1
|
Couto-Silva CM, Nunes K, Venturini G, Araújo Castro e Silva M, Pereira LV, Comas D, Pereira A, Hünemeier T. Indigenous people from Amazon show genetic signatures of pathogen-driven selection. SCIENCE ADVANCES 2023; 9:eabo0234. [PMID: 36888716 PMCID: PMC9995071 DOI: 10.1126/sciadv.abo0234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Ecological conditions in the Amazon rainforests are historically favorable for the transmission of numerous tropical diseases, especially vector-borne diseases. The high diversity of pathogens likely contributes to the strong selective pressures for human survival and reproduction in this region. However, the genetic basis of human adaptation to this complex ecosystem remains unclear. This study investigates the possible footprints of genetic adaptation to the Amazon rainforest environment by analyzing the genomic data of 19 native populations. The results based on genomic and functional analysis showed an intense signal of natural selection in a set of genes related to Trypanosoma cruzi infection, which is the pathogen responsible for Chagas disease, a neglected tropical parasitic disease native to the Americas that is currently spreading worldwide.
Collapse
Affiliation(s)
- Cainã M. Couto-Silva
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
| | - Kelly Nunes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
| | - Gabriela Venturini
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marcos Araújo Castro e Silva
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
- Institut de Biologia Evolutiva, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Lygia V. Pereira
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
| | - David Comas
- Institut de Biologia Evolutiva, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Alexandre Pereira
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
- Institut de Biologia Evolutiva (CSIC/Universitat Pompeu Fabra), Barcelona 08003, Spain
| |
Collapse
|
2
|
Lewandowska M, Jędrychowska-Dańska K, Płoszaj T, Witas P, Zamerska A, Mańkowska-Pliszka H, Witas HW. Searching for signals of recent natural selection in genes of the innate immune response - ancient DNA study. INFECTION GENETICS AND EVOLUTION 2018; 63:62-72. [PMID: 29763671 DOI: 10.1016/j.meegid.2018.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
The last decade has seen sharp progress in the field of human evolutionary genetics and a great amount of genetic evidence of natural selection has been provided so far. Since host-pathogen co-evolution is difficult to trace due to the polygenic nature of human susceptibility to microbial diseases, of particular interest is any signal of natural selection in response to the strong selective pressure exerted by pathogens. Analysis of ancient DNA allows for the direct insight into changes of a gene pool content over time and enables monitoring allele frequency fluctuations. Among pathogenic agents, mycobacteria are proved to have remained in an intimate, long-lasting relation with humans, reflected by the current high level of host resistance. Therefore, we aimed to investigate the prevalence of several polymorphisms within innate immune response genes related to susceptibility to mycobacterial diseases (in SLC11A1, MBL2, TLR2, P2RX7, IL10, TNFA) in time series data from North and East Poland (1st-18th century AD, n = 207). The comparison of allele frequencies over time revealed a predominant role of genetic drift in shaping past gene pool of small, probably isolated groups, which was explained by the high level of population differentiation and limited gene flow. However, the trajectory of frequency fluctuations of two SNPs suggested the possibility of their non-neutral evolution and the results of applied forward simulations further strengthened the hypothesis of natural selection acting on those loci. However, we observed an unusual excess of homozygosity in the profile of several SNPs, which pinpoints to the necessity of further research on temporally and spatially diverse samples to support our inference on non-stochastic evolution, ideally employing pathway-based approaches. Nevertheless, our study confirms that time series data could help to decipher very recent human adaptation to life-threatening pathogens and assisting demographic events.
Collapse
Affiliation(s)
- Magda Lewandowska
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Poland; Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Krystyna Jędrychowska-Dańska
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Poland
| | - Tomasz Płoszaj
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Poland
| | - Piotr Witas
- Department of Medical Biotechnology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Poland
| | - Alicja Zamerska
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Poland
| | - Hanna Mańkowska-Pliszka
- Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Warsaw, Poland
| | - Henryk W Witas
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Poland
| |
Collapse
|
3
|
Lewandowska M, Jędrychowska-Dańska K, Zamerska A, Płoszaj T, Witas HW. The genetic profile of susceptibility to infectious diseases in Roman-Period populations from Central Poland. INFECTION GENETICS AND EVOLUTION 2016; 47:1-8. [PMID: 27847329 DOI: 10.1016/j.meegid.2016.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/13/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022]
Abstract
For thousands of years human beings have resisted life-threatening pathogens. This ongoing battle is considered to be the major force shaping our gene pool as every micro-evolutionary process provokes specific shifts in the genome, both that of the host and the pathogen. Past populations were more susceptible to changes in allele frequencies not only due to selection pressure, but also as a result of genetic drift, migration and inbreeding. In the present study we have investigated the frequency of five polymorphisms within innate immune-response genes (SLC11A1 D543N, MBL2 G161A, P2RX7 A1513C, IL10 A-1082G, TLR2 -196 to -174 ins/del) related to susceptibility to infections in humans. The DNA of individuals from two early Roman-Period populations of Linowo and Rogowo was analysed. The distribution of three mutations varied significantly when compared to the modern Polish population. The TAFT analysis suggests that the decreased frequency of SLC11A1 D543N in modern Poles as compared to 2nd century Linowo samples is the result of non-stochastic mechanisms, such as purifying or balancing selection. The disparity in frequency of other mutations is most likely the result of genetic drift, an evolutionary force which is remarkably amplified in low-size groups. Together with the FST analysis, mtDNA haplotypes' distribution and deviation from the Hardy-Weinberg equilibrium, we suggest that the two populations were not interbreeding (despite the close proximity between them), but rather inbreeding, the results of which are particularly pronounced among Rogowo habitants.
Collapse
Affiliation(s)
- Magda Lewandowska
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, 90-136, Poland.
| | - Krystyna Jędrychowska-Dańska
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, 90-136, Poland
| | - Alicja Zamerska
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, 90-136, Poland
| | - Tomasz Płoszaj
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, 90-136, Poland
| | - Henryk W Witas
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, 90-136, Poland
| |
Collapse
|