1
|
Cho Y, Lee H, Jeong W, Jung KB, Lee SY, Park S, Yeun J, Kwon O, Son JG, Lee TG, Son MY, Im SG. Long-Term Culture of Human Pluripotent Stem Cells in Xeno-Free Condition Using Functional Polymer Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403952. [PMID: 39015054 DOI: 10.1002/adma.202403952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/13/2024] [Indexed: 07/18/2024]
Abstract
Human pluripotent stem cells (hPSCs), encompassing human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold immense potential in regenerative medicine, offering new opportunities for personalized cell therapies. However, their clinical translation is hindered by the inevitable reliance on xenogeneic components in culture environments. This study addresses this challenge by engineering a fully synthetic, xeno-free culture substrate, whose surface composition is tailored systematically for xeno-free culture of hPSCs. A functional polymer surface, pGC2 (poly(glycidyl methacrylate-grafting-guanidine-co-carboxylic acrylate)), offers excellent cell-adhesive properties as well as non-cytotoxicity, enabling robust hESCs and hiPSCs growth while presenting cost-competitiveness and scalability over Matrigel. This investigation includes comprehensive evaluations of pGC2 across diverse experimental conditions, demonstrating its wide adaptability with various pluripotent stem cell lines, culture media, and substrates. Crucially, pGC2 supports long-term hESCs and hiPSCs expansion, up to ten passages without compromising their stemness and pluripotency. Notably, this study is the first to confirm an identical proteomic profile after ten passages of xeno-free cultivation of hiPSCs on a polymeric substrate compared to Matrigel. The innovative substrate bridges the gap between laboratory research and clinical translation, offering a new promising avenue for advancing stem cell-based therapies.
Collapse
Affiliation(s)
- Younghak Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hana Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Wonji Jeong
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kwang Bo Jung
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sun Young Lee
- Korea Research Institute of Standards and Science (KRISS), Daejeon, 34141, Republic of Korea
| | - Seonghyeon Park
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jemin Yeun
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ohman Kwon
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jin Gyeong Son
- Korea Research Institute of Standards and Science (KRISS), Daejeon, 34141, Republic of Korea
| | - Tae Geol Lee
- Korea Research Institute of Standards and Science (KRISS), Daejeon, 34141, Republic of Korea
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sung Gap Im
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
De Sousa PA, Perfect L, Ye J, Samuels K, Piotrowska E, Gordon M, Mate R, Abranches E, Wishart TM, Dockrell DH, Courtney A. Hyaluronan in mesenchymal stromal cell lineage differentiation from human pluripotent stem cells: application in serum free culture. Stem Cell Res Ther 2024; 15:130. [PMID: 38702837 PMCID: PMC11069290 DOI: 10.1186/s13287-024-03719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/05/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Hyaluronan (HA) is an extracellular glycosaminoglycan polysaccharide with widespread roles throughout development and in healthy and neoplastic tissues. In pluripotent stem cell culture it can support both stem cell renewal and differentiation. However, responses to HA in culture are influenced by interaction with a range of cognate factors and receptors including components of blood serum supplements, which alter results. These may contribute to variation in cell batch production yield and phenotype as well as heighten the risks of adventitious pathogen transmission in the course of cell processing for therapeutic applications. MAIN: Here we characterise differentiation of a human embryo/pluripotent stem cell derived Mesenchymal Stromal Cell (hESC/PSC-MSC)-like cell population by culture on a planar surface coated with HA in serum-free media qualified for cell production for therapy. Resulting cells met minimum criteria of the International Society for Cellular Therapy for identification as MSC by expression of. CD90, CD73, CD105, and lack of expression for CD34, CD45, CD14 and HLA-II. They were positive for other MSC associated markers (i.e.CD166, CD56, CD44, HLA 1-A) whilst negative for others (e.g. CD271, CD71, CD146). In vitro co-culture assessment of MSC associated functionality confirmed support of growth of hematopoietic progenitors and inhibition of mitogen activated proliferation of lymphocytes from umbilical cord and adult peripheral blood mononuclear cells, respectively. Co-culture with immortalized THP-1 monocyte derived macrophages (Mɸ) concurrently stimulated with lipopolysaccharide as a pro-inflammatory stimulus, resulted in a dose dependent increase in pro-inflammatory IL6 but negligible effect on TNFα. To further investigate these functionalities, a bulk cell RNA sequence comparison with adult human bone marrow derived MSC and hESC substantiated a distinctive genetic signature more proximate to the former. CONCLUSION Cultivation of human pluripotent stem cells on a planar substrate of HA in serum-free culture media systems is sufficient to yield a distinctive developmental mesenchymal stromal cell lineage with potential to modify the function of haematopoietic lineages in therapeutic applications.
Collapse
Affiliation(s)
- Paul A De Sousa
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Stroma Therapeutics Ltd, Glasgow, UK.
| | - Leo Perfect
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | - Jinpei Ye
- Institute of Biomedical Science, Shanxi University, Taiyuan, Shanxi, China
| | - Kay Samuels
- Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Ewa Piotrowska
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Department of Molecular Biology, University of Gdansk, Gdańsk, Poland
| | - Martin Gordon
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | - Ryan Mate
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | - Elsa Abranches
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | | | - David H Dockrell
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
3
|
Liu S, Chi Y, Wu X, Zhu B, Wang H, Liang Y, Wang Y. Fat Stem Cells Combined with Complement C3 Inhibits the Progress of Type 2 Diabetes in Rats. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assessed the effect of fat stem cells combined with complement C3 on Wnt/β-catenin pathway in type 2 diabetic rats. 30 male rats were randomly and equally divided into group of type 2 diabetes (intraperitoneal injection of urea with cephalosporins at a dose of
30 mg/kg and fed with high sugar and fat), type 2 diabetes+adipose stem cells+C3 group (after adipose stem cells+C3 group) and control group. Rats in adipose stem cells+C3 group received administration of stem cells and C3. The model of type 2 diabetic rats was successfully constructed. The
blood glucose of type 2 diabetic rats and fat stem cell+C3 group was significantly higher than 11.1 mmol/L. Adipocyte was induced to be differentiated into islet cells depending on insulin secretion and glucose concentration. The combination of complement C3 improved the glucose sensitivity
in type 2 diabetic rats. Compared with diabetic group, β-catenin and TCF in fat stem cell+C3 group were significantly decreased (P < 0.05). In conclusion, fat stem cells combined with complement C3 inhibit the disease progression in type 2 diabetic rats possibly by inhibiting
the activation of Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yangfeng Chi
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Xinye Wu
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Bingbing Zhu
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Hao Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yongping Liang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yunman Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| |
Collapse
|
4
|
Induced pluripotency and spontaneous reversal of cellular aging in supercentenarian donor cells. Biochem Biophys Res Commun 2020; 525:563-569. [DOI: 10.1016/j.bbrc.2020.02.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
|
5
|
Huang W, Wang C, Xie L, Wang X, Zhang L, Chen C, Jiang B. Traditional two-dimensional mesenchymal stem cells (MSCs) are better than spheroid MSCs on promoting retinal ganglion cells survival and axon regeneration. Exp Eye Res 2019; 185:107699. [DOI: 10.1016/j.exer.2019.107699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/09/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
|
6
|
Letter to the Editor: Stem Cells Combined With Platelet-rich Plasma Effectively Treat Corticosteroid-induced Osteonecrosis of the Hip: A Prospective Study. Clin Orthop Relat Res 2018; 476:1126-1128. [PMID: 29601389 PMCID: PMC5916621 DOI: 10.1007/s11999.0000000000000283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Zhu M, He X, Wang XH, Qiu W, Xing W, Guo W, An TC, Ao LQ, Hu XT, Li Z, Liu XP, Xiao N, Yu J, Huang H, Xu X. Complement C5a induces mesenchymal stem cell apoptosis during the progression of chronic diabetic complications. Diabetologia 2017; 60:1822-1833. [PMID: 28577176 DOI: 10.1007/s00125-017-4316-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/25/2017] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS Regeneration and repair mediated by mesenchymal stem cells (MSCs) are key self-protection mechanisms against diabetic complications, a reflection of diabetes-related cell/tissue damage and dysfunction. MSC abnormalities have been reported during the progression of diabetic complications, but little is known about whether a deficiency in these cells plays a role in the pathogenesis of this disease. In addition to MSC resident sites, peripheral circulation is a major source of MSCs that participate in the regeneration and repair of damaged tissue. Therefore, we investigated whether there is a deficiency of circulating MSC-like cells in people with diabetes and explored the underlying mechanisms. METHODS The abundance of MSC-like cells in peripheral blood was evaluated by FACS. Selected diabetic and non-diabetic serum (DS and NDS, respectively) samples were used to mimic diabetic and non-diabetic microenvironments, respectively. The proliferation and survival of MSCs under different serum conditions were analysed using several detection methods. The survival of MSCs in diabetic microenvironments was also investigated in vivo using leptin receptor mutant (Lepr db/db ) mice. RESULTS Our data showed a significant decrease in the abundance of circulating MSC-like cells, which was correlated with complications in individuals with type 2 diabetes. DS strongly impaired the proliferation and survival of culture-expanded MSCs through the complement system but not through exposure to high glucose levels. DS-induced MSC apoptosis was mediated, at least in part, by the complement C5a-dependent upregulation of Fas-associated protein with death domain (FADD) and the Bcl-2-associated X protein (BAX)/B cell lymphoma 2 (Bcl-2) ratio, which was significantly inhibited by neutralising C5a or by the pharmacological or genetic inhibition of the C5a receptor (C5aR) on MSCs. Moreover, blockade of the C5a/C5aR pathway significantly inhibited the apoptosis of transplanted MSCs in Lepr db/db recipient mice. CONCLUSIONS/INTERPRETATION C5a-dependent apoptotic death is probably involved in MSC deficiency and in the progression of complications in individuals with type 2 diabetes. Therefore, anticomplement therapy may be a novel intervention for diabetic complications.
Collapse
Affiliation(s)
- Ming Zhu
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Xiao He
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Xiao-Hui Wang
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
- Department of Histology and Embryology, Medical College of Qingdao University, Qingdao, People's Republic of China
| | - Wei Qiu
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Wei Xing
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Wei Guo
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Tian-Chen An
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Luo-Quan Ao
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Xue-Ting Hu
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Zhan Li
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Xiao-Ping Liu
- Department of Histology and Embryology, Medical College of Qingdao University, Qingdao, People's Republic of China
| | - Nan Xiao
- Ninth Department, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Jian Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hong Huang
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Xiang Xu
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China.
| |
Collapse
|