1
|
Yang Z, Chen L, Huang Y, Dong J, Yan Q, Li Y, Qiu J, Li H, Zhao D, Liu F, Tang D, Dai Y. Proteomic profiling of laser capture microdissection kidneys from diabetic nephropathy patients. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124231. [PMID: 38996754 DOI: 10.1016/j.jchromb.2024.124231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/23/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Diabetic nephropathy (DN) remains the primary cause of end-stage renal disease (ESRD), warranting equal attention and separate analysis of glomerular, tubular, and interstitial lesions in its diagnosis and intervention. This study aims to identify the specific proteomics characteristics of DN, and assess changes in the biological processes associated with DN. 5 patients with DN and 5 healthy kidney transplant donor control individuals were selected for analysis. The proteomic characteristics of glomeruli, renal tubules, and renal interstitial tissue obtained through laser capture microscopy (LCM) were studied using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Significantly, the expression of multiple heat shock proteins (HSPs), tubulins, and heterogeneous nuclear ribonucleoproteins (hnRNPs) in glomeruli and tubules was significantly reduced. Differentially expressed proteins (DEPs) in the glomerulus showed significant enrichment in pathways related to cell junctions and cell movement, including the regulation of actin cytoskeleton and tight junction. DEPs in renal tubules were significantly enriched in glucose metabolism-related pathways, such as glucose metabolism, glycolysis/gluconeogenesis, and the citric acid cycle. Moreover, the glycolysis/gluconeogenesis pathway was a co-enrichment pathway in both DN glomeruli and tubules. Notably, ACTB emerged as the most crucial protein in the protein-protein interaction (PPI) analysis of DEPs in both glomeruli and renal tubules. In this study, we delve into the unique proteomic characteristics of each sub-region of renal tissue. This enhances our understanding of the potential pathophysiological changes in DN, particularly the potential involvement of glycolysis metabolic disorder, glomerular cytoskeleton and cell junctions. These insights are crucial for further research into the identification of disease biomarkers and the pathogenesis of DN.
Collapse
Affiliation(s)
- Zhiqian Yang
- Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People' s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China; Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Liangmei Chen
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Yingxin Huang
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China; Department of Nephrology, Xiaolan People's Hospital of Zhongshan, 528400, China
| | - Jingjing Dong
- Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People' s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China; Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Qiang Yan
- Department of Organ Transplantation, 924 Hospital, Guilin 541002, China
| | - Ya Li
- Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People' s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Jing Qiu
- Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People' s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Haitao Li
- Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People' s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Da Zhao
- The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan 232001, Anhui, China
| | - Fanna Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China.
| | - Donge Tang
- Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People' s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China.
| | - Yong Dai
- Comprehensive Health Industry Research Center, Taizhou Research Institute, Southern University of Science and Technology, Taizhou 317000, China; The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan 232001, Anhui, China.
| |
Collapse
|
2
|
Huang Q, Fei X, Zhong Z, Zhou J, Gong J, Chen Y, Li Y, Wu X. Stratification of diabetic kidney diseases via data-independent acquisition proteomics-based analysis of human kidney tissue specimens. Front Endocrinol (Lausanne) 2022; 13:995362. [PMID: 36465646 PMCID: PMC9714485 DOI: 10.3389/fendo.2022.995362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
AIM The aims of this study were to analyze the proteomic differences in renal tissues from patients with diabetes mellitus (DM) and diabetic kidney disease (DKD) and to select sensitive biomarkers for early identification of DKD progression. METHODS Pressure cycling technology-pulse data-independent acquisition mass spectrometry was employed to investigate protein alterations in 36 formalin-fixed paraffin-embedded specimens. Then, bioinformatics analysis was performed to identify important signaling pathways and key molecules. Finally, the target proteins were validated in 60 blood and 30 urine samples. RESULTS A total of 52 up- and 311 down-regulated differential proteins were identified as differing among the advanced DKD samples, early DKD samples, and DM controls (adjusted p<0.05). These differentially expressed proteins were mainly involved in ion transport, apoptosis regulation, and the inflammatory response. UniProt database analysis showed that these proteins were mostly enriched in signaling pathways related to metabolism, apoptosis, and inflammation. NBR1 was significantly up-regulated in both early and advanced DKD, with fold changes (FCs) of 175 and 184, respectively (both p<0.01). In addition, VPS37A and ATG4B were significantly down-regulated with DKD progression, with FCs of 0.140 and 0.088, respectively, in advanced DKD and 0.533 and 0.192, respectively, in early DKD compared with the DM control group (both p<0.01). Bioinformatics analysis showed that NBR1, VPS37A, and ATG4B are closely related to autophagy. We also found that serum levels of the three proteins and urine levels of NBR1 decreased with disease progression. Moreover, there was a significant difference in serum VPS37A and ATG4B levels between patients with early and advanced DKD (both p<0.05). The immunohistochemistry assaay exhibited that the three proteins were expressed in renal tubular cells, and NBR1 was also expressed in the cystic wall of renal glomeruli. CONCLUSION The increase in NBR1 expression and the decrease in ATG4B and VPS37 expression in renal tissue are closely related to inhibition of the autophagy pathway, which may contribute to DKD development or progression. These three proteins may serve as sensitive serum biomarkers for early identification of DKD progression.
Collapse
Affiliation(s)
- Qinghua Huang
- Department of Endocrinology, Geriatric Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xianming Fei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhaoxian Zhong
- Department of Commerce, Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou, Zhejiang, China
| | - Jieru Zhou
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jianguang Gong
- Laboratory of Kidney Disease, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuan Chen
- Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiwen Li
- Laboratory of Kidney Disease, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaohong Wu
- Department of Endocrinology, Geriatric Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
- *Correspondence: Xiaohong Wu,
| |
Collapse
|
3
|
Li Z, Shen H, Liu Y, Zhou X, Yan M, He H, Zhao T, Zhang H, Li P. Subproteomic profiling from renal cortices in OLETF rats reveals mutations of multiple novel genes in diabetic nephropathy. Genes Genomics 2021; 44:109-122. [PMID: 34643893 DOI: 10.1007/s13258-021-01174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a serious threat to human health, but its pathogenesis is not fully understood. Otsuka Long-Evans Tokushima Fatty (OLETF) rats are very similar to human DN in many aspects such as pathological changes and processes, and are deemed to be an ideal rodent model. OBJECTIVE This study was aimed to explore the pathogenesis of DN by analyzing the protein expression profile from renal cortices in OLETF rats. METHODS Thirty-six-week-old diabetic OLETF rats and normal control Long-Evans Tokushima Otsuka (LETO) rats were nephrectomized, and the renal cortices were isolated. The proteins were separated by soluble and insoluble high-resolution subproteomics methods for the analysis and identification of differential proteins. RESULTS Thirty-six differentially expressed proteins were found. Among them, 11 proteins had different isoelectric points and molecular weights between OLETF and LETO rats. Further sequencing identified point mutations in genes encoding eight of these proteins, which are involved in many biological processes closely related to DN, including oxidative stress and inflammation. Five of these eight proteins have not been reported in DN. CONCLUSION This study reveals mutations of multiple novel genes in diabetic OLETF rats, providing some new potential targets for the pathogenesis of DN and helping to better understand the pathogenesis of DN.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for chronic disease, North China University of Science and Technology, Tangshan, 063000, China
| | - Hong Shen
- Department of Modern Technology and Education, North China University of Science and Technology, Tangshan, 063000, China
| | - Yeqiang Liu
- Department of Endocrinology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, 063000, China
| | - Xuefeng Zhou
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Meihua Yan
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Hailan He
- School of Graduate Studies, North China University of Science and Technology, Tangshan, 063000, China
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Haojun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
4
|
Imasawa T, Claverol S, Lacombe D, Amoedo ND, Rossignol R. Proteomic Study of Low-Birth-Weight Nephropathy in Rats. Int J Mol Sci 2021; 22:10294. [PMID: 34638634 PMCID: PMC8508940 DOI: 10.3390/ijms221910294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
The hyperfiltration theory has been used to explain the mechanism of low birth weight (LBW)-related nephropathy. However, the molecular changes in the kidney proteome have not been defined in this disease, and early biomarkers are lacking. We investigated the molecular pathogenesis of LBW rats obtained by intraperitoneal injection of dexamethasone into pregnant animals. Normal-birth-weight (NBW) rats were used as controls. When the rats were four weeks old, the left kidneys were removed and used for comprehensive label-free proteomic studies. Following uninephrectomy, all rats were fed a high-salt diet until 9 weeks of age. Differences in the molecular composition of the kidney cortex were observed at the early step of LBW nephropathy pathogenesis. Untargeted quantitative proteomics showed that proteins involved in energy metabolism, such as oxidative phosphorylation (OXPHOS), the TCA cycle, and glycolysis, were specifically downregulated in the kidneys of LBW rats at four weeks. No pathological changes were detected at this early stage. Pathway analysis identified NEFL2 (NRF2) and RICTOR as potential upstream regulators. The search for biomarkers identified components of the mitochondrial respiratory chain, namely, ubiquinol-cytochrome c reductase complex subunits (UQCR7/11) and ATP5I/L, two components of mitochondrial F1FO-ATP synthase. These findings were further validated by immunohistology. At later stages of the disease process, the right kidneys revealed an increased frequency of focal segmental glomerulosclerosis lesions, interstitial fibrosis and tubular atrophy. Our findings revealed proteome changes in LBW rat kidneys and revealed a strong downregulation of specific mitochondrial respiratory chain proteins, such as UQCR7.
Collapse
Affiliation(s)
- Toshiyuki Imasawa
- Kidney Center, National Hospital Organization Chiba-Higashi National Hospital, Chiba 260-8712, Japan
- Rare Diseases, Genetics and Metabolism, University of Bordeaux, INSERM U1211, 33000 Bordeaux, France;
- Department of Biology and Medical Sciences, University of Bordeaux, 33000 Bordeaux, France;
| | - Stéphane Claverol
- Department of Biology and Medical Sciences, University of Bordeaux, 33000 Bordeaux, France;
- Functional Genomics Center, Proteomics Department, University of Bordeaux, 33000 Bordeaux, France
| | - Didier Lacombe
- Rare Diseases, Genetics and Metabolism, University of Bordeaux, INSERM U1211, 33000 Bordeaux, France;
- Department of Biology and Medical Sciences, University of Bordeaux, 33000 Bordeaux, France;
| | | | - Rodrigue Rossignol
- Rare Diseases, Genetics and Metabolism, University of Bordeaux, INSERM U1211, 33000 Bordeaux, France;
- Department of Biology and Medical Sciences, University of Bordeaux, 33000 Bordeaux, France;
- CELLOMET, CHU Pellegrin, 33300 Bordeaux, France;
| |
Collapse
|
5
|
Zeni L, Norden AGW, Cancarini G, Unwin RJ. A more tubulocentric view of diabetic kidney disease. J Nephrol 2017; 30:701-717. [PMID: 28840540 PMCID: PMC5698396 DOI: 10.1007/s40620-017-0423-9] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/22/2017] [Indexed: 12/14/2022]
Abstract
Diabetic nephropathy (DN) is a common complication of Diabetes Mellitus (DM) Types 1 and 2, and prevention of end stage renal disease (ESRD) remains a major challenge. Despite its high prevalence, the pathogenesis of DN is still controversial. Initial glomerular disease manifested by hyperfiltration and loss of glomerular size and charge permselectivity may initiate a cascade of injuries, including tubulo-interstitial disease. Clinically, 'microalbuminuria' is still accepted as an early biomarker of glomerular damage, despite mounting evidence that its predictive value for DN is questionable, and findings that suggest the proximal tubule is an important link in the development of DN. The concept of 'diabetic tubulopathy' has emerged from recent studies, and its causative role in DN is supported by clinical and experimental evidence, as well as plausible pathogenetic mechanisms. This review explores the 'tubulocentric' view of DN. The recent finding that inhibition of proximal tubule (PT) glucose transport (via SGLT2) is nephro-protective in diabetic patients is discussed in relation to the tubule's potential role in DN. Studies with a tubulocentric view of DN have stimulated alternative clinical approaches to the early detection of diabetic kidney disease. There are tubular biomarkers considered as direct indicators of injury of the proximal tubule (PT), such as N-acetyl-β-D-glucosaminidase, Neutrophil Gelatinase-Associated Lipocalin and Kidney Injury Molecule-1, and other functional PT biomarkers, such as Urine free Retinol-Binding Protein 4 and Cystatin C, which reflect impaired reabsorption of filtered proteins. The clinical application of these measurements to diabetic patients will be reviewed in the context of the need for better biomarkers for early DN.
Collapse
Affiliation(s)
- Letizia Zeni
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Piazza del Mercato 15, 25121, Brescia, Italy.
- UCL Centre for Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
- Operative Unit of Nephrology, ASST Spedali Civili, Piazzale Spedali Civili 1, Brescia, Italy.
| | - Anthony G W Norden
- UCL Centre for Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Giovanni Cancarini
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Piazza del Mercato 15, 25121, Brescia, Italy
- Operative Unit of Nephrology, ASST Spedali Civili, Piazzale Spedali Civili 1, Brescia, Italy
| | - Robert J Unwin
- UCL Centre for Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
- Cardiovascular and Metabolic Diseases iMED ECD, AstraZeneca Gothenburg, Mölndal, Sweden
| |
Collapse
|
6
|
Pena MJ, Stenvinkel P, Kretzler M, Adu D, Agarwal SK, Coresh J, Feldman HI, Fogo AB, Gansevoort RT, Harris DC, Jha V, Liu ZH, Luyckx VA, Massy ZA, Mehta R, Nelson RG, O'Donoghue DJ, Obrador GT, Roberts CJ, Sola L, Sumaili EK, Tatiyanupanwong S, Thomas B, Wiecek A, Parikh CR, Heerspink HJL. Strategies to improve monitoring disease progression, assessing cardiovascular risk, and defining prognostic biomarkers in chronic kidney disease. Kidney Int Suppl (2011) 2017; 7:107-113. [PMID: 30675424 DOI: 10.1016/j.kisu.2017.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic kidney disease (CKD) is a major global public health problem with significant gaps in research, care, and policy. In order to mitigate the risks and adverse effects of CKD, the International Society of Nephrology has created a cohesive set of activities to improve the global outcomes of people living with CKD. Improving monitoring of renal disease progression can be done by screening and monitoring albuminuria and estimated glomerular filtration rate in primary care. Consensus on how many times and how often albuminuria and estimated glomerular filtration rate are measured should be defined. Meaningful changes in both renal biomarkers should be determined in order to ascertain what is clinically relevant. Increasing social awareness of CKD and partnering with the technological community may be ways to engage patients. Furthermore, improving the prediction of cardiovascular events in patients with CKD can be achieved by including the renal risk markers albuminuria and estimated glomerular filtration rate in cardiovascular risk algorithms and by encouraging uptake of assessing cardiovascular risk by general practitioners and nephrologists. Finally, examining ways to further validate and implement novel biomarkers for CKD will help mitigate the global problem of CKD. The more frequent use of renal biopsy will facilitate further knowledge into the underlying etiologies of CKD and help put new biomarkers into biological context. Real-world assessments of these biomarkers in existing cohorts is important, as well as obtaining regulatory approval to use these biomarkers in clinical practice. Collaborations among academia, physician and patient groups, industry, payer organizations, and regulatory authorities will help improve the global outcomes of people living with CKD.
Collapse
Affiliation(s)
- Michelle J Pena
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Dwomoa Adu
- Department of Medicine and Therapeutics, School of Medicine and Dentistry, University of Ghana, Accra, Ghana
| | - Sanjay Kumar Agarwal
- Department of Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | - Josef Coresh
- Johns Hopkins University Bloomberg School of Public Health, George W. Comstock Center for Public Health Research and Prevention, Baltimore, Maryland, USA.,Johns Hopkins University School of Medicine, Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland, USA
| | - Harold I Feldman
- Department of Biostatistics, Epidemiology, and Informatics, and the Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ron T Gansevoort
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - David C Harris
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Vivekanand Jha
- George Institute for Global Health India, New Delhi, India.,University of Oxford, Oxford, UK
| | - Zhi-Hong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Valerie A Luyckx
- Institute of Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland.,Klinik für Nephrologie, Universitätsspital, Zurich, Switzerland
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré Hospital, APHP, Boulogne Billancourt/Paris, France.,French National Institute of Health and Medical Research (INSERM) U1018, Team5, Centre for Research in Epidemiology and Population Health (CESP), Paris-Ile-de-France-West, Versailles-Saint-Quentin-en-Yvelines University, Villejuif, France
| | - Ravindra Mehta
- Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Robert G Nelson
- National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Donal J O'Donoghue
- Department of Renal Medicine, Salford Royal National Health Service (NHS) Foundation Trust, Salford, UK.,Department of Renal Medicine, University of Manchester, Manchester, UK
| | - Gregorio T Obrador
- Faculty of Health Sciences & Universidad Panamericana, Mexico City, Mexico
| | - Charlotte J Roberts
- Standardisation, International Consortium for Health Outcomes Measurement, London, UK
| | - Laura Sola
- Division Epidemiologia, Dirección General de Salud (DIGESA)-Ministerio Salud Publica, Montevideo, Uruguay
| | - Ernest K Sumaili
- Renal Unit, Kinshasa University Hospital, University of Kinshasa, Kinshasa, DR Congo
| | | | - Bernadette Thomas
- Department of Global Health, The University of Washington, Seattle, Washington, USA
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Chirag R Parikh
- Program of Applied Translational Research, Department of Medicine, Yale University, New Haven, Connecticut, USA.,Veterans Affairs Medical Center, West Haven, Connecticut, USA
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Moresco RN, De Carvalho JAM. Applying proteomics to diagnosis of diabetic kidney disease. Expert Rev Proteomics 2017; 14:841-843. [PMID: 28893107 DOI: 10.1080/14789450.2017.1378100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rafael Noal Moresco
- a Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis , Federal University of Santa Maria , Santa Maria , RS , Brazil
| | - José Antonio Mainardi De Carvalho
- a Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis , Federal University of Santa Maria , Santa Maria , RS , Brazil
| |
Collapse
|
8
|
Di Venere M, Viglio S, Sassera D, Fumagalli M, Bardoni A, Salvini R, Cagnone M, Iadarola P. Do the complementarities of electrokinetic and chromatographic procedures represent the "Swiss knife" in proteomic investigation? An overview of the literature in the past decade. Electrophoresis 2017; 38:1538-1550. [PMID: 28130906 DOI: 10.1002/elps.201600504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 12/21/2022]
Abstract
This report reviews the literature of the past decade dealing with the combination of electrokinetic and chromatographic strategies in the proteomic field. Aim of this article is to highlight how the application of complementary techniques may contribute to substantially improve protein identification. Several studies here considered demonstrate that exploring the combination of these approaches can be a strategy to enrich the extent of proteomic information achieved from a sample. The coupling of "top-down" and "bottom-up" proteomics may result in the generation of a hybrid analytical tool, very efficient not only for large-scale profiling of complex proteomes but also for studying specific subproteomes. The range of applications described, while evidencing a continuous boost in the imagination of researchers for developing new combinations of methods for protein separation, also underlines the adaptability of these techniques to a wide variety of samples. This report points out the general usefulness of combining different procedures for proteomic analysis, an approach that allows researchers to go deeper in the proteome of samples under investigation.
Collapse
Affiliation(s)
- Monica Di Venere
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| | - Simona Viglio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| | - Davide Sassera
- Department of Biology and Biotechnologies "L. Spallanzani,", Biochemistry Unit, University of Pavia, Italy
| | - Marco Fumagalli
- Department of Biology and Biotechnologies "L. Spallanzani,", Biochemistry Unit, University of Pavia, Italy
| | - Anna Bardoni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| | - Roberta Salvini
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| | - Maddalena Cagnone
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnologies "L. Spallanzani,", Biochemistry Unit, University of Pavia, Italy
| |
Collapse
|
9
|
Pena MJ, Mischak H, Heerspink HJL. Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease. Diabetologia 2016; 59:1819-31. [PMID: 27344310 PMCID: PMC4969331 DOI: 10.1007/s00125-016-4001-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/13/2016] [Indexed: 12/31/2022]
Abstract
The past decade has resulted in multiple new findings of potential proteomic biomarkers of diabetic kidney disease (DKD). Many of these biomarkers reflect an important role in the (patho)physiology and biological processes of DKD. Situations in which proteomics could be applied in clinical practice include the identification of individuals at risk of progressive kidney disease and those who would respond well to treatment, in order to tailor therapy for those at highest risk. However, while many proteomic biomarkers have been discovered, and even found to be predictive, most lack rigorous external validation in sufficiently powered studies with renal endpoints. Moreover, studies assessing short-term changes in the proteome for therapy-monitoring purposes are lacking. Collaborations between academia and industry and enhanced interactions with regulatory agencies are needed to design new, sufficiently powered studies to implement proteomics in clinical practice.
Collapse
Affiliation(s)
- Michelle J Pena
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Harald Mischak
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
- Mosaiques Diagnostics GmbH, Hannover, Germany
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, the Netherlands.
| |
Collapse
|
10
|
Langer S, Kreutz R, Eisenreich A. Metformin modulates apoptosis and cell signaling of human podocytes under high glucose conditions. J Nephrol 2016; 29:765-773. [PMID: 26733332 DOI: 10.1007/s40620-015-0258-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/15/2015] [Indexed: 12/22/2022]
Abstract
Diabetic nephropathy, which is associated with loss of human (h) podocytes (PC), is a major complication in diabetes mellitus. High-glucose modulates AMP-activated protein kinase (AMPK) signaling and cell apoptosis. Metformin has been demonstrated to reduce apoptosis and albuminuria in type 2 diabetes. Here, we examined the effect of metformin on cell apoptosis and on pro-/anti-apoptotic signaling in hPC. Expression analyses were done by real-time polymerase chain reaction and western blotting. Moreover, a functional apoptosis assay was performed in hPC. Determination of kinase activation by phosphorylation was done via immunodetection analyses and digital quantification. We found that hPC express organic cation transporter 1 which is the major uptake transporter of metformin. High-glucose reduced AMPK phosphorylation and induced mammalian target of rapamycin (mTOR) activation in podocytes, which was abolished and reversed by pre-treatment with metformin. Furthermore, metformin reduced high-glucose-induced podocytes apoptosis in a concentration-dependent manner. In summary, metformin exhibits an anti-apoptotic impact on podocytes under high-glucose conditions via activation of AMPK and inhibition of mTOR signaling. These data support a beneficial effect of metformin in diabetic nephropathy.
Collapse
Affiliation(s)
- Sebastian Langer
- Klinische Pharmakologie und Toxikologie, CC04, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Reinhold Kreutz
- Klinische Pharmakologie und Toxikologie, CC04, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas Eisenreich
- Klinische Pharmakologie und Toxikologie, CC04, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
11
|
Conserva F, Gesualdo L, Papale M. A Systems Biology Overview on Human Diabetic Nephropathy: From Genetic Susceptibility to Post-Transcriptional and Post-Translational Modifications. J Diabetes Res 2016; 2016:7934504. [PMID: 26798653 PMCID: PMC4698547 DOI: 10.1155/2016/7934504] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/16/2015] [Accepted: 09/10/2015] [Indexed: 12/19/2022] Open
Abstract
Diabetic nephropathy (DN), a microvascular complication occurring in approximately 20-40% of patients with type 2 diabetes mellitus (T2DM), is characterized by the progressive impairment of glomerular filtration and the development of Kimmelstiel-Wilson lesions leading to end-stage renal failure (ESRD). The causes and molecular mechanisms mediating the onset of T2DM chronic complications are yet sketchy and it is not clear why disease progression occurs only in some patients. We performed a systematic analysis of the most relevant studies investigating genetic susceptibility and specific transcriptomic, epigenetic, proteomic, and metabolomic patterns in order to summarize the most significant traits associated with the disease onset and progression. The picture that emerges is complex and fascinating as it includes the regulation/dysregulation of numerous biological processes, converging toward the activation of inflammatory processes, oxidative stress, remodeling of cellular function and morphology, and disturbance of metabolic pathways. The growing interest in the characterization of protein post-translational modifications and the importance of handling large datasets using a systems biology approach are also discussed.
Collapse
Affiliation(s)
- Francesca Conserva
- Division of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
- Division of Cardiology and Cardiac Rehabilitation, “S. Maugeri” Foundation, IRCCS, Institute of Cassano Murge, 70020 Cassano delle Murge, Italy
| | - Loreto Gesualdo
- Division of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
- *Loreto Gesualdo:
| | - Massimo Papale
- Molecular Medicine Center, Section of Nephrology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
12
|
Liu X, Yang G, Fan Q, Wang L. Proteomic profile in glomeruli of type-2 diabetic KKAy mice using 2-dimensional differential gel electrophoresis. Med Sci Monit 2014; 20:2705-13. [PMID: 25515740 PMCID: PMC4278697 DOI: 10.12659/msm.893078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a leading cause of end-stage renal disease. To search for glomerular proteins associated with early-stage DN, glomeruli of spontaneous type 2 diabetic KKAy mice were analyzed by 2-dimensional differential gel electrophoresis (2D-DIGE). Material/Methods Glomeruli of 20-week spontaneous type 2 diabetic KKAy mice and age-matched C57BL/6 mice were isolated by kidney perfusion with magnetic beads. Proteomic profiles of glomeruli were investigated by using 2D-DIGE and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Western blot analysis was used to confirm the results of proteomics. Immunohistochemical and semi-quantitative analysis were used to confirm the differential expression of prohibitin and annexin A2 in glomeruli. Results We identified 19 differentially expressed proteins – 17 proteins were significantly up-regulated and 2 proteins were significantly down-regulated in glomeruli of diabetic KKAy mice. Among them, prohibitin and annexin A2 were up-regulated and Western blot analysis validated the same result in proteomics. Immunohistochemical analysis also revealed up-regulation of prohibitin and annexin A2 in glomeruli of KKAy mice. Conclusions Our findings suggest that prohibitin and annexin A2 may be associated with early-stage DN. Further functional research might help to reveal the pathogenesis of DN.
Collapse
Affiliation(s)
- Xiaodan Liu
- Department of Nephrology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Gang Yang
- Department of Nephrology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Qiuling Fan
- Department of Nephrology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Lining Wang
- Department of Nephrology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
13
|
Meierhofer D, Weidner C, Sauer S. Integrative analysis of transcriptomics, proteomics, and metabolomics data of white adipose and liver tissue of high-fat diet and rosiglitazone-treated insulin-resistant mice identified pathway alterations and molecular hubs. J Proteome Res 2014; 13:5592-602. [PMID: 25287014 DOI: 10.1021/pr5005828] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The incidences of obesity and type 2 diabetes are rapidly increasing and have evolved into a global epidemic. In this study, we analyzed the molecular effects of high-fat diet (HFD)-induced insulin-resistance on mice in two metabolic target tissues, the white adipose tissue (WAT) and the liver. Additionally, we analyzed the effects of drug treatment using the specific PPARγ ligand rosiglitazone. We integrated transcriptome, proteome, and metabolome data sets for a combined holistic view of molecular mechanisms in type 2 diabetes. Using network and pathway analyses, we identified hub proteins such as SDHB and SUCLG1 in WAT and deregulation of major metabolic pathways in the insulin-resistant state, including the TCA cycle, oxidative phosphorylation, and branched chain amino acid metabolism. Rosiglitazone treatment resulted mainly in modulation via PPAR signaling and oxidative phosphorylation in WAT only. Interestingly, in HFD liver, we could observe a decrease of proteins involved in vitamin B metabolism such as PDXDC1 and DHFR and the according metabolites. Furthermore, we could identify sphingosine (Sph) and sphingosine 1-phosphate (SP1) as a drug-specific marker pair in the liver. In summary, our data indicate physiological plasticity gained by interconnected molecular pathways to counteract metabolic dysregulation due to high calorie intake and drug treatment.
Collapse
Affiliation(s)
- David Meierhofer
- Max Planck Institute for Molecular Genetics , Ihnestraße 63-73, 14195 Berlin, Germany
| | | | | |
Collapse
|