1
|
Topchiy I, Kocsis B. CB-1 receptor agonist drastically changes oscillatory activity, defining active sleep. Proc Natl Acad Sci U S A 2025; 122:e2411063122. [PMID: 40249784 PMCID: PMC12037043 DOI: 10.1073/pnas.2411063122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/01/2025] [Indexed: 04/20/2025] Open
Abstract
Brain oscillations in different behavioral states are essential for cognition, and oscillopathies contribute to cognitive dysfunction in neuropsychiatric diseases. Cannabis-1 receptor (CB1-R) activation was reported to suppress theta and fast gamma activities in rats during waking exploration, and here, we show that cannabis fundamentally alters network activity during sleep as well. Prominent theta rhythm is present in rapid eye movement sleep (REMS), whereas fast oscillations appear as regular sequences of sleep spindles during intermediate sleep (IS)-both implicated in dreaming and memory consolidation. The CB1-R agonist disrupted these mechanisms, restructuring IS-REMS episodes; IS lengthened sixfold and intruded REMS, where ongoing theta was drastically reduced. The spindle architecture was also affected; its amplitude increased, and its peak frequency downshifted into the theta range. Cannabis is known to induce psychotic-like conditions and cognitive deficits; thus, our results may help in understanding the dual effect of cannabis on cognitive states and the role of network oscillations in psychiatric pathology.
Collapse
Affiliation(s)
- Irina Topchiy
- Department Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department Psychiatry, Basic Neuroscience Division, McLean Hospital, Harvard Medical School, Boston, MA02478
| | - Bernat Kocsis
- Department Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| |
Collapse
|
2
|
Milosavljevic S, Smith AK, Wright CJ, Valafar H, Pocivavsek A. Kynurenine aminotransferase II inhibition promotes sleep and rescues impairments induced by neurodevelopmental insult. Transl Psychiatry 2023; 13:106. [PMID: 37002202 PMCID: PMC10066394 DOI: 10.1038/s41398-023-02399-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Dysregulated sleep is commonly reported in individuals with neuropsychiatric disorders, including schizophrenia (SCZ) and bipolar disorder (BPD). Physiology and pathogenesis of these disorders points to aberrant metabolism, during neurodevelopment and adulthood, of tryptophan via the kynurenine pathway (KP). Kynurenic acid (KYNA), a neuroactive KP metabolite derived from its precursor kynurenine by kynurenine aminotransferase II (KAT II), is increased in the brains of individuals with SCZ and BPD. We hypothesize that elevated KYNA, an inhibitor of glutamatergic and cholinergic neurotransmission, contributes to sleep dysfunction. Employing the embryonic kynurenine (EKyn) paradigm to elevate fetal brain KYNA, we presently examined pharmacological inhibition of KAT II to reduce KYNA in adulthood to improve sleep quality. Pregnant Wistar rats were fed either kynurenine (100 mg/day)(EKyn) or control (ECon) diet from embryonic day (ED) 15 to ED 22. Adult male (N = 24) and female (N = 23) offspring were implanted with devices to record electroencephalogram (EEG) and electromyogram (EMG) telemetrically for sleep-wake data acquisition. Each subject was treated with either vehicle or PF-04859989 (30 mg/kg, s.c.), an irreversible KAT II inhibitor, at zeitgeber time (ZT) 0 or ZT 12. KAT II inhibitor improved sleep architecture maintaining entrainment of the light-dark cycle; ZT 0 treatment with PF-04859989 induced transient improvements in rapid eye movement (REM) and non-REM (NREM) sleep during the immediate light phase, while the impact of ZT 12 treatment was delayed until the subsequent light phase. PF-04859989 administration at ZT 0 enhanced NREM delta spectral power and reduced activity and body temperature. In conclusion, reducing de novo KYNA production alleviated sleep disturbances and increased sleep quality in EKyn, while also improving sleep outcomes in ECon offspring. Our findings place attention on KAT II inhibition as a novel mechanistic approach to treating disrupted sleep behavior with potential translational implications for patients with neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Snezana Milosavljevic
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Andrew K Smith
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
| | - Courtney J Wright
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Homayoun Valafar
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
3
|
Herzog LE, Wang L, Yu E, Choi S, Farsi Z, Song BJ, Pan JQ, Sheng M. Mouse mutants in schizophrenia risk genes GRIN2A and AKAP11 show EEG abnormalities in common with schizophrenia patients. Transl Psychiatry 2023; 13:92. [PMID: 36914641 PMCID: PMC10011509 DOI: 10.1038/s41398-023-02393-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Schizophrenia is a heterogeneous psychiatric disorder with a strong genetic basis, whose etiology and pathophysiology remain poorly understood. Exome sequencing studies have uncovered rare, loss-of-function variants that greatly increase risk of schizophrenia [1], including loss-of-function mutations in GRIN2A (aka GluN2A or NR2A, encoding the NMDA receptor subunit 2A) and AKAP11 (A-Kinase Anchoring Protein 11). AKAP11 and GRIN2A mutations are also associated with bipolar disorder [2], and epilepsy and developmental delay/intellectual disability [1, 3, 4], respectively. Accessible in both humans and rodents, electroencephalogram (EEG) recordings offer a window into brain activity and display abnormal features in schizophrenia patients. Does loss of Grin2a or Akap11 in mice also result in EEG abnormalities? We monitored EEG in heterozygous and homozygous knockout Grin2a and Akap11 mutant mice compared with their wild-type littermates, at 3- and 6-months of age, across the sleep/wake cycle and during auditory stimulation protocols. Grin2a and Akap11 mutants exhibited increased resting gamma power, attenuated auditory steady-state responses (ASSR) at gamma frequencies, and reduced responses to unexpected auditory stimuli during mismatch negativity (MMN) tests. Sleep spindle density was reduced in a gene dose-dependent manner in Akap11 mutants, whereas Grin2a mutants showed increased sleep spindle density. The EEG phenotypes of Grin2a and Akap11 mutant mice show a variety of abnormal features that overlap considerably with human schizophrenia patients, reflecting systems-level changes caused by Grin2a and Akap11 deficiency. These neurophysiologic findings further substantiate Grin2a and Akap11 mutants as genetic models of schizophrenia and identify potential biomarkers for stratification of schizophrenia patients.
Collapse
Affiliation(s)
- Linnea E Herzog
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Lei Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eunah Yu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Soonwook Choi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zohreh Farsi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bryan J Song
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Morgan Sheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Ujma PP, Dresler M, Simor P, Fabó D, Ulbert I, Erőss L, Bódizs R. The sleep EEG envelope is a novel, neuronal firing-based human biomarker. Sci Rep 2022; 12:18836. [PMID: 36336717 PMCID: PMC9637727 DOI: 10.1038/s41598-022-22255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022] Open
Abstract
Sleep EEG reflects voltage differences relative to a reference, while its spectrum reflects its composition of various frequencies. In contrast, the envelope of the sleep EEG reflects the instantaneous amplitude of oscillations, while its spectrum reflects the rhythmicity of the occurrence of these oscillations. The sleep EEG spectrum is known to relate to demographic, psychological and clinical characteristics, but the envelope spectrum has been rarely studied. In study 1, we demonstrate in human invasive data from cortex-penetrating microelectrodes and subdural grids that the sleep EEG envelope spectrum reflects neuronal firing. In study 2, we demonstrate that the scalp EEG envelope spectrum is stable within individuals. A multivariate learning algorithm could predict age (r = 0.6) and sex (r = 0.5) from the EEG envelope spectrum. With age, oscillations shifted from a 4-5 s rhythm to faster rhythms. Our results demonstrate that the sleep envelope spectrum is a promising biomarker of demographic and disease-related phenotypes.
Collapse
Affiliation(s)
- Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary.
- National Institute of Clinical Neuroscience, Budapest, Hungary.
| | - Martin Dresler
- Radboud University Medical Center, Donders Institute, Nijmegen, The Netherlands
| | - Péter Simor
- Institute of Psychology, ELTE, Eötvös Loránd University, Budapest, Hungary
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Dániel Fabó
- National Institute of Clinical Neuroscience, Budapest, Hungary
| | - István Ulbert
- Department of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Research Centre for Natural Sciences, Institute for Cognitive Neuroscience and Psychology, Budapest, Hungary
| | - Loránd Erőss
- National Institute of Clinical Neuroscience, Budapest, Hungary
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
- National Institute of Clinical Neuroscience, Budapest, Hungary
| |
Collapse
|
5
|
Carruthers SP, Brunetti G, Rossell SL. Sleep disturbances and cognitive impairment in schizophrenia spectrum disorders: a systematic review and narrative synthesis. Sleep Med 2021; 84:8-19. [PMID: 34090012 DOI: 10.1016/j.sleep.2021.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 01/19/2023]
Abstract
Individuals with schizophrenia spectrum disorders (SSD) experience frequent sleep disturbances in addition to enduring cognitive impairments. The purpose of the present review was to systematically summarise our current understanding of the association between sleep disturbances and cognition in SSD. Through this, it was aimed to identify features of disturbed sleep that are reliably associated with cognitive deficits in SSD and identify the gaps within the current literature that require future investigation. Eighteen relevant studies were identified following a two-stage screening process. Following a structured narrative synthesis of key study components, no clear and consistent pattern emerged. Considerable methodological variability was present amongst the reviewed studies. Although some broad consistencies were identified, such as associations between sleep spindle density and sleep-dependent memory consolidation, the overall pattern of results lacked a cohesive composition due to the diverse list of sleep parameters and cognitive domains investigated, as well as a lack of replication. Additional research is needed before more definitive remarks can be made regarding the influence of sleep disturbances on cognitive function in SSD.
Collapse
Affiliation(s)
- Sean P Carruthers
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | - Gemma Brunetti
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia; Department of Psychiatry, St Vincent's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Gisabella B, Babu J, Valeri J, Rexrode L, Pantazopoulos H. Sleep and Memory Consolidation Dysfunction in Psychiatric Disorders: Evidence for the Involvement of Extracellular Matrix Molecules. Front Neurosci 2021; 15:646678. [PMID: 34054408 PMCID: PMC8160443 DOI: 10.3389/fnins.2021.646678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbances and memory dysfunction are key characteristics across psychiatric disorders. Recent advances have revealed insight into the role of sleep in memory consolidation, pointing to key overlap between memory consolidation processes and structural and molecular abnormalities in psychiatric disorders. Ongoing research regarding the molecular mechanisms involved in memory consolidation has the potential to identify therapeutic targets for memory dysfunction in psychiatric disorders and aging. Recent evidence from our group and others points to extracellular matrix molecules, including chondroitin sulfate proteoglycans and their endogenous proteases, as molecules that may underlie synaptic dysfunction in psychiatric disorders and memory consolidation during sleep. These molecules may provide a therapeutic targets for decreasing strength of reward memories in addiction and traumatic memories in PTSD, as well as restoring deficits in memory consolidation in schizophrenia and aging. We review the evidence for sleep and memory consolidation dysfunction in psychiatric disorders and aging in the context of current evidence pointing to the involvement of extracellular matrix molecules in these processes.
Collapse
Affiliation(s)
| | | | | | | | - Harry Pantazopoulos
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
7
|
Yazıhan NT, Yetkin S. Sleep, sleep spindles, and cognitive functions in drug-naive patients with first-episode psychosis. J Clin Sleep Med 2020; 16:2079-2087. [PMID: 32870142 DOI: 10.5664/jcsm.8776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
STUDY OBJECTIVES Various lines of clinical findings have suggested abnormalities in macro- or microstructural parameters of sleep in patients with schizophrenia. Meanwhile findings are inconclusive due to some confounding factors, such as the heterogeneity of the disorder, drug regimen, and duration of the illness. There are a few studies in the literature that have been conducted on drug-free patients with first-episode psychosis (FEP). Based on this knowledge, we aimed to explore sleep characteristics, sleep spindles, and neuropsychological profiles of the drug-naive patients with FEP. METHODS The study sample consisted of 21 drug-naive patients with FEP and 21 healthy participants. Polysomnography recordings were conducted for 2 subsequent nights. A neuropsychological test battery was administered for assessing cognitive functions. The Positive and Negative Syndrome Scale was applied to measure symptom severity of the patients. Spindle detection was performed visually. RESULTS According to the results of the study, the patient group's percentage of stage N2 sleep and sleep efficiency index was lower than in the control group. Among sleep spindle parameters, spindle density was found to be reduced in the patient group. The results of neuropsychological tests measuring executive functions, learning, and memory support the idea that there is a global cognitive deterioration from the early course of the disorder. In the psychotic group, negative symptoms were negatively correlated with verbal memory, learning, verbal fluency, and semantic organization. We found that the percentage of stage N3 sleep decreased while negative symptom severity increased. In addition, the percentage of stage N1 sleep increased as negative symptom severity increased. Reduction in stage N3 sleep was associated with an impairment in learning, verbal fluency, and response inhibition. The sleep spindle density and cognitive functions did not show any associations. CONCLUSIONS Taken together, these findings suggest that patients with FEP show global cognitive impairment (except for attention and processing speed), which is associated with changes in sleep architecture and higher score in a scale assessing negative symptoms. We conclude that cognitive function and spindle parameters differ nonlinearly among patients with FEP.
Collapse
Affiliation(s)
| | - Sinan Yetkin
- Department of Psychiatry, Health Sciences University, Ankara, Turkey
| |
Collapse
|
8
|
Ujma PP, Hajnal B, Bódizs R, Gombos F, Erőss L, Wittner L, Halgren E, Cash SS, Ulbert I, Fabó D. The laminar profile of sleep spindles in humans. Neuroimage 2020; 226:117587. [PMID: 33249216 PMCID: PMC9113200 DOI: 10.1016/j.neuroimage.2020.117587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/05/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Sleep spindles are functionally important NREM sleep EEG oscillations which are generated in thalamocortical, corticothalamic and possibly cortico-cortical circuits. Previous hypotheses suggested that slow and fast spindles or spindles with various spatial extent may be generated in different circuits with various cortical laminar innervation patterns. We used NREM sleep EEG data recorded from four human epileptic patients undergoing presurgical electrophysiological monitoring with subdural electrocorticographic grids (ECoG) and implanted laminar microelectrodes penetrating the cortex (IME). The position of IMEs within cortical layers was confirmed using postsurgical histological reconstructions. Many spindles detected on the IME occurred only in one layer and were absent from the ECoG, but with increasing amplitude simultaneous detection in other layers and on the ECoG became more likely. ECoG spindles were in contrast usually accompanied by IME spindles. Neither IME nor ECoG spindle cortical profiles were strongly associated with sleep spindle frequency or globality. Multiple-unit and single-unit activity during spindles, however, was heterogeneous across spindle types, but also across layers and patients. Our results indicate that extremely local spindles may occur in any cortical layer, but co-occurrence at other locations becomes likelier with increasing amplitude and the relatively large spindles detected on ECoG channels have a stereotypical laminar profile. We found no compelling evidence that different spindle types are associated with different laminar profiles, suggesting that they are generated in cortical and thalamic circuits with similar cortical innervation patterns. Local neuronal activity is a stronger candidate mechanism for driving functional differences between spindles subtypes.
Collapse
Affiliation(s)
- Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, 1089 Budapest, Hungary; Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary
| | - Boglárka Hajnal
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary; School of P.h.D. studies, Semmelweis University, 1085 Budapest, Hungary
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, 1089 Budapest, Hungary; Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University, 1088 Budapest, Hungary; MTA-PPKE Adolescent Development Research Group, Hungarian Academy of Sciences, 1088 Budapest, Hungary
| | - Loránd Erőss
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary
| | - Lucia Wittner
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary; Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network 1117 Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1088 Budapest, Hungary
| | - Eric Halgren
- Departments of Radiology and Neurosciences, University of California, 92093 San Diego CA, USA
| | - Sydney S Cash
- Center for Neurotechnology and Neurorecovery (CNTR), Department of Neurology, Massachusetts General Hospital, 02114 Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, 02115 MA, USA
| | - István Ulbert
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary; Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network 1117 Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1088 Budapest, Hungary
| | - Dániel Fabó
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary
| |
Collapse
|
9
|
Fröhlich F, Lustenberger C. Neuromodulation of sleep rhythms in schizophrenia: Towards the rational design of non-invasive brain stimulation. Schizophr Res 2020; 221:71-80. [PMID: 32354662 PMCID: PMC7316586 DOI: 10.1016/j.schres.2020.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/01/2023]
Abstract
Brain function critically depends on oscillatory synchronization of neuronal populations both during wake and sleep. Originally, neural oscillations have been discounted as an epiphenomenon. More recently, specific deficits in the structure of brain oscillations have been linked to psychiatric diseases. For example, schizophrenia is hallmarked by abnormalities in different brain oscillations. Key sleep rhythms during NEM sleep such as sleep spindles, which are implicated in memory consolidation and are related to cognitive functions, are strongly diminished in these patients compared to healthy controls. To date, it remains unclear whether these reductions in sleep oscillations are causal for the functional impairments observed in schizophrenia. The application of non-invasive brain stimulation permits the causal examination of brain network dynamics and will help to establish the causal association of sleep oscillations and symptoms of schizophrenia. To accomplish this, stimulation paradigms that selectively engage specific network targets such as sleep spindles or slow waves are needed. We propose that the successful development and application of these non-invasive brain stimulation approaches will require rational design that takes network dynamics and neuroanatomical information into account. The purpose of this article is to prepare the grounds for the next steps towards such rational design of non-invasive stimulation, with a special focus on electrical and auditory stimulation. First, we briefly summarize the deficits in network dynamics during sleep in schizophrenia. Then, we discuss today's and tomorrow's non-invasive brain stimulation modalities to engage these network targets.
Collapse
Affiliation(s)
- Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
10
|
Changes in cross-frequency coupling following closed-loop auditory stimulation in non-rapid eye movement sleep. Sci Rep 2020; 10:10628. [PMID: 32606321 PMCID: PMC7326971 DOI: 10.1038/s41598-020-67392-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/03/2020] [Indexed: 01/03/2023] Open
Abstract
Regional changes of non-rapid eye movement (NREM) sleep delta and sigma activity, and their temporal coupling have been related to experience-dependent plastic changes during previous wakefulness. These sleep-specific rhythms seem to be important for brain recovery and memory consolidation. Recently, it was demonstrated that by targeting slow waves in a particular region at a specific phase with closed-loop auditory stimulation, it is possible to locally manipulate slow-wave activity and interact with training-induced neuroplastic changes. In our study, we tested whether closed-loop auditory stimulation targeting the up-phase of slow waves might not only interact with the main sleep rhythms but also with their coupling within the circumscribed region. We demonstrate that while closed-loop auditory stimulation globally enhances delta, theta and sigma power, changes in cross-frequency coupling of these oscillations were more spatially restricted. Importantly, a significant increase in delta-sigma coupling was observed over the right parietal area, located directly posterior to the target electrode. These findings suggest that closed-loop auditory stimulation locally modulates coupling between delta phase and sigma power in a targeted region, which could be used to manipulate sleep-dependent neuroplasticity within the brain network of interest.
Collapse
|
11
|
Kaskie RE, Ferrarelli F. Sleep disturbances in schizophrenia: what we know, what still needs to be done. Curr Opin Psychol 2019; 34:68-71. [PMID: 31671368 DOI: 10.1016/j.copsyc.2019.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/31/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022]
Abstract
Sleep disturbances are commonly observed in schizophrenia (SCZ) and are associated with worse psychotic symptoms and poorer clinical outcomes. Early polysomnography studies have focused on characterizing differences in sleep architecture between patients with SCZ and healthy controls. More recently, research has focused on sleep-specific EEG oscillations, such as sleep spindles and slow waves, which reflect the integrity of underlying thalamo-cortical networks. Furthermore, high-density (hd)-EEG (≥64 channels), which affords enhanced spatial resolution, has been employed to better localize abnormalities in sleep characteristics and related thalamo-cortical circuits in patients with SCZ and related disorders. In this article, we will review the most relevant sleep abnormalities reported in SCZ, with an emphasis on recent findings, and propose directions for future research.
Collapse
|
12
|
Ujma PP, Konrad BN, Gombos F, Simor P, Pótári A, Genzel L, Pawlowski M, Steiger A, Bódizs R, Dresler M. The sleep EEG spectrum is a sexually dimorphic marker of general intelligence. Sci Rep 2017; 7:18070. [PMID: 29273758 PMCID: PMC5741768 DOI: 10.1038/s41598-017-18124-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/19/2017] [Indexed: 12/28/2022] Open
Abstract
The shape of the EEG spectrum in sleep relies on genetic and anatomical factors and forms an individual "EEG fingerprint". Spectral components of EEG were shown to be connected to mental ability both in sleep and wakefulness. EEG sleep spindle correlates of intelligence, however, exhibit a sexual dimorphism, with a more pronounced association to intelligence in females than males. In a sample of 151 healthy individuals, we investigated how intelligence is related to spectral components of full-night sleep EEG, while controlling for the effects of age. A positive linear association between intelligence and REM anterior beta power was found in females but not males. Transient, spindle-like "REM beta tufts" are described in the EEG of healthy subjects, which may reflect the functioning of a recently described cingular-prefrontal emotion and motor regulation network. REM sleep frontal high delta power was a negative correlate of intelligence. NREM alpha and sigma spectral power correlations with intelligence did not unequivocally remain significant after multiple comparisons correction, but exhibited a similar sexual dimorphism. These results suggest that the neural oscillatory correlates of intelligence in sleep are sexually dimorphic, and they are not restricted to either sleep spindles or NREM sleep.
Collapse
Affiliation(s)
- Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, H-1089, Budapest, Hungary.
- National Institute of Clinical Neuroscience, H-1145, Budapest, Hungary.
| | - Boris N Konrad
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 EN, Nijmegen, The Netherlands
| | - Ferenc Gombos
- National Institute of Clinical Neuroscience, H-1145, Budapest, Hungary
| | - Péter Simor
- Nyírő Gyula Hospital, National Institute of Psychiatry and Addictions, H-1135, Budapest, Hungary
- Department of Cognitive Sciences, Budapest University of Technology and Economics, H-1111, Budapest, Hungary
| | - Adrián Pótári
- Department of Cognitive Sciences, Budapest University of Technology and Economics, H-1111, Budapest, Hungary
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 EN, Nijmegen, The Netherlands
- Centre for Cognitive and Neural Systems, University of Edinburgh, EH8 9JZ, Edinburg, United Kingdom
| | | | - Axel Steiger
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, H-1089, Budapest, Hungary
- National Institute of Clinical Neuroscience, H-1145, Budapest, Hungary
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 EN, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Fan D, Wang Q, Su J, Xi H. Stimulus-induced transitions between spike-wave discharges and spindles with the modulation of thalamic reticular nucleus. J Comput Neurosci 2017; 43:203-225. [PMID: 28939929 DOI: 10.1007/s10827-017-0658-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/11/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022]
Abstract
It is believed that thalamic reticular nucleus (TRN) controls spindles and spike-wave discharges (SWD) in seizure or sleeping processes. The dynamical mechanisms of spatiotemporal evolutions between these two types of activity, however, are not well understood. In light of this, we first use a single-compartment thalamocortical neural field model to investigate the effects of TRN on occurrence of SWD and its transition. Results show that the increasing inhibition from TRN to specific relay nuclei (SRN) can lead to the transition of system from SWD to slow-wave oscillation. Specially, it is shown that stimulations applied in the cortical neuronal populations can also initiate the SWD and slow-wave oscillation from the resting states under the typical inhibitory intensity from TRN to SRN. Then, we expand into a 3-compartment coupled thalamocortical model network in linear and circular structures, respectively, to explore the spatiotemporal evolutions of wave states in different compartments. The main results are: (i) for the open-ended model network, SWD induced by stimulus in the first compartment can be transformed into sleep-like slow UP-DOWN and spindle states as it propagates into the downstream compartments; (ii) for the close-ended model network, weak stimulations performed in the first compartment can result in the consistent experimentally observed spindle oscillations in all three compartments; in contrast, stronger periodic single-pulse stimulations applied in the first compartment can induce periodic transitions between SWD and spindle oscillations. Detailed investigations reveal that multi-attractor coexistence mechanism composed of SWD, spindles and background state underlies these state evolutions. What's more, in order to demonstrate the state evolution stability with respect to the topological structures of neural network, we further expand the 3-compartment coupled network into 10-compartment coupled one, with linear and circular structures, and nearest-neighbor (NN) coupled network as well as its realization of small-world (SW) topology via random rewiring, respectively. Interestingly, for the cases of linear and circular connetivities, qualitatively similar results were obtained in addition to the more irregularity of firings. However, SWD can be eventually transformed into the consistent low-amplitude oscillations for both NN and SW networks. In particular, SWD evolves into the slow spindling oscillations and background tonic oscillations within the NN and SW network, respectively. Our modeling and simulation studies highlight the effect of network topology in the evolutions of SWD and spindling oscillations, which provides new insights into the mechanisms of cortical seizures development.
Collapse
Affiliation(s)
- Denggui Fan
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191, China.
| | - Jianzhong Su
- Department of Mathematics, University of Texas at Arlington, Arlington, TX, 76019-0408, USA
| | - Hongguang Xi
- Department of Mathematics, University of Texas at Arlington, Arlington, TX, 76019-0408, USA
| |
Collapse
|
14
|
Fast sleep spindle reduction in schizophrenia and healthy first-degree relatives: association with impaired cognitive function and potential intermediate phenotype. Eur Arch Psychiatry Clin Neurosci 2017; 267:213-224. [PMID: 27565806 DOI: 10.1007/s00406-016-0725-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/16/2016] [Indexed: 12/22/2022]
Abstract
Several studies in patients with schizophrenia reported a marked reduction in sleep spindle activity. To investigate whether the reduction may be linked to genetic risk of the illness, we analysed sleep spindle activity in healthy volunteers, patients with schizophrenia and first-degree relatives, who share an enriched set of schizophrenia susceptibility genes. We further investigated the correlation of spindle activity with cognitive function in first-degree relatives and whether spindle abnormalities affect both fast (12-15 Hz) and slow (9-12 Hz) sleep spindles. We investigated fast and slow sleep spindle activity during non-rapid eye movement sleep in a total of 47 subjects comprising 17 patients with schizophrenia, 13 healthy first-degree relatives and 17 healthy volunteers. Groups were balanced for age, gender, years of education and estimated verbal IQ. A subsample of relatives received additional testing for memory performance. Compared to healthy volunteers, fast spindle density was reduced in patients with schizophrenia and healthy first-degree relatives following a pattern consistent with an assumed genetic load for schizophrenia. The deficit in spindle density was specific to fast spindles and was associated with decreased memory performance. Our findings indicate familial occurrence of this phenotype and thus support the hypothesis that deficient spindle activity relates to genetic liability for schizophrenia. Furthermore, spindle reductions predict impaired cognitive function and are specific to fast spindles. This physiological marker should be further investigated as an intermediate phenotype of schizophrenia. It could also constitute a target for drug development, especially with regard to cognitive dysfunction.
Collapse
|
15
|
Reduced sleep spindle activity point to a TRN-MD thalamus-PFC circuit dysfunction in schizophrenia. Schizophr Res 2017; 180:36-43. [PMID: 27269670 PMCID: PMC5423439 DOI: 10.1016/j.schres.2016.05.023] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 11/23/2022]
Abstract
Sleep disturbances have been reliably reported in patients with schizophrenia, thus suggesting that abnormal sleep may represent a core feature of this disorder. Traditional electroencephalographic studies investigating sleep architecture have found reduced deep non-rapid eye movement (NREM) sleep, or slow wave sleep (SWS), and increased REM density. However, these findings have been inconsistently observed, and have not survived meta-analysis. By contrast, several recent EEG studies exploring brain activity during sleep have established marked deficits in sleep spindles in schizophrenia, including first-episode and early-onset patients, compared to both healthy and psychiatric comparison subjects. Spindles are waxing and waning, 12-16Hz NREM sleep oscillations that are generated within the thalamus by the thalamic reticular nucleus (TRN), and are then synchronized and sustained in the cortex. While the functional role of sleep spindles still needs to be fully established, increasing evidence has shown that sleep spindles are implicated in learning and memory, including sleep dependent memory consolidation, and spindle parameters have been associated to general cognitive ability and IQ. In this article we will review the EEG studies demonstrating sleep spindle deficits in patients with schizophrenia, and show that spindle deficits can predict their reduced cognitive performance. We will then present data indicating that spindle impairments point to a TRN-MD thalamus-prefrontal cortex circuit deficit, and discuss about the possible molecular mechanisms underlying thalamo-cortical sleep spindle abnormalities in schizophrenia.
Collapse
|
16
|
Lustenberger C, Boyle MR, Alagapan S, Mellin JM, Vaughn BV, Fröhlich F. Feedback-Controlled Transcranial Alternating Current Stimulation Reveals a Functional Role of Sleep Spindles in Motor Memory Consolidation. Curr Biol 2016; 26:2127-36. [PMID: 27476602 DOI: 10.1016/j.cub.2016.06.044] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/19/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
Transient episodes of brain oscillations are a common feature of both the waking and the sleeping brain. Sleep spindles represent a prominent example of a poorly understood transient brain oscillation that is impaired in disorders such as Alzheimer's disease and schizophrenia. However, the causal role of these bouts of thalamo-cortical oscillations remains unknown. Demonstrating a functional role of sleep spindles in cognitive processes has, so far, been hindered by the lack of a tool to target transient brain oscillations in real time. Here, we show, for the first time, selective enhancement of sleep spindles with non-invasive brain stimulation in humans. We developed a system that detects sleep spindles in real time and applies oscillatory stimulation. Our stimulation selectively enhanced spindle activity as determined by increased sigma activity after transcranial alternating current stimulation (tACS) application. This targeted modulation caused significant enhancement of motor memory consolidation that correlated with the stimulation-induced change in fast spindle activity. Strikingly, we found a similar correlation between motor memory and spindle characteristics during the sham night for the same spindle frequencies and electrode locations. Therefore, our results directly demonstrate a functional relationship between oscillatory spindle activity and cognition.
Collapse
Affiliation(s)
- Caroline Lustenberger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael R Boyle
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Sankaraleengam Alagapan
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juliann M Mellin
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bradley V Vaughn
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
17
|
McClain IJ, Lustenberger C, Achermann P, Lassonde JM, Kurth S, LeBourgeois MK. Developmental Changes in Sleep Spindle Characteristics and Sigma Power across Early Childhood. Neural Plast 2016; 2016:3670951. [PMID: 27110405 PMCID: PMC4826705 DOI: 10.1155/2016/3670951] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/01/2016] [Indexed: 11/17/2022] Open
Abstract
Sleep spindles, a prominent feature of the non-rapid eye movement (NREM) sleep electroencephalogram (EEG), are linked to cognitive abilities. Early childhood is a time of rapid cognitive and neurophysiological maturation; however, little is known about developmental changes in sleep spindles. In this study, we longitudinally examined trajectories of multiple sleep spindle characteristics (i.e., spindle duration, frequency, integrated spindle amplitude, and density) and power in the sigma frequency range (10-16 Hz) across ages 2, 3, and 5 years (n = 8; 3 males). At each time point, nocturnal sleep EEG was recorded in-home after 13-h of prior wakefulness. Spindle duration, integrated spindle amplitude, and sigma power increased with age across all EEG derivations (C3A2, C4A1, O2A1, and O1A2; all ps < 0.05). We also found a developmental decrease in mean spindle frequency (p < 0.05) but no change in spindle density with increasing age. Thus, sleep spindles increased in duration and amplitude but decreased in frequency across early childhood. Our data characterize early developmental changes in sleep spindles, which may advance understanding of thalamocortical brain connectivity and associated lifelong disease processes. These findings also provide unique insights into spindle ontogenesis in early childhood and may help identify electrophysiological features related to healthy and aberrant brain maturation.
Collapse
Affiliation(s)
- Ian J. McClain
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Caroline Lustenberger
- Child Development Center, University Children's Hospital Zurich, 8032 Zurich, Switzerland
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Jonathan M. Lassonde
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Salome Kurth
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Monique K. LeBourgeois
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|