1
|
Yue Z, Zhu Y, Chen T, Feng T, Zhou Y, Zhang J, Zhang N, Yang J, Luo G, Wang Z. Bletilla striata polysaccharide-coated andrographolide nanomicelles for targeted drug delivery to enhance anti-colon cancer efficacy. Front Immunol 2024; 15:1380229. [PMID: 38911867 PMCID: PMC11190162 DOI: 10.3389/fimmu.2024.1380229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Background Vitamin E, which is also known as tocopherol, is a compound with a polyphenol structure. Its esterified derivative, Vitamin E succinate (VES), exhibits unique anticancer and healthcare functions as well as immunomodulatory effects. Natural polysaccharides are proved to be a promising material for nano-drug delivery systems, which show excellent biodegradability and biocompatibility. In this study, we employed a novel bletilla striata polysaccharide-vitamin E succinate polymer (BSP-VES) micelles to enhance the tumor targeting and anti-colon cancer effect of andrographolide (AG). Methods BSP-VES polymer was synthesized through esterification and its structure was confirmed using 1H NMR. AG@BSP-VES was prepared via the dialysis method and the drug loading, entrapment efficiency, stability, and safety were assessed. Furthermore, the tumor targeting ability of AG@BSP-VES was evaluated through targeted cell uptake and in vivo imaging. The antitumor activity of AG@BSP-VES was measured in vitro using MTT assay, Live&Dead cell staining, and cell scratch test. Results In this study, we successfully loaded AG into BSP-VES micelles (AG@BSP-VES), which exhibited good stability, biosafety and sustained release effect. In addition, AG@BSP-VES also showed excellent internalization capability into CT26 cells compared with NCM460 cells in vitro. Meanwhile, the specific delivery of AG@BSP-VES micelles into subcutaneous and in-situ colon tumors was observed compared with normal colon tissues in vivo during the whole experiment process (1-24 h). What's more, AG@BSP-VES micelles exhibited significant antitumor activities than BSP-VES micelles and free AG. Conclusion The study provides a meaningful new idea and method for application in drug delivery system and targeted treatment of colon cancer based on natural polysaccharides.
Collapse
Affiliation(s)
- Zhongqun Yue
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Nano-drug Technology Research Center of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yue Zhu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Nano-drug Technology Research Center of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Teng Chen
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Nano-drug Technology Research Center of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tingting Feng
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang A&F University, Hangzhou, China
| | - Ning Zhang
- School of Acupuncture-Moxibustion and Tuina of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jing Yang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Gang Luo
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Zuhua Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Nano-drug Technology Research Center of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
2
|
Kashkooli FM, Jakhmola A, A Ferrier G, Sathiyamoorthy K, Tavakkoli J(J, C Kolios M. Development of an ultrasound-mediated nano-sized drug-delivery system for cancer treatment: from theory to experiment. Nanomedicine (Lond) 2024; 19:1167-1189. [PMID: 38722104 PMCID: PMC11418290 DOI: 10.2217/nnm-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/06/2024] [Indexed: 09/21/2024] Open
Abstract
Aim: To establish a methodology for understanding how ultrasound (US) induces drug release from nano-sized drug-delivery systems (NSDDSs) and enhances drug penetration and uptake in tumors. This aims to advance cancer treatment strategies.Materials & methods: We developed a multi-physics mathematical model to elucidate and understand the intricate mechanisms governing drug release, transport and delivery. Unique in vitro models (monolayer, multilayer, spheroid) and a tailored US exposure setup were introduced to evaluate drug penetration and uptake.Results: The results highlight the potential advantages of US-mediated NSDDSs over conventional NSDDSs and chemotherapy, notably in enhancing drug release and inducing cell death.Conclusion: Our sophisticated numerical and experimental methods aid in determining and quantifying drug penetration and uptake into solid tumors.
Collapse
Affiliation(s)
| | - Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Graham A Ferrier
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | | | - Jahangir (Jahan) Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science & Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science & Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
3
|
Shen X, Pan D, Gong Q, Gu Z, Luo K. Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives. Bioact Mater 2024; 32:445-472. [PMID: 37965242 PMCID: PMC10641097 DOI: 10.1016/j.bioactmat.2023.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Effective tumor treatment depends on optimizing drug penetration and accumulation in tumor tissue while minimizing systemic toxicity. Nanomedicine has emerged as a key solution that addresses the rapid clearance of free drugs, but achieving deep drug penetration into solid tumors remains elusive. This review discusses various strategies to enhance drug penetration, including manipulation of the tumor microenvironment, exploitation of both external and internal stimuli, pioneering nanocarrier surface engineering, and development of innovative tactics for active tumor penetration. One outstanding strategy is organelle-affinitive transfer, which exploits the unique properties of specific tumor cell organelles and heralds a potentially transformative approach to active transcellular transfer for deep tumor penetration. Rigorous models are essential to evaluate the efficacy of these strategies. The patient-derived xenograft (PDX) model is gaining traction as a bridge between laboratory discovery and clinical application. However, the journey from bench to bedside for nanomedicines is fraught with challenges. Future efforts should prioritize deepening our understanding of nanoparticle-tumor interactions, re-evaluating the EPR effect, and exploring novel nanoparticle transport mechanisms.
Collapse
Affiliation(s)
- Xiaoding Shen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
4
|
Tutty MA, Prina-Mello A. Three-Dimensional Spheroids for Cancer Research. Methods Mol Biol 2023; 2645:65-103. [PMID: 37202612 DOI: 10.1007/978-1-0716-3056-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In vitro cell culture is one of the most widely used tools used today for increasing our understanding of various things such as protein production, mechanisms of drug action, tissue engineering, and overall cellular biology. For the past decades, however, cancer researchers have relied heavily on conventional two-dimensional (2D) monolayer culture techniques to test a variety of aspects of cancer research ranging from the cytotoxic effects of antitumor drugs to the toxicity of diagnostic dyes and contact tracers. However, many promising cancer therapies have either weak or no efficacy in real-life conditions, therefore delaying or stopping altogether their translating to the clinic. This is, in part, due to the reductionist 2D cultures used to test these materials, which lack appropriate cell-cell contacts, have altered signaling, do not represent the natural tumor microenvironment, and have different drug responses, due to their reduced malignant phenotype when compared to real in vivo tumors. With the most recent advances, cancer research has moved into 3D biological investigation. Three-dimensional (3D) cultures of cancer cells not only recapitulate the in vivo environment better than their 2D counterparts, but they have, in recent years, emerged as a relatively low-cost and scientifically accurate methodology for studying cancer. In this chapter, we highlight the importance of 3D culture, specifically 3D spheroid culture, reviewing some key methodologies for forming 3D spheroids, discussing the experimental tools that can be used in conjunction with 3D spheroids and finally their applications in cancer research.
Collapse
Affiliation(s)
- Melissa Anne Tutty
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland.
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute, (TTMI), School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Saw WS, Anasamy T, Anh Do TT, Lee HB, Chee CF, Isci U, Misran M, Dumoulin F, Chong WY, Kiew LV, Imae T, Chung LY. Nanoscaled PAMAM Dendrimer Spacer Improved the Photothermal-Photodynamic Treatment Efficiency of Photosensitizer-Decorated Confeito-Like Gold Nanoparticles for Cancer Therapy. Macromol Biosci 2022; 22:e2200130. [PMID: 35579182 DOI: 10.1002/mabi.202200130] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/07/2022] [Indexed: 11/11/2022]
Abstract
A critical factor in developing an efficient photosensitizer-gold nanoparticle (PS-AuNP) hybrid system with improved plasmonic photosensitization is to allocate a suitable space between AuNPs and PS. Poly(amidoamine) (PAMAM) dendrimer is selected as a spacer between the PS and confeito-like gold nanoparticles (confeito-AuNPs), providing the required distance (≈2.5-22.5 nm) for plasmon-enhanced singlet oxygen generation and heat production upon 638-nm laser irradiation and increase the cellular internalization of the nanoconjugates. The loading of the PS, tetrakis(4-carboxyphenyl) porphyrin (TCPP) and modified zinc phthalocyanine (ZnPc1) onto PAMAM-confeito-AuNPs demonstrate better in vitro cancer cell-killing efficacy, as the combined photothermal-photodynamic therapies (PTT-PDTs) outperforms the single treatment modalities (PTT or PDT alone). These PS-PAMAM-confeito-AuNPs also demonstrate higher phototoxicity than photosensitizers directly conjugated to confeito-AuNPs (TCPP-confeito-AuNPs and ZnPc1-confeito-AuNPs) against all breast cancer cell lines tested (MDA-MB-231, MCF7 and 4T1). In the in vivo studies, TCPP-PAMAM-confeito-AuNPs are biocompatible and exhibit a selective tumor accumulation effect, resulting in higher antitumor efficacy than free TCPP, PAMAM-confeito-AuNPs and TCPP-confeito-AuNPs. In vitro and in vivo evaluations confirm PAMAM effectiveness in facilitating cellular uptake, plasmon-enhanced singlet oxygen and heat generation. In summary, this study highlights the potential of integrating a PAMAM spacer in enhancing the plasmon effect-based photothermal-photodynamic anticancer treatment efficiency of PS-decorated confeito-AuNPs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wen Shang Saw
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Theebaa Anasamy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, 75150, Malaysia
| | - Thu Thi Anh Do
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei, 10607, Taiwan
| | - Hong Boon Lee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, 50603, Malaysia.,School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Umit Isci
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Turkey
| | - Misni Misran
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Fabienne Dumoulin
- Department of Medical Engineering, Faculty of Engineering, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | - Wu Yi Chong
- Photonics Research Centre, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Toyoko Imae
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei, 10607, Taiwan.,Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei, 10607, Taiwan
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
6
|
Rehman MU, Khan A, Imtiyaz Z, Ali S, Makeen HA, Rashid S, Arafah A. Current Nano-therapeutic Approaches Ameliorating Inflammation in Cancer Progression. Semin Cancer Biol 2022; 86:886-908. [DOI: 10.1016/j.semcancer.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
7
|
Zhang M, Gao S, Yang D, Fang Y, Lin X, Jin X, Liu Y, Liu X, Su K, Shi K. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharm Sin B 2021; 11:2265-2285. [PMID: 34522587 PMCID: PMC8424218 DOI: 10.1016/j.apsb.2021.03.033] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/05/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
The administration of nanoparticles (NPs) first faces the challenges of evading renal filtration and clearance of reticuloendothelial system (RES). After that, NPs infiltrate through the expanded endothelial space and penetrated the dense stroma of tumor microenvironment to tumor cells. As long as possible to prolong the time of NPs remaining in tumor tissue, NPs release active agent and induce pharmacological action. This review provides a comprehensive summary of the physical and chemical properties of NPs and the influence of various biological factors in tumor microenvironment, and discusses how to improve the final efficacy through adjusting the characteristics and structure of NPs. Perspectives and future directions are also provided.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kai Shi
- Corresponding author. Tel./fax: +86 24 43520557.
| |
Collapse
|
8
|
Rieck K, Bromma K, Sung W, Bannister A, Schuemann J, Chithrani DB. Modulation of gold nanoparticle mediated radiation dose enhancement through synchronization of breast tumor cell population. Br J Radiol 2019; 92:20190283. [PMID: 31219711 PMCID: PMC6724617 DOI: 10.1259/bjr.20190283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/23/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The incorporation of high atomic number materials such as gold nanoparticles (GNPs) into tumor cells is being tested to enhance the local radiotherapy (RT) dose. It is also known that the radiosensitivity of tumor cells depends on the phase of their cell cycle. Triple combination of GNPs, phase of tumor cell population, and RT for improved outcomes in cancer treatment. METHODS We used a double-thymidine block method for synchronization of the tumor cell population. GNPs of diameters 17 and 46 nm were used to capture the size dependent effects. A radiation dose of 2 Gy with 6 MV linear accelerator was used to assess the efficacy of this proposed combined treatment. A triple negative breast cancer cell line, MDA-MB-231 was chosen as the model cell line. Monte Carlo (MC) calculations were done to predict the GNP-mediated cell death using the experimental GNP uptake data. RESULTS There was a 1.5- and 2- fold increase in uptake of 17 and 46 nm GNPs in the synchronized cell population, respectively. A radiation dose of 2 Gy with clinically relevant 6 MV photons resulted in a 62 and 38 % enhancement in cell death in the synchronized cell population with the incorporation of 17 and 46 nm GNPs, respectively. MC data supported the experimental data, but to a lesser extent. CONCLUSION A triple combination of GNPs, cell cycle synchronization, and RT could pave the way to enhance the local radiation dose while minimizing side effects to the surrounding healthy tissue. ADVANCES IN KNOWLEDGE This is the first study to show that the combined use of GNPs, phase of tumor cell population, and RT could enhance tumor cell death.
Collapse
Affiliation(s)
- Kristy Rieck
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Kyle Bromma
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Wonmo Sung
- Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Aaron Bannister
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Jan Schuemann
- Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
9
|
Gonell F, Botas AMP, Brites CDS, Amorós P, Carlos LD, Julián-López B, Ferreira RAS. Aggregation-induced heterogeneities in the emission of upconverting nanoparticles at the submicron scale unfolded by hyperspectral microscopy. NANOSCALE ADVANCES 2019; 1:2537-2545. [PMID: 36132713 PMCID: PMC9418934 DOI: 10.1039/c8na00412a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/28/2019] [Indexed: 05/23/2023]
Abstract
Transparent upconverting hybrid nanocomposites are exciting materials for advanced applications such as 3D displays, nanosensors, solar energy converters, and fluorescence biomarkers. This work presents a simple strategy to disperse upconverting β-NaYF4:Yb3+/Er3+ or Tm3+ nanoparticles into low cost, widely used and easy-to-process polydimethylsiloxane (PDMS)-based organic-inorganic hybrids. The upconverting hybrids were shaped as monoliths, films or powders displaying in the whole volume Tm3+ or Er3+ emissions (in the violet/blue and green/red spectral regions, respectively). For the first time, hyperspectral microscopy allows the identification at the submicron scale of differences in the hybrids' emission colour, due to variations in the relative intensity of the distinct components of the upconversion spectrum. The effect is attributed to the size distribution of the agglomerates of nanoparticles, highlighting the importance of studying the emission at submicron scales, since this effect is not observable in measurements recorded in larger areas.
Collapse
Affiliation(s)
- Francisco Gonell
- Institute of Advanced Materials (INAM), Universitat Jaume I Castellón de la Plana 12006 Spain
| | - Alexandre M P Botas
- Departamento de Física and CICECO - Aveiro Institute of Materials, Universidade de Aveiro 3810-193 Aveiro Portugal
| | - Carlos D S Brites
- Departamento de Física and CICECO - Aveiro Institute of Materials, Universidade de Aveiro 3810-193 Aveiro Portugal
| | - Pedro Amorós
- Institute of Materials Science (ICMUV), University of Valencia Catedrático José Beltrán 2 46980 Paterna Valencia Spain
| | - Luís D Carlos
- Departamento de Física and CICECO - Aveiro Institute of Materials, Universidade de Aveiro 3810-193 Aveiro Portugal
| | - Beatriz Julián-López
- Institute of Advanced Materials (INAM), Universitat Jaume I Castellón de la Plana 12006 Spain
| | - Rute A S Ferreira
- Departamento de Física and CICECO - Aveiro Institute of Materials, Universidade de Aveiro 3810-193 Aveiro Portugal
| |
Collapse
|
10
|
Soares GA, Prospero AG, Calabresi MF, Rodrigues DS, Simoes LG, Quini CC, Matos RR, Pinto LA, Sousa-Junior AA, Bakuzis AF, Mancera PA, Miranda JRA. Multichannel AC Biosusceptometry System to Map Biodistribution and Assess the Pharmacokinetic Profile of Magnetic Nanoparticles by Imaging. IEEE Trans Nanobioscience 2019; 18:456-462. [PMID: 30998477 DOI: 10.1109/tnb.2019.2912073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this paper, the application of a technique to evaluate in vivo biodistribution of magnetic nanoparticles (MNP) is addressed: the Multichannel AC Biosusceptometry System (MC-ACB). It allows real-time assessment of magnetic nanoparticles in both bloodstream clearance and liver accumulation, where a complex network of inter-related cells is responsible for MNP uptake. Based on the acquired MC-ACB images, we propose a mathematical model which helps to understand the distribution and accumulation pharmacokinetics of MNP. The MC-ACB showed a high time resolution to detect and monitor MNP, providing sequential images over the particle biodistribution. Utilizing the MC-ACB instrument, we assessed regions corresponding to the heart and liver, and we determined the MNP transfer rates between the bloodstream and the liver. The pharmacokinetic model resulted in having a strong correlation with the experimental data, suggesting that the MC-ACB is a valuable and accessible imaging device to assess in vivo and real-time pharmacokinetic features of MNP.
Collapse
|
11
|
Knights OB, McLaughlan JR. Gold Nanorods for Light-Based Lung Cancer Theranostics. Int J Mol Sci 2018; 19:E3318. [PMID: 30366384 PMCID: PMC6274674 DOI: 10.3390/ijms19113318] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/15/2022] Open
Abstract
Gold nanorods (AuNRs) have the potential to be used in photoacoustic (PA) imaging and plasmonic photothermal therapy (PPTT) due to their unique optical properties, biocompatibility, controlled synthesis, and tuneable surface plasmon resonances (SPRs). Conventionally, continuous-wave (CW) lasers are used in PPTT partly due to their small size and low cost. However, if pulsed-wave (PW) lasers could be used to destroy tissue then combined theranostic applications, such as PA-guided PPTT, would be possible using the same laser system and AuNRs. In this study, we present the effects of AuNR size on PA response, PW-PPTT efficacy, and PA imaging in a tissue-mimicking phantom, as a necessary step in the development of AuNRs towards clinical use. At equivalent NP/mL, the PA signal intensity scaled with AuNR size, indicating that overall mass has an effect on PA response, and reinforcing the importance of efficient tumour targeting. Under PW illumination, all AuNRs showed toxicity at a laser fluence below the maximum permissible exposure to skin, with a maximum of 80% cell-death exhibited by the smallest AuNRs, strengthening the feasibility of PW-PPTT. The theranostic potential of PW lasers combined with AuNRs has been demonstrated for application in the lung.
Collapse
Affiliation(s)
- Oscar B Knights
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK.
| | - James R McLaughlan
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK.
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK.
| |
Collapse
|
12
|
Yang C, Bromma K, Di Ciano-Oliveira C, Zafarana G, van Prooijen M, Chithrani DB. Gold nanoparticle mediated combined cancer therapy. Cancer Nanotechnol 2018. [DOI: 10.1186/s12645-018-0039-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
13
|
Yang C, Bromma K, Chithrani D. Peptide Mediated In Vivo Tumor Targeting of Nanoparticles through Optimization in Single and Multilayer In Vitro Cell Models. Cancers (Basel) 2018; 10:cancers10030084. [PMID: 29558451 PMCID: PMC5876659 DOI: 10.3390/cancers10030084] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/26/2022] Open
Abstract
Optimizing the interface between nanoparticles (NPs) and the biological environment at various levels should be considered for improving delivery of NPs to the target tumor area. For NPs to be successfully delivered to cancer cells, NPs needs to be functionalized for circulation through the blood vessels. In this study, accumulation of Polyethylene Glycol (PEG) functionalized gold nanoparticles (GNPs) was first tested using in vitro monolayer cells and multilayer cell models prior to in vivo models. A diameter of 10 nm sized GNP was selected for this study for sufficient penetration through tumor tissue. The surfaces of the GNPs were modified with PEG molecules, to improve circulation time by reducing non-specific uptake by the reticuloendothelial system (RES) in animal models, and with a peptide containing integrin binding domain, RGD (arginyl-glycyl-aspartic acid), to improve internalization at the cellular level. A 10-12% accumulation of the injected GNP dose within the tumor was observed in vivo and the GNPs remained within the tumor tissue up to 72 h. This study suggests an in vitro platform for optimizing the accumulation of NP complexes in cells and tissue structures before testing them in animal models. Higher accumulation within the tumor in vivo upon surface modification is a promising outcome for future applications where GNPs can be used for drug delivery and radiation therapy.
Collapse
Affiliation(s)
- Celina Yang
- Department of Biomedical Physics, Ryerson University, Toronto, ON M5B 2K3, Canada.
| | - Kyle Bromma
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - Devika Chithrani
- Department of Biomedical Physics, Ryerson University, Toronto, ON M5B 2K3, Canada.
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
14
|
England CG, Gobin AM, Frieboes HB. Evaluation of uptake and distribution of gold nanoparticles in solid tumors. EUROPEAN PHYSICAL JOURNAL PLUS 2015; 130:231. [PMID: 27014559 PMCID: PMC4800753 DOI: 10.1140/epjp/i2015-15231-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although nanotherapeutics offer a targeted and potentially less toxic alternative to systemic chemotherapy in cancer treatment, nanotherapeutic transport is typically hindered by abnormal characteristics of tumor tissue. Once nanoparticles targeted to tumor cells arrive in the circulation of tumor vasculature, they must extravasate from irregular vessels and diffuse through the tissue to ideally reach all malignant cells in cytotoxic concentrations. The enhanced permeability and retention effect can be leveraged to promote extravasation of appropriately sized particles from tumor vasculature; however, therapeutic success remains elusive partly due to inadequate intra-tumoral transport promoting heterogeneous nanoparticle uptake and distribution. Irregular tumor vasculature not only hinders particle transport but also sustains hypoxic tissue kregions with quiescent cells, which may be unaffected by cycle-dependent chemotherapeutics released from nanoparticles and thus regrow tumor tissue following nanotherapy. Furthermore, a large proportion of systemically injected nanoparticles may become sequestered by the reticuloendothelial system, resulting in overall diminished efficacy. We review recent work evaluating the uptake and distribution of gold nanoparticles in pre-clinical tumor models, with the goal to help improve nanotherapy outcomes. We also examine the potential role of novel layered gold nanoparticles designed to address some of these critical issues, assessing their uptake and transport in cancerous tissue.
Collapse
Affiliation(s)
- Christopher G England
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40292, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA
| | - André M Gobin
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
| | - Hermann B Frieboes
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40292, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA; Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
15
|
Yohan D, Cruje C, Lu X, Chithrani DB. Size-Dependent Gold Nanoparticle Interaction at Nano-Micro Interface Using Both Monolayer and Multilayer (Tissue-Like) Cell Models. NANO-MICRO LETTERS 2015; 8:44-53. [PMID: 30464993 PMCID: PMC6223926 DOI: 10.1007/s40820-015-0060-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/27/2015] [Indexed: 05/25/2023]
Abstract
Gold nanoparticles (GNPs) are emerging as a novel tool to improve existing cancer therapeutics. GNPs are being used as radiation dose enhancers in radiation therapy as well as anticancer drugs carriers in chemotherapy. However, the success of GNP-based therapeutics depends on their ability to penetrate tumor tissue. GNPs of 20 and 50 nm diameters were used to elucidate the effects of size on the GNP interaction with tumor cells at monolayer and multilayer level. At monolayer cell level, smaller NPs had a lower uptake compared to larger NPs at monolayer cell level. However, the order was reversed at tissue-like multilayer level. The smaller NPs penetrated better compared to larger NPs in tissue-like materials. Based on our study using tissue-like materials, we can predict that the smaller NPs are better for future therapeutics due to their greater penetration in tumor tissue once leaving the leaky blood vessels. In this study, tissue-like multilayer cellular structures (MLCs) were grown to model the post-vascular tumor environment. The MLCs exhibited a much more extensive extracellular matrix than monolayer cell cultures. The MLC model can be used to optimize the nano-micro interface at tissue level before moving into animal models. This would accelerate the use of NPs in future cancer therapeutics.
Collapse
Affiliation(s)
- Darren Yohan
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 Canada
| | - Charmainne Cruje
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 Canada
| | - Xiaofeng Lu
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON Canada
| | - Devika B. Chithrani
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON Canada
| |
Collapse
|
16
|
Cruje C, Yang C, Uertz J, van Prooijen M, Chithrani BD. Optimization of PEG coated nanoscale gold particles for enhanced radiation therapy. RSC Adv 2015. [DOI: 10.1039/c5ra19104a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To enhance PEG uptake for radiation therapy, a peptide containing an integrin binding domain (RGD) was conjugated to PEG. Nanoparticles functionalized with both the RGD peptide and PEG had a higher uptake than NPs functionalized with PEG alone.
Collapse
Affiliation(s)
- C. Cruje
- Dept. of Physics
- Ryerson University
- Toronto
- Canada
| | - C. Yang
- Dept. of Physics
- Ryerson University
- Toronto
- Canada
| | | | | | - B. D. Chithrani
- Dept. of Physics
- Ryerson University
- Toronto
- Canada
- Keenan Research Centre
| |
Collapse
|