1
|
Fan Y, Zhou B, Xing H, Zhang L, Wu J, Zhang B. Multidimensional Co-Design and Performance-Mechanism Study of Novel Graphdiyne Composites with Microwave Absorbing Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500132. [PMID: 40178044 DOI: 10.1002/smll.202500132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/13/2025] [Indexed: 04/05/2025]
Abstract
Graphdiyne (GDY), an emerging member in the carbon material family, possesses abundant chemical bonds, extended conjugated systems, and superior charge carrier mobility, establishing it as a promising novel microwave absorption material. Capitalizing on these attributes, in this work, a flower-like GDY@Cu2O composite with a unique nanowall structure is prepared by a one-step microemulsion method. Remarkably, temperature-mediated enhancement of electron transport coupled with induced multipolarization synergistically boosts the microwave absorption performance. The optimal specimen (GDY@Cu2O-700) achieves an effective absorption bandwidth (EAB) of 6.1 GHz at 2.2 mm matched thickness, with a minimum reflection loss of -49.9 dB@17.7 GHz. Furthermore, a metamaterial is designed at the millimeter scale using GDY@Cu2O-700 as the microwave absorbing functional component. Following optimization via 3D electromagnetic simulation software, this metamaterial demonstrates an ultra-broad EAB spanning 34.1 GHz in the range of 2-40 GHz. This pioneering study delineates the electromagnetic wave absorption characteristics of GDY-based microspheres with GDY as the primary constituent and provides a valuable reference for designing innovative wave-absorbing materials.
Collapse
Affiliation(s)
- Yihao Fan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Bingqian Zhou
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Haowen Xing
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Jianfeng Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- MOE Key Lab Mat Phys & Chem Extraordinary Condit, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
2
|
Gui Y, Fu X, Liu Y, Zhang X, Xie H, Ma P, Yang B, Feng H, Yang J. Flexible graphene/PAM/PVA hydrogel composites with highly dispersed cobalt nanoparticles for enhanced microwave absorption. J Chem Phys 2025; 162:164704. [PMID: 40266277 DOI: 10.1063/5.0266891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
With the increasing demand for flexible microwave-absorbing materials (MAMs), it is necessary to ensure a continuous network of MAM fillers. However, it is still a great challenge to achieve uniform loading of magnetic nanoparticles because of the uncertain reaction sites of graphene. For this research, we adopted a high-pressure homogenization strategy to realize a uniform distribution of Co nanoparticles on the graphene surface via polyethyleneimine (PEI) modification. Transferring the Co reaction sites from the randomly distributed oxygen functional groups to the uniformly distributed PEI molecules, the homogeneous graphene oxide (GO)/PEI/Co (GP/Co) dispersion ensured to form the uniform reduced graphene oxide (RGO)/PEI/Co (RGP/Co) after reduction. RGP/Co-2 achieved an effective absorption of -51.9 dB in the C band and a microwave absorption bandwidth of 5.84 GHz. In addition, RGP/Co-2 was filled into polyacrylamide/polyvinyl alcohol (PAM/PVA) hydrogel to construct a uniform and continuous network structure, and RGP/Co-2/PAM/PVA flexible MAMs were prepared. The minimum reflection loss (RLmin) is -41.5 dB under the thickness of 2.5 mm and shows excellent mechanical flexibility. In addition, RGP/Co-2/PAM/PVA exhibited excellent sensing performance. This research supplied a new perspective for the development of MAMs in flexible electronics.
Collapse
Affiliation(s)
- Yujie Gui
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
- State Key Laboratory of Solid Lubrication, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaolin Fu
- State Key Laboratory of Solid Lubrication, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yafei Liu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xu Zhang
- State Key Laboratory of Solid Lubrication, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hai Xie
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Pengjun Ma
- State Key Laboratory of Solid Lubrication, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bingjun Yang
- State Key Laboratory of Solid Lubrication, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huixia Feng
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Juan Yang
- State Key Laboratory of Solid Lubrication, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
3
|
Xu H, Dou Y, Wang X, He G, Li X, Yan X, Yu L. Design and Synthesis of N-Doped Porous Carbon Flowers with Enhanced Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501239. [PMID: 40277213 DOI: 10.1002/smll.202501239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/08/2025] [Indexed: 04/26/2025]
Abstract
Herein, a simple, innovative, and efficient method is presented for synthesizing an electromagnetic wave (EMW)-absorbing material with a distinctive flower-ball structure. Acrylonitrile (AN)-styrene binary polymer microspheres (PAS) serve as seeds for the deposition of AN, forming petal-like structures and yielding uniform polymer flower balls (PAS&A-F). Carbonization of these flower balls produces PAS&A carbon flowers (PAS&A-CF) with excellent EMW absorption properties. PAS&A-CF carbonized at 800 °C exhibits a minimum reflection loss of -54.0 dB at a thickness of 2.92 mm and an optimal effective absorption bandwidth of 4.01 GHz. This exceptional performance is attributed to the unique petal-like cross-stacked flower-ball morphology, porous structure, N and O atom doping, and an appropriate degree of graphitization. These characteristics synergistically enhance impedance matching, multiple scattering and reflection, dipole polarization, and conductive loss. This straightforward, innovative, and highly efficient preparation approach, with precise control over surface morphology and temperature, offers a novel approach for developing high-performance EMW-absorbing materials.
Collapse
Affiliation(s)
- Hao Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Yuye Dou
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xinrui Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Guangling He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xia Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
- SANYA Oceanographic Laboratory, Sanya, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
- SANYA Oceanographic Laboratory, Sanya, China
| |
Collapse
|
4
|
Dogari H, Hedayatzadeh MH, Eshrati F, Akhgari M, Peymanfar R, Ghafuri H. Gene-Implanting by a Porphyrin Derivative to Establish Quasi-antennas into the Carbon Microspheres toward Superior Microwave Absorbing/Shielding Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:274-284. [PMID: 39749744 DOI: 10.1021/acs.langmuir.4c03493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Carbon microspheres (CMSs) are recognized as highly effective microwave absorbers due to their exceptional wave absorption properties. In this study, 5,10,15,20-tetrakis(4-aminophenyl)porphyrin, a metamaterial, was chemically bonded to CMSs─considered a conjugated carbon structure─using a 1,3-dibromopropane linker to explore the synergistic properties and microwave absorption capabilities of the synthesized composite. The synthesized structures were characterized by using X-ray diffraction, FE-SEM, Fourier transform infrared, diffuse reflectance spectroscopy, and VNA analyses. Remarkably, the gene-modified microwave absorber demonstrated a maximum reflection loss of -105.58 dB at 22.93 GHz, with an ultrathin thickness of only 0.50 mm. When the architected samples were blended with poly(methyl methacrylate), a practical polymer, they exhibited a broad efficient bandwidth across the entire K-band, coupled with moderate shielding effectiveness, making them ideal for mitigating electromagnetic pollution in everyday life. This study offers inspiration for researchers to fabricate and design new enhanced microwave absorbers for a range of applications.
Collapse
Affiliation(s)
- Haniyeh Dogari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Mohammad Hossein Hedayatzadeh
- Research Laboratory of Nanoporous Materials, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
- Peykareh Enterprise Development CO., Tehran 15149-45511, Iran
| | - Fatemeh Eshrati
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Mahdi Akhgari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Reza Peymanfar
- Research Laboratory of Nanoporous Materials, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
- Department of Chemical Engineering, Energy Institute of Higher Education, Saveh 67746-39177, Iran
- Department of Science, Iranian Society of Philosophers, Tehran 16846-13114, Iran
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| |
Collapse
|
5
|
Zhao KY, Sun C, Huang ML, Luo CL, Wang M. Constructing multi-layer heterogeneous interfaces in liquid metal graphite hybrid powder: Towards microwave absorption enhancement. J Colloid Interface Sci 2025; 677:79-89. [PMID: 39083894 DOI: 10.1016/j.jcis.2024.07.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Carbon based materials are widely used in the preparation of microwave absorption materials due to their low density, high attenuation loss and large specific surface area. However, their high conductivity usually leads to high reflection loss. In this study, multi-layer heterogeneous interfaces were constructed in liquid metal graphite hybrid powder to reduce reflection loss and enhance microwave absorption performance. Gallium oxide (Ga2O3) layer was formed in Ga coated graphite powder to improve impedance matching and attenuation constant via an annealing treatment. Specifically, the hybrid particles with 50 wt% Ga and being annealed at 120 °C for 2 h have a minimum reflection loss (RLmin) value of -42.68 dB and a maximum effective absorption bandwidth (EAB) of 4.11 GHz at a thickness of 3.3 mm. The hybrid particles not only have multi-layer structures with different electrical conductivity, but also form heterojunctions between different interfaces, which can further enhance dipole and interfacial polarization.
Collapse
Affiliation(s)
- Kun-Yan Zhao
- Chongqing Key Laboratory of Soft-Matter Material Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chang Sun
- Chongqing Key Laboratory of Soft-Matter Material Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ming-Lu Huang
- Chongqing Key Laboratory of Soft-Matter Material Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Cheng-Long Luo
- Chongqing Key Laboratory of Soft-Matter Material Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ming Wang
- Chongqing Key Laboratory of Soft-Matter Material Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China.
| |
Collapse
|
6
|
Liang H, Hui S, Zhang L, Tao K, Chen Q, Lu W, Wu H. High-Density Dual Atoms Pairs Coupling for Efficient Electromagnetic Wave Absorbers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408396. [PMID: 39604231 DOI: 10.1002/smll.202408396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Dual atoms (DAs), characterized by flexible structural tunability and high atomic utilization, hold significant promise for atom-level coordination engineering. However, the rational design with high-density heterogeneous DAs pairs to promote electromagnetic wave (EMW) absorption performance remains a challenge. In this study, high-density Ni─Cu pairs coupled DAs absorbers are precisely constructed on a nitrogen-rich carbon substrate, achieving an impressive metal loading amount of 4.74 wt.%, enabling a huge enhancement of the effective absorption bandwidth (EAB) of EMW from 0 to 7.8 GHz. Furthermore, the minimum reflection loss (RLmin) is -70.96 dB at a matching thickness of 3.60 mm, corresponding to an absorption of >99.99% of the incident energy. Both experimental results and theoretical calculations indicate that the synergistic effect of coupled Ni─Cu pairs DAs sites results in the transfer of electron-rich sites from the initial N sites to the Cu sites, which induces a strong asymmetric polarization loss by this redistribution of local charge and significantly improves the EMW absorption performance. This work not only provides a strategy for the preparation of high-density DA pairs but also demonstrates the role of coupled DA pairs in precisely tuning coordination symmetry at the atomic level.
Collapse
Affiliation(s)
- Hongsheng Liang
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, P. R. China
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shengchong Hui
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Limin Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnic University, Xi'an, 710072, P. R. China
| | - Wei Lu
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
7
|
Wei M, Liu K, Wang Y, Zhang G, Liu Q, Zhang Q, Zhang B. Hierarchical Magnetic Carbon Nanoflowers for Ultra-Efficient Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402632. [PMID: 39012068 DOI: 10.1002/smll.202402632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Porous carbon nanomaterials are widely applied in the electromagnetic wave absorption (EMWA) field. Among them, an emerging flower-like carbon nanomaterial, termed carbon nanoflowers (CNFs), has attracted tremendous research attention due to their unique hierarchical flower-like structure. However, the design of flower-like carbon nanomaterials with different magnetic cores for EMWA has rarely been reported. Herein, a general template method is proposed to achieve a set of high-quality magnetic CNFs, namely Co@Void@CNFs, CoNi@CNFs, and Ni@CNFs. The prepared magnetic CNFs have highly accessible surface area and internal space, rich heteroatom content, multi-scale pore system, and uniform and highly dispersed magnetic nanoparticles, as a result, deliver superior EMWA performance. Specifically, when the thickness is 2.6 mm, the Co@Void@CNFs exhibit a maximum refection loss (RLmax) of -56.6 dB and an effective absorption bandwidth (EAB) from 8.0 to 12.1 GHz covering the whole X band. The CoNi@CNFs have an RLmax of up to -57.6 dB and a wide EAB of 5.6 GHz at just 1.9 mm. For the Ni@CNFs, possess an ultra-broad EAB of 6.1 GHz, covering the entire Ku band at 2.0 mm. Overall, the hierarchical magnetic carbon nanoflowers proposed here offer new insights toward realizing multifunctional integrated carbon nanomaterials for EMWA.
Collapse
Affiliation(s)
- Mengmeng Wei
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Kai Liu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yunhao Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guoxian Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Shaanxi Engineering and Research Center for Functional Polymers on Adsorption and Separation, Sunresins New Materials Co. Ltd., Xi'an, 710072, China
| |
Collapse
|
8
|
Zhao W, Du Y, Lv X, Luo K, Xu C, Liu M, Qian Y, Wang X, Wang M, Lai Y, Liu J, Cheng Y, Zhang R, Che R. Customized Pore Creation Strategies for Hyperelastic, Robust, Insulating Multifunctional MXene Aerogels for Microwave Absorption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47832-47843. [PMID: 39192455 DOI: 10.1021/acsami.4c07502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The construction of heterogeneous microstructure and the selection of multicomponents have turned into a research hotspot in developing ultralight, multifunctional, high-efficiency electromagnetic wave absorbing (EMA) materials. Although aerogels are promising materials to fulfill the above requirements, the increase in functional fillers inevitably leads to the deterioration of intrinsic properties. Tuning the electromagnetic properties from the structural design point of view remains a difficult challenge. Herein, we design customized pore creation strategies via introducing sacrificial templates to optimize the conductive path and construct the discontinuous dielectric medium, increasing dielectric loss and achieving efficient microwave absorption properties. A 3D porous composite (MEM) was crafted, which encapsulated an EVA/FeCoNi (EVA/MNPs) framework with Ti3C2Tx MXene coating by employing a direct heated cross-linking and immersion method. Controllable adjustment of the conductive network inside the porous structure and regulation of the dielectric character are achieved by porosity variation. Eventually, the MEM-5 with a porosity of 66.67% realizes RLmin of -39.2 dB (2.2 mm) and can cover the entire X band. Moreover, through off-axis electronic holography and the calculation of conduction loss and polarization loss, the dielectric property is deeply investigated, and the inner mechanism of optimization is pointed out. Thanks to the inherent characteristic of EVA and the porous structure, MEM-5 showed excellent thermal insulating and superior compressibility, which can maintain 60 °C on a 90-100 °C continuous heating stage and reached a maximum compressive strength of 60.12 kPa at 50% strain. Conceivably, this work provides a facile method for the fabrication of highly efficient microwave absorbers applied under complex conditions.
Collapse
Affiliation(s)
- Wenxuan Zhao
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Yiqian Du
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Xiaowei Lv
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Kaicheng Luo
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Chunyang Xu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Min Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Yuetong Qian
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Xiangyu Wang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Min Wang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Yuxiang Lai
- Pico Electron Microscopy Center, Innovation Institute for Ocean Materials Characterization, Center for Advanced Studies in Precision Instruments, Hainan University, Haikou 570228, China
| | - Jiwei Liu
- Zhejiang Laboratory, Hangzhou 311100, China
| | | | | | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
- College of Physics, Donghua University, Shanghai 201620, China
- Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
9
|
Cheon S, Cho WJ, Yi GR, Kang B, Oh SS. Ultrafast and Reversible Superwettability Switching of 3D Graphene Foams via Solvent-Exclusive Plasma Treatments. ACS NANO 2024; 18:24012-24023. [PMID: 39033415 DOI: 10.1021/acsnano.4c03102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
For highly active electron transfer and ion diffusion, controlling the surface wettability of electrically and thermally conductive 3D graphene foams (3D GFs) is required. Here, we present ultrasimple and rapid superwettability switching of 3D GFs in a reversible and reproducible manner, mediated by solvent-exclusive microwave arcs. As the 3D GFs are prepared with vapors of nonpolar acetone or polar water exclusively, short microwave radiation (≤10 s) leads to plasma hotspot-mediated production of methyl and hydroxyl radicals, respectively. Upon immediate radical chemisorption, the 3D surfaces become either superhydrophobic (water contact angle = ∼170°) or superhydrophilic (∼0°), and interestingly, the wettability transition can be repeated many times due to the facile exchange between previously chemisorbed and newly introduced radicals via the formation of methanol-like intermediates. When 3D GFs of different surficial polarities are incorporated into electric double-layer capacitors with nonpolar ionic liquids or polar aqueous electrolytes, the polarity matching between graphene surfaces and electrolytes results in ≥548.0 times higher capacitance compared to its mismatching at ≥0.5 A g-1, demonstrating the significance of wettability-controlled 3D GFs.
Collapse
Affiliation(s)
- Soomin Cheon
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Won-Jang Cho
- Department of Chemical Engineering, POSTECH, Pohang 37673, South Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, POSTECH, Pohang 37673, South Korea
| | - Byoungwoo Kang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Department of Chemical Engineering, POSTECH, Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 21983, South Korea
| |
Collapse
|
10
|
Wang S, Hao X, Liu Y, Cheng Z, Chen S, Peng G, Tao J, Yao J, Yang F, Zhou J. Intelligent Tunable Wave-Absorbing CNTs/VO 2/ANF Composite Aerogels Based on Temperature-Driving. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32773-32783. [PMID: 38865582 DOI: 10.1021/acsami.4c06980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The development of new electromagnetic absorbing materials is the main strategy to address electromagnetic radiation. Once traditional electromagnetic wave-absorbing materials are prepared, it is difficult to dynamically change their electromagnetic wave-absorbing performance. Facing the complexity of the information age and the rapid development of modern radar, it is significant to develop intelligent modulation of electromagnetic wave-absorbing materials. Here, CNTs/VO2/ANF composite aerogels with dynamic frequency tunability and switchable absorption on/off were synthesized. Based on the phase change behavior of VO2, the degree of polarization and interfacial effects of multiple heterogeneous interfaces between VO2 and CNTs and aramid nanofibers (ANFs) were modulated at different temperatures. With the increase in temperature (from 25 to 200 °C), the maximum absorption frequency of the frequency tunable aerogel is modulated from 12.24 to 8.56 GHz in the X-band, and the absorption intensity remains stable. The maximum effective switching bandwidth (ΔEAB) of the wave-absorbing switchable aerogel is 3.70 GHz. This study provides insights into intelligent electromagnetic wave absorption performance and paves the way for temperature-driven application of intelligent modulation of electromagnetic absorbers.
Collapse
Affiliation(s)
- Shunan Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, Jiangsu 210016, China
| | - Xiuqing Hao
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, Jiangsu 210016, China
| | - Yijie Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment(Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing 211100, China
| | - Zhenyu Cheng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment(Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing 211100, China
| | - Simin Chen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, Jiangsu 210016, China
| | - Guiyu Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment(Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing 211100, China
| | - Jiaqi Tao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment(Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing 211100, China
| | - Junru Yao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment(Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing 211100, China
| | - Feng Yang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jintang Zhou
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment(Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing 211100, China
| |
Collapse
|
11
|
Jiang L, Qin G, Cui P, Wang G, Zhou X. A Novel Nano-Laminated GdB 2C 2 with Excellent Electromagnetic Wave Absorption Performance and Ultra-High-Temperature Thermostability. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1025. [PMID: 38921901 PMCID: PMC11206557 DOI: 10.3390/nano14121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
A novel nano-laminated GdB2C2 material was successfully synthesized using GdH2, B4C, and C via an in situ solid-state reaction approach for the first time. The formation process of GdB2C2 was revealed based on the microstructure and phase evolution investigation. Purity of 96.4 wt.% GdB2C2 was obtained at a low temperature of 1500 °C, while a nearly fully pure GdB2C2 could be obtained at a temperature over 1700 °C. The as-obtained GdB2C2 presented excellent thermal stability at a high temperature of 2100 °C in Ar atmosphere due to the stable framework formed by the high-covalence four-member and eight-member B-C rings in GdB2C2. The GdB2C2 material synthesized at 1500 °C demonstrated a remarkably low minimum reflection loss (RLmin) of -47.01 dB (3.44 mm) and a broad effective absorption bandwidth (EAB) of 1.76 GHz. The possible electromagnetic wave absorption (EMWA) mechanism could be ascribed to the nano-laminated structure and appropriate electrical conductivity, which facilitated good impedance matching, remarkable conduction loss, and interfacial polarization, along with the reflection and scattering of electromagnetic waves at multiple interfaces. The GdB2C2, with excellent EMWA performance as well as remarkable ultra-high-temperature thermal stability, could be a promising candidate for the application of EMWA materials in extreme ultra-high temperatures.
Collapse
Affiliation(s)
- Longfei Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China;
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (G.Q.); (P.C.); (G.W.)
| | - Gang Qin
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (G.Q.); (P.C.); (G.W.)
| | - Pengxing Cui
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (G.Q.); (P.C.); (G.W.)
| | - Guoqing Wang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (G.Q.); (P.C.); (G.W.)
| | - Xiaobing Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China;
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (G.Q.); (P.C.); (G.W.)
| |
Collapse
|
12
|
Potbhare AK, Aziz SKT, Ayyub MM, Kahate A, Madankar R, Wankar S, Dutta A, Abdala A, Mohmood SH, Adhikari R, Chaudhary RG. Bioinspired graphene-based metal oxide nanocomposites for photocatalytic and electrochemical performances: an updated review. NANOSCALE ADVANCES 2024; 6:2539-2568. [PMID: 38752147 PMCID: PMC11093270 DOI: 10.1039/d3na01071f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
Considering the rapidly increasing population, the development of new resources, skills, and devices that can provide safe potable water and clean energy remains one of the vital research topics for the scientific community. Owing to this, scientific community discovered such material for tackle this issue of environment benign, the new materials with graphene functionalized derivatives show significant advantages for application in multifunctional catalysis and energy storage systems. Herein, we highlight the recent methods reported for the preparation of graphene-based materials by focusing on the following aspects: (i) transformation of graphite/graphite oxide into graphene/graphene oxide via exfoliation and reduction; (ii) bioinspired fabrication or modification of graphene with various metal oxides and its applications in photocatalysis and storage systems. The kinetics of photocatalysis and the effects of different parameters (such as photocatalyst dose and charge-carrier scavengers) for the optimization of the degradation efficiency of organic dyes, phenol compounds, antibiotics, and pharmaceutical drugs are discussed. Further, we present a brief introduction on different graphene-based metal oxides and a systematic survey of the recently published research literature on electrode materials for lithium-ion batteries (LIBs), supercapacitors, and fuel cells. Subsequently, the power density, stability, pseudocapacitance charge/discharge process, capacity and electrochemical reaction mechanisms of intercalation, and conversion- and alloying-type anode materials are summarized in detail. Furthermore, we thoroughly distinguish the intrinsic differences among underpotential deposition, intercalation, and conventional pseudocapacitance of electrode materials. This review offers a meaningful reference for the construction and fabrication of graphene-based metal oxides as effective photocatalysts for photodegradation study and high-performance optimization of anode materials for LIBs, supercapacitors, and fuel cells.
Collapse
Affiliation(s)
- Ajay K Potbhare
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| | - S K Tarik Aziz
- Chemistry Department, Indian Institute of Technology, Bombay Powai 400076 India
| | - Mohd Monis Ayyub
- New Chemistry Unit, International Centre for Materials Science and Sheikh Saqr Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| | - Aniket Kahate
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| | - Rohit Madankar
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| | - Sneha Wankar
- Post Graduate Teaching Department of Chemistry, Gondwana University Gadchiroli 442605 India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology, Bombay Powai 400076 India
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar POB 23784 Doha Qatar
| | - Sami H Mohmood
- Department of Physics, The University of Jordan Amman 11942 Jordan
| | - Rameshwar Adhikari
- Central Department of Chemistry and Research Centre for Applied Science and Technology (RECAST), Tribhuvan University Kathmandu Nepal
| | - Ratiram G Chaudhary
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| |
Collapse
|
13
|
He Z, Xu H, Shi L, Ren X, Kong J, Liu P. Hierarchical Co 2 P/CoS 2 @C@MoS 2 Composites with Hollow Cavity and Multiple Phases Toward Wideband Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306253. [PMID: 37771205 DOI: 10.1002/smll.202306253] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Indexed: 09/30/2023]
Abstract
The synergistic effect of hollow cavities and multiple hetero-interfaces displays huge advantages in achieving lightweight and high-efficient electromagnetic wave absorption, but still confronts huge challenges. Herein, hierarchical Co2 P/CoS2 @C@MoS2 composites via the self-sacrificed strategy and a subsequent hydrothermal method have been successfully synthesized. Specifically, ZIF-67 cores first act as the structural template to form core-shell ZIF-67@poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) (ZIF-67@PZS) composites, which are converted into hollow Co2 P@C shells with micro-mesoporous characteristics because of the gradient structural stabilities and preferred coordination ability. The deposition of hierarchical MoS2 results in phase transition (Co2 P→Co2 P/CoS2 ), yielding the formation of hierarchical Co2 P/CoS2 @C@MoS2 composites with hollow cavities and multiple hetero-interfaces. Benefiting from the cooperative advantages of hollow structure, extra N,P,S-doped sources, lattice defects/vacancies, diverse incoherent interfaces, and hierarchical configurations, the composites deliver superior electromagnetic wave capability (-56.6 dB) and wideband absorption bandwidth (8.96 GHz) with 20 wt.% filler loading. This study provides a reliable and facile strategy for the precise construction of superior electromagnetic wave absorbents with efficient absorption attenuation.
Collapse
Affiliation(s)
- Zizhuang He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Hanxiao Xu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Lingzi Shi
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Xiangru Ren
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Jie Kong
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Panbo Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| |
Collapse
|
14
|
Zhang C, Jiang J, Guan Z, Zhang Y, Li Y, Song B, Shao W, Zhen L. Unveiling the sp 2 ─sp 3 C─C Polar Bond Induced Electromagnetic Responding Behaviors by a 2D N-doped Carbon Nanosheet Absorber. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306159. [PMID: 38044305 PMCID: PMC10939080 DOI: 10.1002/advs.202306159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Indexed: 12/05/2023]
Abstract
The infertile electromagnetic (EM) attenuating behavior of carbon material makes the improvement of its performance remain a significant challenge. Herein, a facile and low-cost strategy radically distinct from the prevalent approaches by constructing polar covalent bonds between sp2 -hybridized and sp3 -hybridized carbon atoms to introduce strong dipolar polarization is proposed. Through customizing and selectively engineering the N moieties conjugated with carbon rings, the microstructure of the as-synthesized 2D nanosheet is gradually converted with the partial transition from sp3 carbons to sp2 carbons, where the electric dipoles between them are also tuned. Supported by the DFT calculations, a progressively enhanced sp2 ─sp3 C─C dipolar polarization is caused by this controllable structure evolution, which is demonstrated to contribute dominantly to the total dielectric loss. By virtue of this unduplicated loss behavior, a remarkable effective absorption bandwidth (EAB) beyond -10 dB of 8.28 GHz (2.33 mm) and an ultrawide EAB beyond -5 dB of 13.72 GHz (4.93 mm) are delivered, which upgrade the EM performance of carbon material to a higher level. This study not only demonstrates the huge perspective of sp2 ─sp3 -hybridized carbon in EM elimination but also gives pioneering insights into the carbon-carbon polarization mechanism for guiding the development of advanced EM absorption materials.
Collapse
Affiliation(s)
- Can Zhang
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Jian‐Tang Jiang
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
- National Key Laboratory of Precision Hot Processing of MetalsHarbin Institute of TechnologyHarbin150001P. R. China
| | - Zhenjie Guan
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Yuanyuan Zhang
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Yining Li
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Bo Song
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsHarbin Institute of TechnologyHarbin150080P. R. China
| | - Wenzhu Shao
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Liang Zhen
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
- Sauvage Laboratory for Smart MaterialsSchool of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen)Shenzhen518055P. R. China
| |
Collapse
|
15
|
Kamedulski P, Wekwejt M, Zasada L, Ronowska A, Michno A, Chmielniak D, Binkowski P, Łukaszewicz JP, Kaczmarek-Szczepańska B. Evaluating Gelatin-Based Films with Graphene Nanoparticles for Wound Healing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3068. [PMID: 38063764 PMCID: PMC10708143 DOI: 10.3390/nano13233068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 04/12/2024]
Abstract
In this study, gelatin-based films containing graphene nanoparticles were obtained. Nanoparticles were taken from four chosen commercial graphene nanoplatelets with different surface areas, such as 150 m2/g, 300 m2/g, 500 m2/g, and 750 m2/g, obtained in different conditions. Their morphology was observed using SEM with STEM mode; porosity, Raman spectra and elemental analysis were checked; and biological properties, such as hemolysis and cytotoxicity, were evaluated. Then, the selected biocompatible nanoparticles were used as the gelatin film modification with 10% concentration. As a result of solvent evaporation, homogeneous thin films were obtained. The surface's properties, mechanical strength, antioxidant activity, and water vapor permeation rate were examined to select the appropriate film for biomedical applications. We found that the addition of graphene nanoplatelets had a significant effect on the properties of materials, improving surface roughness, surface free energy, antioxidant activity, tensile strength, and Young's modulus. For the most favorable candidate for wound dressing applications, we chose a gelatin film containing nanoparticles with a surface area of 500 m2/g.
Collapse
Affiliation(s)
- Piotr Kamedulski
- Department of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (P.K.); (P.B.); (J.P.Ł.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland
| | - Marcin Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdansk, Poland;
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (L.Z.); (D.C.)
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdansk, Poland; (A.R.); (A.M.)
| | - Anna Michno
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdansk, Poland; (A.R.); (A.M.)
| | - Dorota Chmielniak
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (L.Z.); (D.C.)
| | - Paweł Binkowski
- Department of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (P.K.); (P.B.); (J.P.Ł.)
| | - Jerzy P. Łukaszewicz
- Department of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (P.K.); (P.B.); (J.P.Ł.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland
| | - Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (L.Z.); (D.C.)
| |
Collapse
|
16
|
Su Q, He Y, Liu D, Jia K, Xia L, Huang X, Zhong B. Facile fabrication of ultra-light N-doped-rGO/g-C 3N 4 for broadband microwave absorption. J Colloid Interface Sci 2023; 650:47-57. [PMID: 37392499 DOI: 10.1016/j.jcis.2023.06.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
"Thin thickness", "lightweight", "wide absorption bandwidth" and "strong absorption" are the new standards of contemporary science and technology for microwave absorption(MA) material. In this study, N-doped-rGO/g-C3N4 MA material was prepared for the first time by simple heat treatment, which the N atoms were doped into rGO and g-C3N4 was dispersed on the surface of N-doped-rGO, and its density is only 0.035 g/cm3. The impedance matching of the N-doped-rGO/g-C3N4 composite was well adjusted by decreasing the dielectric constant and attenuation constant due to the g-C3N4 semiconductor property and the graphite-like structure. Moreover, the distribution of g-C3N4 among N-doped-rGO sheets can produce more polarization effect and relaxation effect by increasing the lamellar spacing. Furthermore, the polarization loss of N-doped-rGO/g-C3N4 could be increased successfully by doping N atoms and g-C3N4. Ultimately, the MA property of N-doped-rGO/g-C3N4 composite was optimized significantly, with a loading of 5 wt%, the N-doped-rGO/g-C3N4 composite exhibited the RLmin of -49.59 dB and the effective absorption bandwidth could reach 4.56 GHz when the thickness was only 1.6 mm. The "thin thickness", "lightweight", "wide absorption bandwidth" and "strong absorption" of MA material are actually achieved by the N-doped-rGO/g-C3N4.
Collapse
Affiliation(s)
- Qiang Su
- School of Materials Science and Engineering, Harbin Institute of Technology Weihai, Weihai 264209, China; Weihai Yunshan Technology Co., LTD, Weihai 264200, China
| | - Yunfei He
- School of Materials Science and Engineering, Harbin Institute of Technology Weihai, Weihai 264209, China
| | - Dongdong Liu
- School of Materials Science and Engineering, Harbin Institute of Technology Weihai, Weihai 264209, China
| | - Kun Jia
- Shanxi Key Laboratory of Electromagnetic Protection Materials and Technology, NO.33 Research Institute of China Electronics Technology Group Corporation, Taiyuan 030032, China
| | - Long Xia
- School of Materials Science and Engineering, Harbin Institute of Technology Weihai, Weihai 264209, China
| | - Xiaoxiao Huang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bo Zhong
- School of Materials Science and Engineering, Harbin Institute of Technology Weihai, Weihai 264209, China.
| |
Collapse
|
17
|
Xu D, Zhang F, Guo H, Liu S, Ma S, Guo X, Chen P. Hierarchical dandelion-like CoS 2 hollow microspheres: self-assembly and controllable microwave absorption performance. RSC Adv 2023; 13:27147-27157. [PMID: 37701276 PMCID: PMC10493571 DOI: 10.1039/d3ra04890j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
The emerging electromagnetic radiation and interference problems have promoted the rapid development of microwave absorption materials (MAMs). However, it remains a severe challenge to construct high-performance microwave absorption materials with broadband, lightweight and corrosion resistance within low filling contents. Herein, hierarchical dandelion-like CoS2 hollow microspheres were reasonably constructed via a solvothermal-hydrothermal etching-in situ vulcanization process. The structure morphology, composition and electromagnetic performance of all samples have been thoroughly tested. The research results demonstrated that the structure morphology of the prepared samples with a volume ratio of 1 : 1 between ethanol and H2O remained intact without serious damage. Notably, the as-obtained hierarchical dandelion-like CoS2 hollow microspheres (25 wt%) exhibited excellent microwave absorption capacity with a minimum reflection loss (RLmin) of -47.3 dB and the corresponding effective absorption bandwidth (EAB) of 8.4 GHz at 3.3 mm. Moreover, the broadest effective absorption bandwidth (EAB, RL < -10 dB) reached 9.0 GHz (9.0-18.0 GHz) at the matching thickness of 3.2 mm. The unparalleled multiple features including hierarchical hollow structure, tunable complex permittivity as well as the enhanced impedance matching endowed CoS2 great promise as high-performance microwave absorbers for solving the problem of electromagnetic pollution.
Collapse
Affiliation(s)
- Dongwei Xu
- School of Material Science and Engineering, Henan Key Laboratory of Aeronautical Materials and Application Technology, Zhengzhou University of Aeronautics Zhengzhou Henan 450046 China
| | - Feifan Zhang
- School of Material Science and Engineering, Henan Key Laboratory of Aeronautical Materials and Application Technology, Zhengzhou University of Aeronautics Zhengzhou Henan 450046 China
| | - Huanhuan Guo
- School of Material Science and Engineering, Henan Key Laboratory of Aeronautical Materials and Application Technology, Zhengzhou University of Aeronautics Zhengzhou Henan 450046 China
| | - Sitong Liu
- School of Material Science and Engineering, Henan Key Laboratory of Aeronautical Materials and Application Technology, Zhengzhou University of Aeronautics Zhengzhou Henan 450046 China
| | - Shuaijiang Ma
- Faculty of Engineering, Huanghe Science & Technology University Zhengzhou 450063 China
| | - Xiaoqin Guo
- School of Material Science and Engineering, Henan Key Laboratory of Aeronautical Materials and Application Technology, Zhengzhou University of Aeronautics Zhengzhou Henan 450046 China
| | - Ping Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
18
|
Li W, Li B, Zhao Y, Wei X, Guo F. Facile synthesis of Fe 3O 4 nanoparticles/reduced graphene oxide sandwich composites for highly efficient microwave absorption. J Colloid Interface Sci 2023; 645:76-85. [PMID: 37146381 DOI: 10.1016/j.jcis.2023.04.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Component regulation and microstructure design are two effective strategies to adjust electromagnetic parameters and improve the microwave absorption performance of materials. In this study, a facile synthesis strategy consisting of ultrasonic dispersion, blast drying, and roasting is proposed to build a sandwich-like graphene-based absorbent, in which Fe3O4 nanoparticles with adjustable content are sandwiched uniformly between reduced graphene oxide nanosheets. The sandwich structure can form multiple interfaces, prevent the aggregation of nanoparticles, facilitate interface polarization, and endow the material with multiple electromagnetic loss mechanisms, which is very beneficial for impedance matching and microwave attenuation. Notably, the effective absorption bandwidth achieves 5.7 GHz, and the minimum reflection loss value is -49.9 dB. In addition, the synthesis process is simple and suitable for large-scale production and possible industrial applications. Thus, this facile route to fabricate sandwich-like graphene-based absorbents provides new ideas and approaches for designing new graphene-based nanocomposites.
Collapse
Affiliation(s)
- Wanxi Li
- Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, PR China.
| | - Boqiong Li
- Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, PR China
| | - Yali Zhao
- Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, PR China
| | - Xiaoqin Wei
- Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, PR China
| | - Fang Guo
- Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, PR China
| |
Collapse
|
19
|
Zeng S, Han S, Sun X, Wang L, Gao Y, Chen Z, Feng H. Co 3O 4 Nanoparticle-Modified Porous Carbons with High Microwave Absorption Performances. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1073. [PMID: 36985967 PMCID: PMC10051154 DOI: 10.3390/nano13061073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Carbon materials derived from natural biomaterials have received increasing attention because of their low cost, accessibility, and renewability. In this work, porous carbon (DPC) material prepared from D-fructose was used to make a DPC/Co3O4 composite microwave absorbing material. Their electromagnetic wave absorption properties were thoroughly investigated. The results show that the composition of Co3O4 nanoparticles with DPC had enhanced microwave absorption (-60 dB to -63.7 dB), reduced the frequency of the maximum reflection loss (RL) (16.9 GHz to 9.2 GHz), and had high reflection loss over a wide range of coating thicknesses (2.78-4.84 mm, highest reflection loss <-30 dB). This work provided a way for further research on the development of biomass-derived carbon as a sustainable, lightweight, high-performance microwave absorber for practical applications.
Collapse
Affiliation(s)
- Shuangyin Zeng
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Shaojie Han
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaotian Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Li Wang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Yanfeng Gao
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Zhang Chen
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Haitao Feng
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
20
|
Ling M, Wu F, Liu P, Zhang Q, Zhang B. Fabrication of Graphdiyne/Graphene Composite Microsphere with Wrinkled Surface via Ultrasonic Spray Compounding and its Microwave Absorption Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205925. [PMID: 36507608 DOI: 10.1002/smll.202205925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/24/2022] [Indexed: 06/18/2023]
Abstract
Advanced carbon materials are constantly being used in the field of microwave absorption. Herein, in order to enrich the variety and expand the application fields of graphdiyne (GDY), the wrinkled graphene (RGO) nanosheet coated and embedded with GDY porous microspheres (RGO/GDY) are prepared by GDY synthesis, ultrasonic spray, and pyrolysis. The study finds that RGO and GDY have effective synergistic effects. The suitable pores and composition, conductive network formed by overlapping 0D and 2D materials, special surface and internal morphology design, and high-temperature activation process make RGO/GDY exhibit excellent impedance matching and attenuation capabilities. Under the best amount of GDY (20 mg), the particle sizes of the microspheres (≈6 µm), and filler content (27.5%), the minimum reflection loss (RLmin ) is -58 dB@8.3 GHz, and the corresponding matching thickness is 2.7 mm. The effective absorption bandwidth is 4.3 GHz as the thickness is 1.9 mm. By adjusting the thickness, the absorber can completely absorb microwaves of all the C, X, and Ku bands. The microwave absorbing mechanisms are elucidated. GDY materials are first applied to the field of microwave absorption, enhancing the absorption performance of RGO/GDY. It provides a new way to manufacture electromagnetic wave absorbers with satisfactory performance.
Collapse
Affiliation(s)
- Mengyun Ling
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Fei Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Pei Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Shaanxi Engineering and Research Center for Functional Polymers on Adsorption and Separation, Sunresins New Materials Co. Ltd., Xi'an, 710072, China
| |
Collapse
|
21
|
Three-dimensional porous manganese oxide/nickel/carbon microspheres as high-performance electromagnetic wave absorbers with superb photothermal property. J Colloid Interface Sci 2023; 629:884-894. [DOI: 10.1016/j.jcis.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022]
|
22
|
Wang C, Liu Y, Jia Z, Zhao W, Wu G. Multicomponent Nanoparticles Synergistic One-Dimensional Nanofibers as Heterostructure Absorbers for Tunable and Efficient Microwave Absorption. NANO-MICRO LETTERS 2022; 15:13. [PMID: 36520259 PMCID: PMC9755410 DOI: 10.1007/s40820-022-00986-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 05/27/2023]
Abstract
Application of novel radio technologies and equipment inevitably leads to electromagnetic pollution. One-dimensional polymer-based composite membrane structures have been shown to be an effective strategy to obtain high-performance microwave absorbers. Herein, we reported a one-dimensional N-doped carbon nanofibers material which encapsulated the hollow Co3SnC0.7 nanocubes in the fiber lumen by electrospinning. Space charge stacking formed between nanoparticles can be channeled by longitudinal fibrous structures. The dielectric constant of the fibers is highly related to the carbonization temperature, and the great impedance matching can be achieved by synergetic effect between Co3SnC0.7 and carbon network. At 800 °C, the necklace-like Co3SnC0.7/CNF with 5% low load achieves an excellent RL value of - 51.2 dB at 2.3 mm and the effective absorption bandwidth of 7.44 GHz with matching thickness of 2.5 mm. The multiple electromagnetic wave (EMW) reflections and interfacial polarization between the fibers and the fibers internal contribute a major effect to attenuating the EMW. These strategies for regulating electromagnetic performance can be expanded to other electromagnetic functional materials which facilitate the development of emerging absorbers.
Collapse
Affiliation(s)
- Chenxi Wang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Yue Liu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Zirui Jia
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China.
- Weihai Innovation Institute, Qingdao University, Qingdao, 264200, Shandong, People's Republic of China.
| | - Wanru Zhao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
23
|
Li W, Guo F, Zhao Y, Liu Y. A Sustainable and Low-Cost Route to Design NiFe 2O 4 Nanoparticles/Biomass-Based Carbon Fibers with Broadband Microwave Absorption. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4063. [PMID: 36432351 PMCID: PMC9693991 DOI: 10.3390/nano12224063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Carbon-based microwave-absorbing materials with a low cost, simple preparation process, and excellent microwave absorption performance have important application value. In this paper, biomass-based carbon fibers were prepared using cotton fiber, hemp fiber, and bamboo fiber as carbon sources. Then, the precise loading of NiFe2O4 nanoparticles on biomass-based carbon fibers with the loading amount in a wide range was successfully realized through a sustainable and low-cost route. The effects of the composition and structure of NiFe2O4/biomass-based carbon fibers on electromagnetic parameters and electromagnetic absorption properties were systematically studied. The results show that the impedance matching is optimized, and the microwave absorption performance is improved after loading NiFe2O4 nanoparticles on biomass-based carbon fibers. In particular, when the weight percentage of NiFe2O4 nanoparticles in NiFe2O4/carbonized cotton fibers is 42.3%, the effective bandwidth of NiFe2O4/carbonized cotton fibers can reach 6.5 GHz with a minimum reflection loss of -45.3 dB. The enhancement of microwave absorption performance is mainly attributed to the appropriate electromagnetic parameters with the ε' ranging from 9.2 to 4.8, and the balance of impedance matching and electromagnetic loss. Given the simple synthesis method, low cost, high output, and excellent microwave absorption performance, the NiFe2O4/biomass-based carbon fibers have broad application prospects as an economic and broadband microwave absorbent.
Collapse
|
24
|
Highly effective and tunable microwave absorber integrating multiscale attenuation behaviours derived from prussian blue analogue/graphene oxide aerogel. J Colloid Interface Sci 2022; 631:66-77. [DOI: 10.1016/j.jcis.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/27/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
|
25
|
Jiao Z, Huyan W, Yang F, Yao J, Tan R, Chen P, Tao X, Yao Z, Zhou J, Liu P. Achieving Ultra-Wideband and Elevated Temperature Electromagnetic Wave Absorption via Constructing Lightweight Porous Rigid Structure. NANO-MICRO LETTERS 2022; 14:173. [PMID: 35999287 PMCID: PMC9399338 DOI: 10.1007/s40820-022-00904-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/22/2022] [Indexed: 05/14/2023]
Abstract
Realizing ultra-wideband absorption, desirable attenuation capability at high temperature and mechanical requirements for real-life applications remains a great challenge for microwave absorbing materials. Herein, we have constructed a porous carbon fiber/polymethacrylimide (CP) structure for acquiring promising microwave absorption performance and withstanding both elevated temperature and high strength in a low density. Given the ability of porous structure to induce desirable impedance matching and multiple reflection, the absorption bandwidth of CP composite can reach ultra-wideband absorption of 14 GHz at room temperature and even cover the whole X-band at 473 K. Additionally, the presence of imide ring group in polymethacrylimide and hard bubble wall endows the composite with excellent heat and compressive behaviors. Besides, the lightweight of the CP composite with a density of only 110 mg cm-3 coupled with high compressive strength of 1.05 MPa even at 453 K also satisfies the requirements in engineering applications. Compared with soft and compressible aerogel materials, we envision that the rigid porous foam absorbing material is particularly suitable for environmental extremes.
Collapse
Affiliation(s)
- Zibao Jiao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, People's Republic of China
- Key Laboratory of Material Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing, 211100, People's Republic of China
| | - Wenjun Huyan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, People's Republic of China
- Key Laboratory of Material Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing, 211100, People's Republic of China
| | - Feng Yang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, People's Republic of China
- Key Laboratory of Material Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing, 211100, People's Republic of China
| | - Junru Yao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, People's Republic of China
- Key Laboratory of Material Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing, 211100, People's Republic of China
| | - Ruiyang Tan
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Ping Chen
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xuewei Tao
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, People's Republic of China
| | - Zhengjun Yao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, People's Republic of China.
- Key Laboratory of Material Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing, 211100, People's Republic of China.
| | - Jintang Zhou
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, People's Republic of China.
- Key Laboratory of Material Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing, 211100, People's Republic of China.
| | - Peijiang Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, People's Republic of China.
| |
Collapse
|
26
|
Li Q, Zhao X, Zhang Z, Xun X, Zhao B, Xu L, Kang Z, Liao Q, Zhang Y. Architecture Design and Interface Engineering of Self-assembly VS 4/rGO Heterostructures for Ultrathin Absorbent. NANO-MICRO LETTERS 2022; 14:67. [PMID: 35211806 PMCID: PMC8873340 DOI: 10.1007/s40820-022-00809-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/18/2022] [Indexed: 05/03/2023]
Abstract
The employment of microwave absorbents is highly desirable to address the increasing threats of electromagnetic pollution. Importantly, developing ultrathin absorbent is acknowledged as a linchpin in the design of lightweight and flexible electronic devices, but there are remaining unprecedented challenges. Herein, the self-assembly VS4/rGO heterostructure is constructed to be engineered as ultrathin microwave absorbent through the strategies of architecture design and interface engineering. The microarchitecture and heterointerface of VS4/rGO heterostructure can be regulated by the generation of VS4 nanorods anchored on rGO, which can effectively modulate the impedance matching and attenuation constant. The maximum reflection loss of 2VS4/rGO40 heterostructure can reach - 43.5 dB at 14 GHz with the impedance matching and attenuation constant approaching 0.98 and 187, respectively. The effective absorption bandwidth of 4.8 GHz can be achieved with an ultrathin thickness of 1.4 mm. The far-reaching comprehension of the heterointerface on microwave absorption performance is explicitly unveiled by experimental results and theoretical calculations. Microarchitecture and heterointerface synergistically inspire multi-dimensional advantages to enhance dipole polarization, interfacial polarization, and multiple reflections and scatterings of microwaves. Overall, the strategies of architecture design and interface engineering pave the way for achieving ultrathin and enhanced microwave absorption materials.
Collapse
Affiliation(s)
- Qi Li
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xuan Zhao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Zheng Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xiaochen Xun
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Bin Zhao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Liangxu Xu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Qingliang Liao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| |
Collapse
|
27
|
Li S, Tang X, Zhang Y, Lan Q, Hu Z, Li L, Zhang N, Ma P, Dong W, Tjiu W, Wang Z, Liu T. Corrosion-Resistant Graphene-Based Magnetic Composite Foams for Efficient Electromagnetic Absorption. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8297-8310. [PMID: 35130700 DOI: 10.1021/acsami.1c23439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Designing and fabricating high-performance microwave absorption materials with efficient electromagnetic absorption and corrosion resistance becomes a serious and urgent concern. Herein, novel corrosion-resistant graphene-based carbon-coated iron (Fe@C) magnetic composite foam is fabricated via self-assembly of iron phthalocyanine/Fe3O4 (FePc hybrid) on the graphene skeletons under solvothermal conditions and then annealing at high temperature. As a result, the rational construction of a hierarchical impedance gradient between graphene skeletons and Fe@C particles can facilitate the optimization in impedance matching and attenuation characteristic of the foam, realizing the efficient dissipation for incident electromagnetic waves. Additionally, the performance of electromagnetic absorption can be controllably regulated by optimizing annealing temperature and/or time. More importantly, the formation of a carbon-coated iron structure substantially improves the corrosion resistance of magnetic particles, endowing the composite foam with excellent stability and durability in microwave absorption performance.
Collapse
Affiliation(s)
- Shuangshuang Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Xinwei Tang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Yawei Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Qianqian Lan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Zhiwei Hu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Le Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Nan Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Wengweei Tjiu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Zicheng Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| |
Collapse
|
28
|
Yang W, Yan L, Jiang B, Wang P, Li Z, Wang C, Bai H, Zhang C, Li Y. Crumpled Nitrogen-Doped Porous Carbon Nanosheets Derived from Petroleum Pitch for High-Performance and Flexible Electromagnetic Wave Absorption. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04481] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wang Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Lu Yan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Bo Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Peng Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Zhengxuan Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Chaonan Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Hengxuan Bai
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Chengxiao Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Yongfeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| |
Collapse
|
29
|
Yang K, Cui Y, Wan L, Wang Y, Tariq MR, Liu P, Zhang Q, Zhang B. Preparation of Three-Dimensional Mo 2C/NC@MXene and Its Efficient Electromagnetic Absorption Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7109-7120. [PMID: 35080181 DOI: 10.1021/acsami.1c19033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The positively charged MoO3/PDA microspheres are obtained by stacking and assembly of the sheet structure, and the negatively charged MXene nanosheets are wrapped on the surface through the principle of electrostatic self-assembly. After annealing, a nitrogen-doped carbon composite and a MXene-coated Mo2C wave absorber are obtained. The formation of the wrinkled surface provides a complex pore structure, and the multiple interface reflections between the nanosheets enhance the absorption performance. The existence of heterogeneous interfaces and the uneven distribution of space charges accumulated between the interfaces effectively reduce the minimum reflection loss (RLmin). This work explores the effects of the ratio between MoO3/PDA and MXene nanosheets and loading amount on the microwave absorption properties. Mo2C/NC@MXene-2 obtained when the ratio of the two is 3:1 has the best absorption performance under 25% loading. The RLmin is -59.36 dB, and the corresponding effective absorption bandwidth (EAB) is 4.6 GHz at 2.5 mm. This work expands the new applications of MXene-based and Mo2C-based materials and has a guiding significance for the design of electrostatic self-assembly materials.
Collapse
Affiliation(s)
- Ke Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yuhong Cui
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Lingyun Wan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Yabin Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Muhammad Rizwan Tariq
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Pei Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
- Shaanxi Engineering and Research Center for Functional Polymers on Adsorption and Separation, Sunresins New Materials Co. Ltd., Xi'an 710072, P. R. China
| |
Collapse
|
30
|
Li Y, Liao Y, Ji L, Hu C, Zhang Z, Zhang Z, Zhao R, Rong H, Qin G, Zhang X. Quinary High-Entropy-Alloy@Graphite Nanocapsules with Tunable Interfacial Impedance Matching for Optimizing Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107265. [PMID: 34908242 DOI: 10.1002/smll.202107265] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 05/23/2023]
Abstract
Designing heterogeneous interfaces and components at the nanoscale is proven effective for optimizing electromagnetic wave absorption and shielding properties, which can achieve desirable dielectric polarization and ferromagnetic resonances. However, it remains a challenge for the precise control of components and microstructures via an efficient synthesis approach. Here, the arc-discharged plasma method is proposed to synthesize core@shell structural high-entropy-alloy@graphite nanocapsules (HEA@C-NPs), in which the HEA nanoparticles are in situ encapsulated within a few layers of graphite through the decomposition of methane. In particular, the HEA cores can be designed via combinations of various transition elements, presenting the optimized interfacial impedance matching. As an example, the FeCoNiTiMn HEA@C-NPs obtain the minimum reflection loss (RLmin ) of -33.4 dB at 7.0 GHz (3.34 mm) and the efficient absorption bandwidth (≤-10 dB) of 5.45 GHz ranging from 12.55 to 18.00 GHz with an absorber thickness of 1.9 mm. The present approach can be extended to other carbon-coated complex components systems for various applications.
Collapse
Affiliation(s)
- Yixing Li
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Yijun Liao
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Lianze Ji
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| | - Chenglong Hu
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| | - Zhenhua Zhang
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| | - Zhengyu Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Rongzhi Zhao
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| | - Huawei Rong
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| | - Gaowu Qin
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Xuefeng Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| |
Collapse
|
31
|
Liang L, Gu W, Wu Y, Zhang B, Wang G, Yang Y, Ji G. Heterointerface Engineering in Electromagnetic Absorbers: New Insights and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106195. [PMID: 34599773 DOI: 10.1002/adma.202106195] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/15/2021] [Indexed: 05/24/2023]
Abstract
Electromagnetic (EM) absorbers play an increasingly essential role in the electronic information age, even toward the coming "intelligent era". The remarkable merits of heterointerface engineering and its peculiar EM characteristics inject a fresh and infinite vitality for designing high-efficiency and stimuli-responsive EM absorbers. However, there still exist huge challenges in understanding and reinforcing these interface effects from the micro and macro perspectives. Herein, EM response mechanisms of interfacial effects are dissected in depth, and with a focus on advanced characterization as well as theoretical techniques. Then, the representative optimization strategies are systematically discussed with emphasis on component selection and structural design. More importantly, the most cutting-edge smart EM functional devices based on heterointerface engineering are reported. Finally, current challenges and concrete suggestions are proposed, and future perspectives on this promising field are also predicted.
Collapse
Affiliation(s)
- Leilei Liang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Weihua Gu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Yue Wu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Baoshan Zhang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Gehuan Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Yi Yang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Guangbin Ji
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| |
Collapse
|
32
|
Duan Y, Jiang B, Ma C, Wang X, Wang Y, Li R, Yang W, Li Y. Construction of MnO-skeleton cross-linked by carbon nanotubes networks for efficient microwave absorption. J Colloid Interface Sci 2021; 602:778-788. [PMID: 34214732 DOI: 10.1016/j.jcis.2021.06.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022]
Abstract
Constructing nanostructures with abundant heterogeneous interfaces is highly efficient in improving microwave absorbing properties. Herein, a simple chemical vapor deposition (CVD) route for the in-situ growth of carbon nanotubes (CNTs) in the voids of MnO particles clusters skeleton has been developed to fabricate MnO/CNTs heterostructure composites with tunable dielectric properties. The optimized MnO/CNTs-1 composite with 45 wt% CNTs content exhibits comprehensive enhanced microwave absorption performance, with the minimum reflection loss (RLmin) can reach -50.6 dB (20 wt% in paraffin composite). The effective absorption bandwidth (RL < -10 dB, 90% absorption) up to 13.7 GHz was achieved by adjusting the thickness from 2 to 5 mm, covering the entire C, X and Ku bands. Herein, the MnO particles and CNTs networks act as skeleton and crosslinker, respectively. The MnO particles attached throughout the CNTs networks can provide multiple interfacial polarization and multiple scattering/reflection. Our works provide new insights for the facile designing lightweight nanostructure to enhance the microwave absorption performance of the CNTs.
Collapse
Affiliation(s)
- Yongli Duan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping 102249, Beijing, China
| | - Bo Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping 102249, Beijing, China
| | - Chi Ma
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping 102249, Beijing, China
| | - Xin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping 102249, Beijing, China
| | - Yibiao Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping 102249, Beijing, China
| | - Rui Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping 102249, Beijing, China
| | - Wang Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping 102249, Beijing, China
| | - Yongfeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping 102249, Beijing, China.
| |
Collapse
|
33
|
Deng J, Bai Z, Zhao B, Guo X, Zhao H, Xu H, Park CB. Opportunities and challenges in microwave absorption of nickel-carbon composites. Phys Chem Chem Phys 2021; 23:20795-20834. [PMID: 34546266 DOI: 10.1039/d1cp03522c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, the problem of electromagnetic wave (EMW) pollution has attracted more and more attention with the development of science and technology. In order to solve this complex problem, the research and development of EMW-absorbing materials is crucial. The new absorbing materials should have the characteristics of light weight, high efficiency, wide bandwidth, environmental protection, oxidation resistance, and other characteristics. Traditional single-phase Ni materials exhibit remarkable ferromagnetic behavior and double-loss mechanisms (dielectric loss and magnetic loss), and are considered as efficient EMW absorbers. However, under the action of EMWs, especially in the GHz frequency band, Ni materials tend to produce an eddy current effect, which limits their application prospects. For Ni-based materials, there is much interest in modifying the composite materials by designing a hierarchical structure for their preparation. Traditional, single-phase, carbon-based materials have been widely used in related fields because of their light weight and good conductivity. However, a single-loss mechanism will affect the impedance matching of carbon materials, thus affecting their application in the field of absorbing waves. For carbon materials, people use them as a filler or matrix material to fabricate composites with metals, metal oxides, or polymer materials to obtain carbon-containing absorbing materials. This paper reviews the evaluation and design principles of the absorbing properties of EMW-absorbing materials. Then, the progress of modified single-phase Ni-based materials (designed materials with 0D, 1D, 2D, and 3D structures), the development of carbon materials (carbon black, carbon nanotubes, carbon fiber, graphite oxide, reduced graphene oxide, and biomedical carbon), and the research progress of Ni-C composite materials (the composite material formed by nickel and carbon) are reviewed. The ultimate goal is to obtain absorbers with light weight, strong absorbing ability, and a wide frequency band. In particular, Ni-MXene, Ni-biomedical carbon, and Ni-multiphase carbon composites are the target direction for designing new and high efficiency EMW absorbers. Finally, the basic challenges and opportunities in this field are discussed.
Collapse
Affiliation(s)
- Jiushuai Deng
- School of Chemical Engineering and Technology, China University of Mining & Technology (Beijing), Beijing 100083, China.
| | - Zhongyi Bai
- School of Chemical Engineering and Technology, China University of Mining & Technology (Beijing), Beijing 100083, China. .,Henan Key Laboratory of Aeronautical Materials and Application Technology, School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, Henan 450046, China.
| | - Biao Zhao
- Henan Key Laboratory of Aeronautical Materials and Application Technology, School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, Henan 450046, China.
| | - Xiaoqin Guo
- Henan Key Laboratory of Aeronautical Materials and Application Technology, School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, Henan 450046, China.
| | - Honghui Zhao
- School of Chemical Engineering and Technology, China University of Mining & Technology (Beijing), Beijing 100083, China.
| | - Hui Xu
- School of Chemical Engineering and Technology, China University of Mining & Technology (Beijing), Beijing 100083, China.
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto M5S 3G8, Canada.
| |
Collapse
|
34
|
Preparation of core-shell C@TiO 2 composite microspheres with wrinkled morphology and its microwave absorption. J Colloid Interface Sci 2021; 607:1036-1049. [PMID: 34571293 DOI: 10.1016/j.jcis.2021.09.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022]
Abstract
In this work, we successfully synthesize the core-shell structure carbon@titanium dioxide (C@TiO2) composite microspheres with wrinkled surface through a three-step method and build up the relationship between the TiO2 layer thickness and the microwave absorption property. The absorbing mechanism of the novel microsphere is revealed. Interface polymerization is applied for preparation of wrinkled poly glycidyl methacrylate/divinylbenzene polymer microspheres (PGMA/PDVB); Then, TiO2 layer is controllably coated on the surface of PGMA/PDVB microspheres by hydrolysis of tetrabutyl titanate (TBT); C@TiO2 composite microspheres are obtained by vacuum carbonization with PGMA/PDVB@TiO2 microspheres as the precursor. TiO2 layer thickness on the surface of C@TiO2 composite microspheres can be effectively adjusted by controlling the amount of TBT. When the amount of TBT is 0.75 mL, C@TiO2 composite microspheres exhibit the outstanding electromagnetic loss performance. The maximum reflection loss value (RLmax) reaches -49.21 dB at the thickness of 2 mm, corresponding effective absorption bandwidth is 5.27 GHz. The maximum effective absorption bandwidth is 5.5 GHz at 2.2 mm. The results show that the introduction of TiO2 can regulate electromagnetic parameters and enhance interface polarization ability. Meanwhile, the surface wrinkle structure offers more opportunities for multiple reflections of electromagnetic and introduces a large number of defective skeleton structure. The synergy of multiple advantages makes the absorbing performance of C@TiO2 composite microspheres significantly improved. This work plays a guiding role for the composition and the structure optimization of existing microwave absorbers.
Collapse
|
35
|
Zhao S, Yang J, Duan F, Zhang B, Liu Y, Zhang B, Chen C, Qin Y. Rational construction of porous N-doped Fe 2O 3 films on porous graphene foams by molecular layer deposition for tunable microwave absorption. J Colloid Interface Sci 2021; 598:45-55. [PMID: 33894616 DOI: 10.1016/j.jcis.2021.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
Graphene-based materials with porous microstructure have attracted immense attentions due to their wide application in microwave absorption. However, constructing magnetic film with both porous microstructure and uniform pore size by using traditional methods still remains a challenge. To overcome this problem, we reported a facile strategy of molecular layer deposition (MLD) for successfully fabrication of the hybrid-architecture of porous graphene foams and nitrogen-doped porous Fe2O3 films. The surfaces of porous graphene foams are uniformly covered by porous Fe2O3 films without aggregation and the pore structures are widely distributed. The porous graphene-based composites exhibit remarkably enhanced microwave absorption performance compared to the pristine graphene foams. The minimum reflection loss value is increased by approximately 8 times, reaching -64.36 dB with a thickness of only 2.18 mm. More importantly, the absorption property can be precisely modulated by tuning the MLD cycle numbers and effective absorption bandwidth covers 3.04-18.0 GHz by adjusting the thickness from 1.0 to 5.0 mm. This work provides new insights for exploring novel and high-performance graphene-based microwave absorbents and offers a new idea to rationally design three-dimensional composites with porous magnetic films.
Collapse
Affiliation(s)
- Shichao Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Jie Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Duan
- Shanxi Institute of Energy, Taiyuan 030001, China
| | - Baiyan Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yequn Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Bin Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoqiu Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
36
|
Zhao X, Huang Y, Liu X, Yan J, Ding L, Zong M, Liu P, Li T. Core-shell CoFe 2O 4@C nanoparticles coupled with rGO for strong wideband microwave absorption. J Colloid Interface Sci 2021; 607:192-202. [PMID: 34500418 DOI: 10.1016/j.jcis.2021.08.203] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022]
Abstract
Strong absorption and large bandwidth are two contributors to materials' absorbing performance. In this work, a series of multi-element core-shell magnetic nano-particle composite layered graphene absorbing materials CoFe2O4@C/rGO (CCr) were prepared by adjusting carbon shell thickness. The CCr at a low thickness achieved strong microwave absorption and a wide effective absorption bandwidth. Not only the core-shell structure of the magnetic nanoparticle CoFe2O4@C (CFO@C) increases the interface loss, but both the coating carbon shell and the core CoFe2O4 (CFO) are beneficial to improve impedance matching. Due to the synergistic effect of the dielectric and magnetic properties of graphene and ferrite, CCr possessed high absorption performance, and its minimum reflection loss reached (RLmin) -52.5 dB when the thickness was only 2 mm. At the same time, the effective absorption bandwidth (EAB) was 5.68 GHz when the thickness was only 1.7 mm. The chemically stable core-shell dielectric nanocomposite provided a new solution for preparing materials with excellent chemical structure and high absorbing properties.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- The MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Ministry of Education, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Ying Huang
- The MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Ministry of Education, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, PR China.
| | - Xudong Liu
- The MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Ministry of Education, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Jing Yan
- The MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Ministry of Education, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Ling Ding
- The MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Ministry of Education, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Meng Zong
- The MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Ministry of Education, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, PR China.
| | - Panbo Liu
- The MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Ministry of Education, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Tiehu Li
- NPU-NCP Joint International Research Center on Advanced Nanomaterials & Defects Engineering, State Key Laboratory of Solidification Processing, Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| |
Collapse
|
37
|
Rajput NS, Al Zadjali S, Gutierrez M, Esawi AMK, Al Teneiji M. Synthesis of holey graphene for advanced nanotechnological applications. RSC Adv 2021; 11:27381-27405. [PMID: 35480691 PMCID: PMC9037835 DOI: 10.1039/d1ra05157a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
Holey or porous graphene, a structural derivative of graphene, has attracted immense attention due to its unique properties and potential applications in different branches of science and technology. In this review, the synthesis methods of holey or porous graphene/graphene oxide are systematically summarized and their potential applications in different areas are discussed. The process-structure-applications are explained, which helps relate the synthesis approaches to their corresponding key applications. The review paper is anticipated to benefit the readers in understanding the different synthesis methods of holey graphene, their key parameters to control the pore size distribution, advantages and limitations, and their potential applications in various fields.
Collapse
Affiliation(s)
- Nitul S Rajput
- Advanced Materials Research Center, Technology Innovation Institute Building B04C Abu Dhabi 9639 United Arab Emirates
| | - Shroq Al Zadjali
- Advanced Materials Research Center, Technology Innovation Institute Building B04C Abu Dhabi 9639 United Arab Emirates
| | - Monserrat Gutierrez
- Advanced Materials Research Center, Technology Innovation Institute Building B04C Abu Dhabi 9639 United Arab Emirates
| | - Amal M K Esawi
- Department of Mechanical Engineering, School of Sciences and Engineering, The American University in Cairo Cairo 11835 Egypt
| | - Mohamed Al Teneiji
- Advanced Materials Research Center, Technology Innovation Institute Building B04C Abu Dhabi 9639 United Arab Emirates
| |
Collapse
|
38
|
Zhao Y, Zuo X, Guo Y, Huang H, Zhang H, Wang T, Wen N, Chen H, Cong T, Muhammad J, Yang X, Wang X, Fan Z, Pan L. Structural Engineering of Hierarchical Aerogels Comprised of Multi-dimensional Gradient Carbon Nanoarchitectures for Highly Efficient Microwave Absorption. NANO-MICRO LETTERS 2021; 13:144. [PMID: 34138390 PMCID: PMC8206232 DOI: 10.1007/s40820-021-00667-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/20/2021] [Indexed: 05/19/2023]
Abstract
Recently, multilevel structural carbon aerogels are deemed as attractive candidates for microwave absorbing materials. Nevertheless, excessive stack and agglomeration for low-dimension carbon nanomaterials inducing impedance mismatch are significant challenges. Herein, the delicate "3D helix-2D sheet-1D fiber-0D dot" hierarchical aerogels have been successfully synthesized, for the first time, by sequential processes of hydrothermal self-assembly and in-situ chemical vapor deposition method. Particularly, the graphene sheets are uniformly intercalated by 3D helical carbon nanocoils, which give a feasible solution to the mentioned problem and endows the as-obtained aerogel with abundant porous structures and better dielectric properties. Moreover, by adjusting the content of 0D core-shell structured particles and the parameters for growth of the 1D carbon nanofibers, tunable electromagnetic properties and excellent impedance matching are achieved, which plays a vital role in the microwave absorption performance. As expected, the optimized aerogels harvest excellent performance, including broad effective bandwidth and strong reflection loss at low filling ratio and thin thickness. This work gives valuable guidance and inspiration for the design of hierarchical materials comprised of dimensional gradient structures, which holds great application potential for electromagnetic wave attenuation.
Collapse
Affiliation(s)
- Yongpeng Zhao
- School of Physics, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
- School of Microelectronics, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Xueqing Zuo
- School of Physics, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Yuan Guo
- School of Physics, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Hui Huang
- School of Physics, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Hao Zhang
- School of Physics, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Ting Wang
- School of Physics, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Ningxuan Wen
- School of Physics, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Huan Chen
- School of Physics, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
- School of Microelectronics, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Tianze Cong
- School of Physics, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Javid Muhammad
- School of Physics, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Xuan Yang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Xinnan Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Zeng Fan
- School of Physics, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China.
| | - Lujun Pan
- School of Physics, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China.
| |
Collapse
|
39
|
Wang Z, Yang L, Zhou Y, Xu C, Yan M, Wu C. NiFe LDH/MXene Derivatives Interconnected with Carbon Fabric for Flexible Electromagnetic Wave Absorption. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16713-16721. [PMID: 33818065 DOI: 10.1021/acsami.1c05007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cross-linking network structures are critical to construct flexible and lightweight electromagnetic (EM) wave absorbers, for which effective regulation of the EM parameters is essential. Herein, a versatile strategy has been developed by interconnecting carbon fibers with NiFe-layered double hydroxide (NiFe LDH)/MXene derivatives. The large-sized flaky morphology and conductive nature of the interconnectors induce the percolation effect in the fabric networks with ultralow addition. As such, efficient adjustment of the EM parameters can be achieved by tuning the content of the interconnectors around the percolation threshold, giving rise to an optimal reflection loss (RL) of -58.0 dB and a wide effective absorption band (EAB) of 7.0 GHz at a thickness of 2.5 mm under the incorporation of 7.0 wt % NiFe LDH/MXene. This work provides insights on constructing percolation networks and effective manipulation of electronic and magnetic properties, which can be extended to various areas such as sensing, catalysis, and energy storage.
Collapse
Affiliation(s)
- Zihan Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Liuxin Yang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China
| | - Yang Zhou
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China
| | - Chen Xu
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China
| | - Mi Yan
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Chen Wu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
40
|
Zhang S, Xu L, Chen Z, Fan S, Qiu Z, Nie Z, Li B, Zhang S. Hierarchical porous carbon derived from green cyclodextrin
metal‐organic
framework and its application in microwave absorption. J Appl Polym Sci 2021. [DOI: 10.1002/app.50849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shao‐Xia Zhang
- Chengdu Institute of Biology Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Long Xu
- Chengdu Institute of Biology Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Zhi‐Hui Chen
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| | - Shu‐Ting Fan
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| | - Zhen‐Jiang Qiu
- Chengdu Institute of Biology Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Zi‐Jun Nie
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| | - Bang‐Jing Li
- Chengdu Institute of Biology Chinese Academy of Sciences Chengdu China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| |
Collapse
|
41
|
Tahir MB, Shafiq F, Sagir M, Tahir MS. Construction of visible-light-driven ternary ZnO-MoS2-BiVO4 composites for enhanced photocatalytic activity. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-020-01572-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
42
|
Fang WZ, Peng L, Liu YJ, Wang F, Xu Z, Gao C. A Review on Graphene Oxide Two-dimensional Macromolecules: from Single Molecules to Macro-assembly. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2515-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Zhang M, Han C, Cao WQ, Cao MS, Yang HJ, Yuan J. A Nano-Micro Engineering Nanofiber for Electromagnetic Absorber, Green Shielding and Sensor. NANO-MICRO LETTERS 2020; 13:27. [PMID: 34138252 PMCID: PMC8187527 DOI: 10.1007/s40820-020-00552-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/15/2020] [Indexed: 05/16/2023]
Abstract
The role of electron transport characteristics in electromagnetic (EM) attenuation can be generalized to other EM functional materials. The integrated functions of efficient EM absorption and green shielding open the view of EM multifunctional materials. A novel sensing mechanism based on intrinsic EM attenuation performance and EM resonance coupling effect is revealed. It is extremely unattainable for a material to simultaneously obtain efficient electromagnetic (EM) absorption and green shielding performance, which has not been reported due to the competition between conduction loss and reflection. Herein, by tailoring the internal structure through nano-micro engineering, a NiCo2O4 nanofiber with integrated EM absorbing and green shielding as well as strain sensing functions is obtained. With the improvement of charge transport capability of the nanofiber, the performance can be converted from EM absorption to shielding, or even coexist. Particularly, as the conductivity rising, the reflection loss declines from - 52.72 to - 10.5 dB, while the EM interference shielding effectiveness increases to 13.4 dB, suggesting the coexistence of the two EM functions. Furthermore, based on the high EM absorption, a strain sensor is designed through the resonance coupling of the patterned NiCo2O4 structure. These strategies for tuning EM performance and constructing devices can be extended to other EM functional materials to promote the development of electromagnetic driven devices.
Collapse
Affiliation(s)
- Min Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Chen Han
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Wen-Qiang Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Mao-Sheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Hui-Jing Yang
- Department of Physics, Tangshan Normal University, Tangshan, 063000, People's Republic of China.
| | - Jie Yuan
- School of Information Engineering, Minzu University of China, Beijing, 100081, People's Republic of China.
| |
Collapse
|
44
|
Borges-Vilches J, Figueroa T, Guajardo S, Meléndrez M, Fernández K. Development of gelatin aerogels reinforced with graphene oxide by microwave-assisted synthesis: Influence of the synthesis conditions on their physicochemical properties. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Sultanov F, Daulbayev C, Bakbolat B, Daulbayev O. Advances of 3D graphene and its composites in the field of microwave absorption. Adv Colloid Interface Sci 2020; 285:102281. [PMID: 33011572 DOI: 10.1016/j.cis.2020.102281] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
The intensive progress of information technology increases the demand for urgent development of practical materials for microwave absorption (MA), meeting the general requirement "thin, wide, light and strong". In the past 6 years, graphene is of great interest for MA performance due to its unique properties such as high specific surface area, high electrical conductivity, strong dielectric loss, and low density. Taking in account that the structure of absorber plays a key role in MA performance, the attempts to produce an efficient microwave absorbing materials (MAMs) have led to 3D graphene - aerogels and foams - due to their extremely high porosity, large specific surface area, excellent mechanical properties with ability of compression and further maintaining the original shape, lightweight, reduced agglomeration of graphene sheets. All listed parameters enhance the impedance matching of MAMs, generate the synergistic loss effects, thereby improving the MA properties. The review describes the bases of MA theory and summarizes the recent achievements in the fabrication of pure 3D graphene networks and their composites with magnetic, ceramic nanoparticles and nanowires, polymers, MXenes, and multicomponent systems, directed to improve the impedance matching and generate loss mechanisms for the overall improvement of their performance as MAMs.
Collapse
|
46
|
Zhao H, Xu X, Wang Y, Fan D, Liu D, Lin K, Xu P, Han X, Du Y. Heterogeneous Interface Induced the Formation of Hierarchically Hollow Carbon Microcubes against Electromagnetic Pollution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003407. [PMID: 33015974 DOI: 10.1002/smll.202003407] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/08/2020] [Indexed: 05/25/2023]
Abstract
Carbon materials with multilevel structural features are showing great potentials in electromagnetic (EM) pollution precaution. With ZIF-67 microcubes as a self-sacrificing precursor, hierarchical carbon microcubes with micro/mesoporous shells and hollow cavities have been successfully fabricated with the assistance of rigid SiO2 coating layers. It is found that the SiO2 layer can effectively counteract the inward shrinkage of organic frameworks during high-temperature pyrolysis due to intensive interfacial interaction. The obtained hollow porous carbon microcubes (HPCMCs) exhibit larger Brunauer-Emmett-Teller surface area and pore volume than porous carbon microcubes (PCMCs) directly derived from ZIF-67 microcubes. The unique microstructure is confirmed to be favorable for conductive loss and interfacial polarization, thus boosting the overall dielectric loss capability of carbon materials. Besides, hollow cavity will also promote multiple reflection of incident EM waves and intensify the dissipation of EM energy. As expected, HPCMCs harvest better microwave absorption performance, including strong reflection loss intensity and broad response bandwidth, than many traditional microporous/mesoporous carbon materials. This study provides a new strategy for the construction of hierarchical carbon materials and may inspire the design of carbon-based composites with excellent EM functions.
Collapse
Affiliation(s)
- Honghong Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xianzhu Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yahui Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Dingge Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Dawei Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Kaifeng Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
47
|
Wu F, Liu P, Wang J, Shah T, Ahmad M, Zhang Q, Zhang B. Fabrication of magnetic tubular fiber with multi-layer heterostructure and its microwave absorbing properties. J Colloid Interface Sci 2020; 577:242-255. [DOI: 10.1016/j.jcis.2020.05.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
|
48
|
Wang L, Huang M, Yu X, You W, Zhang J, Liu X, Wang M, Che R. MOF-Derived Ni 1-xCo x@Carbon with Tunable Nano-Microstructure as Lightweight and Highly Efficient Electromagnetic Wave Absorber. NANO-MICRO LETTERS 2020; 12:150. [PMID: 34138180 PMCID: PMC7770844 DOI: 10.1007/s40820-020-00488-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/15/2020] [Indexed: 05/26/2023]
Abstract
Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion, especially in the microwave absorption (MA) field. Herein, porous Ni1-xCox@Carbon composites derived from metal-organic framework (MOF) were successfully synthesized via solvothermal reaction and subsequent annealing treatments. Benefiting from the coordination, carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure. During the thermal decomposition, generated magnetic particles/clusters acted as a catalyst to promote the carbon sp2 arrangement, forming special core-shell architecture. Therefore, pure Ni@C microspheres displayed strong MA behaviors than other Ni1-xCox@Carbon composites. Surprisingly, magnetic-dielectric Ni@C composites possessed the strongest reflection loss value - 59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz. Meanwhile, the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%. Magnetic-dielectric synergy effect of MOF-derived Ni1-xCox@Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism.
Collapse
Affiliation(s)
- Lei Wang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Mengqiu Huang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Xuefeng Yu
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Wenbin You
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Jie Zhang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou, 450002, People's Republic of China
| | - Min Wang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Renchao Che
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
49
|
Wang J, Wu F, Yang Z, Shah T, Zhang A, Zhang Q, Zhang B. Preparation of CTCNFs/Co 9S 8 hybrid nanofibers with enhanced microwave absorption performance. NANOTECHNOLOGY 2020; 31:225605. [PMID: 32059206 DOI: 10.1088/1361-6528/ab767d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A three-step synthesis strategy has been applied to the preparation of Co9S8-loaded tubular carbon nanofibers (CTCNFs/Co9S8 hybrid nanofibers) with excellent microwave absorbing ability. Firstly, tubular polymer nanofibers (TPNFs) are synthesized using the confined self-condensation method that we developed. Afterwards, TPNFs are converted into surface carboxylated tubular carbon nanofibers (CTCNFs) by carbonization and subsequent acidification processes. Finally, a hydrothermal method is used for the controllable growth of Co9S8 nanoparticles on CTCNFs, and a series of CTCNFs/Co9S8 hybrid nanofibers with different Co9S8 loading are obtained. The prepared CTCNFs/Co9S8 hybrid nanofibers possess abundant effective interface and defect dipoles, which will lead to stronger polarization. Using the strategy of enhancing dielectric loss, the microwave dissipation ability of CTCNFs/Co9S8 hybrid nanofibers has been significantly improved, showing an excellent low-frequency absorbing performance with a minimum reflection loss of -46.81 dB@5.3 GHz. In addition, the composition, structure and properties of nanofibers have been systematically characterized. The Co9S8 loading on CTCNFs and the filler content of CTCNFs/Co9S8 hybrid nanofibers in matrix are studied and optimized. The microwave attenuation mechanism is also explained.
Collapse
Affiliation(s)
- Jiqi Wang
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710129, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
50
|
Zhang C, Peng Y, Song Y, Li J, Yin F, Yuan Y. Periodic Three-Dimensional Nitrogen-Doped Mesoporous Carbon Spheres Embedded with Co/Co 3O 4 Nanoparticles toward Microwave Absorption. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24102-24111. [PMID: 32352278 DOI: 10.1021/acsami.0c03105] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although various bio-inspired materials with outstanding mechanical, acoustic, and optic properties have been developed, bio-inspired materials for microwave absorption applications are rarely reported. Herein, under the inspiration of the opal structure, for the first time, a kind of Co@Co3O4/nitrogen-doped (N-doped) mesoporous carbon sphere (Co@Co3O4/NMCS) with a periodic three-dimensional structure toward microwave absorption application was designed and synthesized. The microwave absorption performance was optimized with respect to the content of Co@Co3O4 nanoparticles. Co@Co3O4/NMCS with ∼20 wt % Co@Co3O4 achieves a reflection loss of -53.8 dB at 5.7 GHz. The simulated radar cross section demonstrated that the Co@Co3O4/NMCS can efficiently suppress the strong electromagnetic scattering from a metal groove structure, which further reveals its excellent absorbing performance. These periodic porous structures of N-doped mesoporous carbon spheres combined with the magnetic Co@Co3O4 nanoparticles contribute to the excellent microwave-absorbing performance.
Collapse
Affiliation(s)
- Chengwei Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yue Peng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yan Song
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jianjun Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, School of Astronautics, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Fuxing Yin
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ye Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, School of Astronautics, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|