significantly has been reversed by CA in PBMCs of healthy subjects.CA did not return palmitate-decreased in FNDC5 gene expression and irisin levels in PBMCs.
Collapse
Affiliation(s)
- Zahra Arab Sadeghabadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
- Molecular Medicine Research Center, Hamadan University of Medical Science, Hamadan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Roohollah Mohseni
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
- Molecular Medicine Research Center, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
8
|
Alsharairi NA. The Role of Short-Chain Fatty Acids in Mediating Very Low-Calorie Ketogenic Diet-Infant Gut Microbiota Relationships and Its Therapeutic Potential in Obesity. Nutrients 2021; 13:3702. [PMID: 34835958 PMCID: PMC8624546 DOI: 10.3390/nu13113702] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
As the very low-calorie ketogenic diet (VLCKD) gains increased interest as a therapeutic approach for many diseases, little is known about its therapeutic use in childhood obesity. Indeed, the role of VLCKD during pregnancy and lactation in influencing short chain fatty acid (SCFA)-producing bacteria and the potential mechanisms involved in the protective effects on obesity are still unclear. Infants are characterized by a diverse gut microbiota composition with higher abundance of SCFA-producing bacteria. Maternal VLCKD during pregnancy and lactation stimulates the growth of diverse species of SCFA-producing bacteria, which may induce epigenetic changes in infant obese gene expression and modulate adipose tissue inflammation in obesity. Therefore, this review aims to determine the mechanistic role of SCFAs in mediating VLCKD-infant gut microbiota relationships and its protective effects on obesity.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind & Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
9
|
Angiopoietin-Like Proteins 2 and 3 in Children and Adolescents with Obesity and Their Relationship with Hypertension and Metabolic Syndrome. Int J Hypertens 2021; 2021:6748515. [PMID: 34422408 PMCID: PMC8376435 DOI: 10.1155/2021/6748515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Background Angiopoietin-like protein 2 (ANGPTL2) is one of the adipocyte-derived inflammatory factors which connects obesity to insulin resistance. ANGPTL3 has a direct role in regulation of lipid metabolism. The objective of this study was to evaluate ANGPTL2 and ANGPTL3 in childhood obesity and their relationship with metabolic syndrome. Methods 70 children and adolescents, 35 obese and 35 normal-weight subjects, were enrolled in this research after complete clinical examination and anthropometric evaluations. Serum ANGPTL2 and ANGPTL3 and insulin were measured by enzyme-linked immunosorbent assay (ELISA). Homeostatic model assessment of insulin resistance (HOMA-IR) was calculated and used to estimate insulin resistance (IR). Colorimetric methods were used for the assessment of fasting plasma glucose (FPG), LDL-C, HDL-C, total cholesterol (TC), and triglyceride (TG). Results The levels of ANGPTL2 and ANGPTL3 were significantly higher in obese subjects than those in controls, but they did not differ significantly in subjects with or without IR. ANGPTL3 was found to be significantly elevated in obese children with metabolic syndrome (MetS) in comparison with those without MetS. Both of the studied ANGPTLs were positively correlated with BMI, systolic blood pressure (SBP), diastolic blood pressure (DBP), TC, and LDL-C. The correlation between ANGPTL3 and either TC or LDL-C remained significant after adjusting for BMI. Conclusion Serum ANGPTL2 and ANGPTL3 were elevated in obesity and associated with blood pressure and indices of metabolic syndrome, suggesting that they might be involved in the advancement of obesity-related hypertension and metabolic syndrome.
Collapse
|
10
|
Vargas-Sánchez K, Vargas L, Urrutia Y, Beltrán I, Rossi AB, Lozano HY, Guarín J, Losada-Barragán M. PPARα and PPARβ/δ are negatively correlated with proinflammatory markers in leukocytes of an obese pediatric population. J Inflamm (Lond) 2020; 17:35. [PMID: 33292260 PMCID: PMC7602348 DOI: 10.1186/s12950-020-00264-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Obesity configures a pathophysiological profile that predisposes the development of metabolic and cardiovascular diseases, critically impacting public health. The chronic dysregulation of immuno-metabolic components triggered by pediatric obesity is a common but scarcely understood aspect of the disease. Peroxisome proliferator-activated receptors (PPARs) are a group of transcription factors essential for energy and immune homeostasis of different tissues. Besides, the glucagon-like peptide-1 receptor (GLP-1R) activation influences insulin secretion, but also regulates the cytokine profile possibly mediated through a PPAR isotype. However, the role of PPARs and GLP-1R in leukocytes from obese pediatric patients remains unclear. Therefore, we examined the expression of PPARs isotypes and GLP-1R in leukocytes, and its correlation with metabolic, hormonal, inflammatory, and anthropometric markers in an obese pediatric population. RESULTS Obese children and adolescents presented a significant increase in anthropometric and body composition parameters, TG, VLDL, TG/HDL, android fat (%)/gynoid fat (%) (A/G%) index, and HOMA score when compared with the control group. Obese participants exhibited a pro-inflammatory profile with an augment of IL-8 (p = 0,0081), IL-6 (p = 0,0005), TNF-α (p = 0,0004), IFN-γ (p = 0,0110), MCP-1 (p = 0,0452), and adipsin (p = 0,0397), whereas displayed a reduction of adiponectin (p = 0,0452). The expression of PPARα and GLP-1R was lower in the leukocytes from obese participants than in lean subjects. Furthermore, PPARα correlates negatively with TNF-α (p = 0,0383), while GLP-1R did not show correlation with any inflammatory variable. However, both receptors correlate negatively with the abdominal skinfold. Although PPARβ/δ expression was similar between groups, it was negatively associated with IL-8 levels (p = 0,0085). CONCLUSIONS PPARα and PPARβ/δ expression are negatively correlated with the proinflammatory markers TNF-α and IL-8, respectively, suggesting participation in the regulation of inflammation which was observed to be altered in pediatric obesity. Furthermore, PPARα and GLP-1R are downregulated in leukocytes from obese participants. The low expression of both receptors is correlated with an increase in abdominal skinfold, suggesting a role in fat distribution that could indirectly affect cytokine secretion from different immune and adipose cells, likely triggering an inflammatory profile as a consequence of obesity. Altogether, these findings may impact the understanding and implementation of PPARα or GLP-1R agonists in the clinic.
Collapse
Affiliation(s)
- Karina Vargas-Sánchez
- Research group of Translational Neurosciences, School of Medicine, Universidad de los Andes, Bogotá, 111711, Colombia.
| | - Laura Vargas
- Biología celular y funcional e ingeniería de biomoléculas, Universidad Antonio Nariño, Bogotá, Colombia
| | - Yenny Urrutia
- Biología celular y funcional e ingeniería de biomoléculas, Universidad Antonio Nariño, Bogotá, Colombia
| | - Iván Beltrán
- Biología celular y funcional e ingeniería de biomoléculas, Universidad Antonio Nariño, Bogotá, Colombia
| | | | | | - Jorge Guarín
- GRINCIBIO. Universidad Antonio Nariño, Bogotá, Colombia
| | - Monica Losada-Barragán
- Biología celular y funcional e ingeniería de biomoléculas, Universidad Antonio Nariño, Bogotá, Colombia.
| |
Collapse
|
11
|
Shahin NN, Abd-Elwahab GT, Tawfiq AA, Abdelgawad HM. Potential role of aryl hydrocarbon receptor signaling in childhood obesity. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158714. [PMID: 32302739 DOI: 10.1016/j.bbalip.2020.158714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/29/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND There is a growing concern that junk food has contributed to the childhood obesity epidemic. Recently, experimental studies suggested that the aryl hydrocarbon receptor (AHR) gene is strongly linked to western diet-induced obesity. AIM This study investigated the potential role of AHR signaling in childhood obesity and the possible associations of the AHR-aryl hydrocarbon receptor repressor (AHRR)-cytochrome P450 1B1 (CYP1B1) axis with fatty acid homeostasis and the appetite-related hormones, leptin and ghrelin. SUBJECTS AND METHODS The study included 80 children; 54 obese and 26 non-obese of matched age and sex. Demographic data, anthropometric measurements, and lipid profile were assessed. Expression of AHR signaling genes was analyzed in blood cells by qRT-PCR. Serum insulin, leptin and ghrelin levels were measured using ELISA. RESULTS The statistical power of this study, calculated using G*Power version 3.1.9.2, was 90% (α = 0.05). AHR and CYP1B1 gene expression levels were upregulated in the obese group compared to controls, whereas AHRR, stearoyl-CoA desaturase 1 (SCD1), and peroxisome proliferator-activated receptor-γ2 (PPARγ2) were downregulated. Serum leptin correlated positively, while serum ghrelin correlated negatively with both AHR and CYP1B1. Stratification of obese children by age revealed more activated AHR signaling in younger than in older children. Receiver-operating-characteristic (ROC) analysis revealed that AHR, AHRR and CYP1B1 could discriminate between obese and normal weight children. Multivariate analysis showed that AHRR, CYP1B1 and ghrelin could be significant independent predictors of obesity. CONCLUSION This study provides new insights into the molecular mechanisms contributing to childhood obesity by revealing alterations in the AHR-AHRR-CYP1B1 axis, which could serve as a promising therapeutic target for childhood obesity.
Collapse
Affiliation(s)
- Nancy N Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ghada T Abd-Elwahab
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | | | - Hanan M Abdelgawad
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
12
|
Kluge S, Boermel L, Schubert M, Lorkowski S. Simple and rapid real-time monitoring of LPL activity in vitro. MethodsX 2020; 7:100865. [PMID: 32274337 PMCID: PMC7132154 DOI: 10.1016/j.mex.2020.100865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/10/2020] [Indexed: 01/08/2023] Open
Abstract
Since elevated plasma triglycerides are an independent risk factor for cardiovascular diseases, lipoprotein lipase (LPL) is an interesting target for drug development. However, investigation of LPL remains challenging, as most of the commercially available assays are limited to the determination of LPL activity. Thus, we focused on the evaluation of a simple in vitro real-time fluorescence assay for the measurement of LPL activity that can be combined with additional cell or molecular biological assays in the same cell sample. Our procedure allows for a more comprehensive characterization of potential regulatory compounds targeting the LPL system. The presented assay procedure provides several advantages over currently available commercial in vitro LPL activity assays:12-well cell culture plate design for the simultaneous investigation of up to three different compounds of interest (including all assay controls). 24 h real-time acquisition of LPL activity for the identification of the optimal time point for further measurements. Measurement of LPL activity can be supplemented by additional cell or molecular biological assays in the same cell sample.
Collapse
Key Words
- ANGPTL, angiopoietin-like
- FBS, fetal bovine serum
- FFA, free fatty acid
- FI, fluorescence intensity
- Fluorescence
- LPL activity assay
- LPL, lipoprotein lipase
- Lipoprotein lipase (LPL)
- MTT, methylthiazolyldiphenyl-tetrazolium bromide
- PBS, phosphate-buffered saline
- PPAR, proliferator-activated receptor
- PSG, L‐glutamine-penicillin-streptomycin
- RFU, relative fluorescence units
- Real-time assay
- VLDL, very low-density lipoprotein
Collapse
Affiliation(s)
- Stefan Kluge
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Lisa Boermel
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Martin Schubert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| |
Collapse
|
13
|
Chen RM, Yuan X, Ouyang Q, Lin XQ, Ai ZZ, Zhang Y, Yang XH. Adropin and glucagon-like peptide-2 are associated with glucose metabolism in obese children. World J Pediatr 2019; 15:565-571. [PMID: 31598832 DOI: 10.1007/s12519-019-00296-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The interaction of adropin, glucagon-like peptide-2 (GLP2), angiopoietin-like protein 4 (ANGPTL4), and with childhood obesity and glucose metabolism is inconsistent. This study is to evaluate the association of the three cytokines and glucose homeostasis. METHODS This was a cross-sectional study of children with obesity ranging from 5 to 14 years compared to age- and sex-matched children of normal weight. Fasting plasma glucose (FPG), oral glucose tolerance test 2-hour plasma glucose (OGTT2hPG), and insulin (INS) were measured, and serum adropin, GLP2, and ANGPTL4 levels were measured by enzyme-linked immunosorbent assay. The body mass index (BMI), BMI-Z scores, waist-to-hip ratio (WHR), and homeostasis model assessment of insulin resistance (HOMA-IR) were calculated. RESULTS Thirty-nine children (9.70 ± 1.71 years, 18 females) with obesity and 29 normal weight children (8.98 ± 1.98 years, 16 females) were assessed. The levels of INS, HOMA-IR and GLP2 of the obesity group were significantly higher than the controls (P < 0.05). Pearson correlation analysis showed that serum GLP2 was positively associated with WHR, FPG, and OGTT2hPG, and adropin was negatively associated with BMI, BMI-Z, WHR, INS, and HOMA-IR (all P < 0.05). Furthermore, GLP2 were negatively associated with adropin and ANGPTL4 (both P < 0.05). By binary logistic regression, adropin and GLP2 were found to be independent markers of obesity. Multiple linear regression showed that GLP2 was associated with OGTT2hPG, and adropin was associated with INS and HOMA-IR (all P < 0.05). CONCLUSIONS Obese children had elevated GLP2 concentrations, and adropin and GLP2 associated with both childhood obesity and glucose homeostasis. Furthermore, there may be a physiologic interplay between adropin and GLP2 in obese children.
Collapse
Affiliation(s)
- Rui-Min Chen
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China.
| | - Xin Yuan
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Qian Ouyang
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Xiang-Quan Lin
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Zhuan-Zhuan Ai
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Ying Zhang
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Xiao-Hong Yang
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China
| |
Collapse
|
14
|
High Expression of Angiopoietin-like Protein 4 in Advanced Colorectal Cancer and its Association with Regulatory T Cells and M2 Macrophages. Pathol Oncol Res 2019; 26:1269-1278. [PMID: 31264122 DOI: 10.1007/s12253-019-00695-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/23/2019] [Indexed: 12/30/2022]
Abstract
Colorectal cancer (CRC) is one of the most aggressive tumours in the human digestive system. Most CRC patients have poor prognosis due to metastasis and recurrence. Angiopoietin-like 4 (ANGPTL4) is involved in tumour development. Regulatory T (Treg) cells and M2 macrophages promote tumour growth and metastasis. Herein, we explored the changes of ANGPTL4 expression in CRC patients at different stages and observed whether in situ tumour-Treg and -M2 macrophages are correlated with ANGPTL4 expression. Serum ANGPTL4 (sANGPTL4) levels of 70 CRC patients and 10 healthy controls were detected by ELISA. ANGPTL4, Foxp3 and CD163 expression levels in CRC tissues were measured by immunohistochemistry. Recombinant ANGPTL4 (rANGPTL4) proteins were further added into cell-culture systems for induction of Treg cells and M2 macrophages. The results showed both sANGPTL4 and in situ tumour-ANGPTL4 expression levels increased in Dukes C-D stage CRC patients. Foxp3+ and CD163+ cells in tumour tissue sections were also more intensive in Dukes C-D stage patients than in Dukes A-B stage patients. Foxp3+ and CD163+ cells in tumour tissues were positively correlated with both tissue and sANGPTL4 expression (P < 0.01). Recombinant ANGPTL4 promoted the induction of murine Treg cells and M2 macrophages ex vivo. Therefore, elevated ANGPTL4 expression could be a marker for advanced CRC. Treg cell and M2 macrophage induction could be one of the mechanisms of tumour promotion mediated by ANGPTL4.
Collapse
|
15
|
ANGPTL-4 is Associated with Obesity and Lipid Profile in Children and Adolescents. Nutrients 2019; 11:nu11061340. [PMID: 31207920 PMCID: PMC6628529 DOI: 10.3390/nu11061340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL-4) regulates lipidic metabolism and affects energy homeostasis. However, its function in children with obesity remains unknown. We investigated plasma ANGPTL-4 levels in children and its relationship with body mass index (BMI) and different lipidic parameters such as free fatty acids (FFA). Plasma ANGPTL-4 levels were analyzed in two different cohorts. In the first cohort (n = 150, age 3–17 years), which included children with normal weight or obesity, we performed a cross-sectional study. In the second cohort, which included only children with obesity (n = 20, age 5–18 years) followed up for two years after an intervention for weight loss, in which we performed a longitudinal study measuring ANGPTL-4 before and after BMI-loss. In the cross-sectional study, circulating ANGPTL-4 levels were lower in children with obesity than in those with normal weight. Moreover, ANGPTL-4 presented a negative correlation with BMI, waist circumference, weight, insulin, homeostasis model assessment of insulin resistance index (HOMA index), triglycerides, and leptin, and a positive correlation with FFA and vitamin-D. In the longitudinal study, the percent change in plasma ANGPTL-4 was correlated with the percent change in FFA, total-cholesterol and high-density lipoprotein cholesterol. This study reveals a significant association of ANGPTL-4 with pediatric obesity and plasma lipid profile.
Collapse
|
16
|
Association between peroxisome proliferator-activated receptor γ-2 gene Pro12Ala polymorphisms and risk of hypertension: an updated meta-analysis. Biosci Rep 2019; 39:BSR20190022. [PMID: 30777927 PMCID: PMC6393226 DOI: 10.1042/bsr20190022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
Previous studies investigate the relationship between peroxisome proliferator-activated receptor γ-2 (PPAR) gene Pro12Ala polymorphisms and risk of hypertension. However, the number of available studies was extremely limited. We updated this evidence and gave more significant results. We performed comprehensive computer-based searches in the PubMed, Web of Science, Embase, Google Scholar, the Cochrane library, Wanfang database, China National Knowledge Infrastructure, and China Biological Medicine Database. All studies that reported the association between the PPARγ2Pro12Ala polymorphisms and hypertension were identified. Twenty-one studies were finally included in the present study. In the domain model, the PPARγ1Pro12Ala polymorphism was not associated with hypertension (odds ratio (OR) = 0.85, 95% confidence interval (CI): 0.71-1.03, P=0.108). The significant relationship was found in the recessive model (OR = 0.67, 95% CI: 0.53-0.85), in the additive model (OR = 0.61, 95% CI: 0.48-0.77), and in the allele genetic model (OR = 0.81, 95% CI: 0.66-0.99). Subgroup analysis indicated that the PPARγ1Pro12Ala polymorphism from the all gene models was also not related to the risk of hypertension in Caucasians. In Asians, however, the results (P=0.002; I2 = 57.6%) suggested a significant relationship between PPARγ1Pro12Ala and hypertension in the domain model (OR = 0.80, 95% CI: 0.65-0.99), in the recessive model (OR = 0.57, 95% CI: 0.44-0.75), in the additive model (OR = 0.51, 95% CI: 0.39-0.66), and in the allele model (OR = 0.75, 95% CI: 0.60-0.94). The PPARγ1Pro12Ala polymorphism could affect the risk of primary hypertension amongst Asians. The A allele gene was a protective genotype for primary hypertension. The PPARγ1Pro12Ala polymorphism was not associated with hypertension amongst Caucasians.
Collapse
|
17
|
Sadeghabadi ZA, Ziamajidi N, Abbasalipourkabir R, Mohseni R, Borzouei S. Palmitate-induced IL6 expression ameliorated by chicoric acid through AMPK and SIRT1-mediated pathway in the PBMCs of newly diagnosed type 2 diabetes patients and healthy subjects. Cytokine 2019; 116:106-114. [PMID: 30690290 DOI: 10.1016/j.cyto.2018.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/28/2018] [Accepted: 12/17/2018] [Indexed: 01/13/2023]
Abstract
Inhibition of inflammation is one of the possible therapeutic approaches for Insulin resistance (IR) during type 2 diabetes mellitus (T2DM). In the current study we investigated the effects of palmitate and chicoric acid (CA) on inflammation in peripheral blood mononuclear cells (PBMCs) of newly diagnosed T2DM patients and healthy subjects and explored the mechanism by which palmitate and CA influence inflammation. 20 newly diagnosed T2DM patients and 20 healthy subjects were recruited in our study. Blood sample were collected and PBMCs were isolated. Interleukin 6 (IL6), silent information regulator type 1 (SIRT1), AMP-activated protein kinase (AMPK) and phospho-AMPK (pAMPK) were evaluated both in vivo and in vitro. PBMCs were treated with palmitate and CA to investigate their effects on inflammation. IL6 and SIRT1 genes expression were evaluated by real-time PCR. The levels of IL6 in culture medium were measured by ELISA. Proteins levels of AMPK and pAMPK in PBMCs were detected by western blotting. IL6 expression was higher and SIRT1 expression and pAMPK levels were lower in PBMCs of diabetic patients and obese subjects compared to healthy subjects and non-obese subjects, respectively. CA significantly prevented against increased IL6 levels as well as its gene expression in PBMCs induced by palmitate. Also, CA returned reduction in SIRT1 expression and pAMPK levels mediated via palmitate to near control level. These findings reveal that CA reduces inflammation in PBMCs probably through upregulation of SIRT1 and pAMPK. Therefore, CA would be suggested as a novel agent for the treatment of T2DM.
Collapse
Affiliation(s)
- Zahra Arab Sadeghabadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roohollah Mohseni
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shiva Borzouei
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
18
|
Yang X, Cheng Y, Su G. A review of the multifunctionality of angiopoietin-like 4 in eye disease. Biosci Rep 2018; 38:BSR20180557. [PMID: 30049845 PMCID: PMC6137252 DOI: 10.1042/bsr20180557] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/02/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4) is a multifunctional cytokine regulating vascular permeability, angiogenesis, and inflammation. Dysregulations in these responses contribute to the pathogenesis of ischemic retinopathies such as diabetic retinopathy (DR), age-related macular degeneration (AMD), retinal vein occlusion, and sickle cell retinopathy (SCR). However, the role of ANGPTL4 in these diseases remains controversial. Here, we summarize the functional mechanisms of ANGPTL4 in several diseases. We highlight original studies that provide detailed data about the mechanisms of action for ANGPTL4, its applications as a diagnostic or prognostic biomarker, and its use as a potential therapeutic target. Taken together, the discussions in this review will help us gain a better understanding of the molecular mechanisms by which ANGPTL4 functions in eye disease and will provide directions for future research.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
19
|
Critical Evaluation of Gene Expression Changes in Human Tissues in Response to Supplementation with Dietary Bioactive Compounds: Moving Towards Better-Quality Studies. Nutrients 2018; 10:nu10070807. [PMID: 29932449 PMCID: PMC6073419 DOI: 10.3390/nu10070807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/28/2022] Open
Abstract
Pre-clinical cell and animal nutrigenomic studies have long suggested the modulation of the transcription of multiple gene targets in cells and tissues as a potential molecular mechanism of action underlying the beneficial effects attributed to plant-derived bioactive compounds. To try to demonstrate these molecular effects in humans, a considerable number of clinical trials have now explored the changes in the expression levels of selected genes in various human cell and tissue samples following intervention with different dietary sources of bioactive compounds. In this review, we have compiled a total of 75 human studies exploring gene expression changes using quantitative reverse transcription PCR (RT-qPCR). We have critically appraised the study design and methodology used as well as the gene expression results reported. We herein pinpoint some of the main drawbacks and gaps in the experimental strategies applied, as well as the high interindividual variability of the results and the limited evidence supporting some of the investigated genes as potential responsive targets. We reinforce the need to apply normalized procedures and follow well-established methodological guidelines in future studies in order to achieve improved and reliable results that would allow for more relevant and biologically meaningful results.
Collapse
|