1
|
Zhu F, Wang D, Dang Y, Wang P, Xu P, Han D, Wei Y. "Anchoring Capture" Effect Mimicking Proline in Hardy Deep-Sea Fish to Stabilize the Zinc Anode with Lower Operating Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407767. [PMID: 39520325 DOI: 10.1002/smll.202407767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/19/2024] [Indexed: 11/16/2024]
Abstract
The low plating/stripping efficiency of zinc anodes, dendrite growth, and high freezing points of aqueous solutions hinder the practical application of aqueous zinc-ion batteries. This paper proposes a zwitterionic permeable network solid-state electrolyte based on the "anchor-capture" effect to address these problems by incorporating proline (Pro, a biological antifreeze agent) into the electrolyte. Extensive validation tests, Quantum Chemistry (QC) calculations, Molecular Dynamics (MD) Simulations, and ab initio molecular dynamics simulations consistently indicate that the amino groups in proline adsorb onto the Zn metal surface, stabilizing the zinc anode-electrolyte interface, suppressing side reactions from water decomposition, and homogenizing zinc-ion flux. This electrolyte demonstrates excellent reversibility in Zn-Mn2O3 cells and Zn-Zn half-cells, achieving a high coulombic efficiency of over 99.4% across 2000 cycles in Zn-Mn2O3 full cells, and delivering a discharge-specific capacity of 175.2 mAh g-1 at -35 °C and 1 A g-1. Additionally, an appropriate concentration of proline lowers the electrolyte's freezing point to -45 °C through the network's solid-state effect, ensuring the stable operation of the solid-state battery at -35 °C. This innovative concept of network solid-state electrolytes injects new vitality into the development of multifunctional solid-state electrolytes.
Collapse
Affiliation(s)
- Feng Zhu
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Dongxu Wang
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Yupeng Dang
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Ping Wang
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Pengcheng Xu
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Dandan Han
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
- College of Biology & Food Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Gong S, Zhu M, Zhou Y, Li R, Zhang J, Jia X, Chao D, Wang C. An interactive dual energy storage mechanism boosts high-performance aqueous zinc-ion batteries. Chem Sci 2024; 15:19870-19885. [PMID: 39568881 PMCID: PMC11575571 DOI: 10.1039/d4sc05710d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Organic materials are promising cathodes for aqueous zinc-ion batteries (AZIBs) due to their cost-effectiveness, environmental friendliness, and tunable structures. However, the energy density of AZIBs remains limited by the inherently low capacity and output voltage of organic cathode materials. To address this challenge, we develop a Mn ion-doped polyaniline (PAM) by harnessing the joint merits of the highly reversible doping process of the conjugated backbone and the unique dissolution-deposition behavior of Mn2+ in ZnSO4 electrolyte. The incorporation of Mn2+ into the PANI backbone facilitates the stabilization of PAM at high potentials by lowering the lowest unoccupied molecular orbital (LUMO) energy level, resulting in enhanced output voltage and cycling stability. This new interactive dual energy storage mechanism, illustrated by density functional theory calculations and ex situ characterization, contributes to the improved capacity by employing a dissolution-deposition storage mechanism. The battery showcases a maximum specific capacity of 496.7 mA h g-1 at an ultra-high working voltage of 2.4 V. And the capacity is 213.2 mA h g-1 when the current density reaches 20 A g-1. This molecular design of the pre-doped PANI cathode and the insight into the groundbreaking dual energy storage mechanism offer a new alternative host for high-performance Zn-organic batteries.
Collapse
Affiliation(s)
- Shengen Gong
- College of Chemistry, Jilin University Changchun 130012 China
| | - Meihua Zhu
- College of Chemistry, Jilin University Changchun 130012 China
| | - Yan Zhou
- College of Chemistry, Jilin University Changchun 130012 China
| | - Runan Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University Changchun 130012 China
| | - Jianhua Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University Changchun 130012 China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University Changchun 130012 China
| | - Danming Chao
- College of Chemistry, Jilin University Changchun 130012 China
| | - Caiyun Wang
- Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, University of Wollongong North Wollongong NSW 2500 Australia
| |
Collapse
|
3
|
Miao J, Ci N, Cao B, Xie G, Liu X, Qiu HJ. N, S-Codoped 3D Carbon Protected Nanoporous MnS With Record High Sodium Ion Storage Performance for Potential Industry Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407829. [PMID: 39428854 DOI: 10.1002/smll.202407829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/26/2024] [Indexed: 10/22/2024]
Abstract
With a high theoretical capacity, the MnS anode, however, exhibits a rather complex sodium diffusion kinetics and poor mechanical stability that hinder its application in sodium-ion batteries (SIBs). In this work, a simple, economical, and scalable strategy is developed to inherently coat nanoporous MnS with a 3D N, S co-doped thin carbon layer by using commercially available MnCO3 as precursors. Specifically, the strategy involves a two-step annealing process, which converts the MnCO3 microparticles into nanoporous Mn2O3 and MnS step by step. The 3D N, S codoped carbon layer is in situ formed during the second annealing process by first coating the nanoporous Mn2O3 with a polyaniline layer. Due to the inherent 3D carbon protection and the strong electronic interaction between N, S dopants and MnS, the N, S codoped carbon protected MnS obtained at 900 °C (NS-C@MnS-900) anode displays a high specific capacity of 845 mAh g-1 at 0.1 A g-1, which is higher than all reported MnS-based SIB anodes. It also shows an outstanding cyclability and rate performance, maintaining a stable capacity of ≈493 mAh g-1 after 1300 cycles at 10 A g-1, which is also the best according to knowledge. These exceptional electrochemical performances and the scalable/simple/low-cost synthesis make the NS-C@MnS-900 attractive for industry application.
Collapse
Affiliation(s)
- Jun Miao
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Naixuan Ci
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Boxuan Cao
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Guoqiang Xie
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Xingjun Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Hua-Jun Qiu
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Jesudass SC, Surendran S, Lim Y, Jo M, Janani G, Choi H, Kwon G, Jin K, Park H, Kim TH, Sim U. Realizing the Electrode Engineering Significance Through Porous Organic Framework Materials for High-Capacity Aqueous Zn-Alkaline Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406539. [PMID: 39506391 DOI: 10.1002/smll.202406539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Indexed: 11/08/2024]
Abstract
Energy storage technologies are eminently developed to address renewable energy utilization efficiently. Porous framework materials possess high surface area and pore volume, allowing for efficient ion transportation and storage. Their unique structure facilitates fast electron transfer, leading to improved battery kinetics. Porous organic framework materials like metal-organic (MOF) and covalent organic (COF) frameworks have immense potential in enhancing the charge/discharge performances of aqueous Zn-alkaline batteries. Organic frameworks and their derivatives can be modified feasibly to exhibit significant chemical stability, enabling them to tolerate the harsh battery environment. Zn-alkaline batteries can achieve enhanced energy density, longer lifespan, and improved rechargeability by incorporating MOFs and COFs, such as electrodes, separators, or electrolyte additives, into the battery architecture. The present review highlights the significant electrode design strategies based on porous framework materials for aqueous Zn-alkaline batteries, such as Zn-Ni, Zn-Mn, Zn-air, and Zn-N2/NO3 batteries. Besides, the discussion on the issues faced by the Zn anode and the essential anode design strategies to solve the issues are also included.
Collapse
Affiliation(s)
- Sebastian Cyril Jesudass
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Subramani Surendran
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Yoongu Lim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Minjun Jo
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Gnanaprakasam Janani
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Heechae Choi
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Gibum Kwon
- Department of Mechanical Engineering, University of Kansas, Lawrence, 66045, USA
| | - Kyoungsuk Jin
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunjung Park
- Department of Materials Science and Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Tae-Hoon Kim
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Uk Sim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
- Research Institute, NEEL Sciences, INC., Naju, Jeollanamdo, 58326, Republic of Korea
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| |
Collapse
|
5
|
Liao Y, Yang C, Bai J, He Q, Wang H, Chen H, Zhang Q, Chen L. Insights into the cycling stability of manganese-based zinc-ion batteries: from energy storage mechanisms to capacity fluctuation and optimization strategies. Chem Sci 2024; 15:7441-7473. [PMID: 38784725 PMCID: PMC11110161 DOI: 10.1039/d4sc00510d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024] Open
Abstract
Manganese-based materials are considered as one of the most promising cathodes in zinc-ion batteries (ZIBs) for large-scale energy storage applications owing to their cost-effectiveness, natural availability, low toxicity, multivalent states, high operation voltage, and satisfactory capacity. However, their intricate energy storage mechanisms coupled with unsatisfactory cycling stability hinder their commercial applications. Previous reviews have primarily focused on optimization strategies for achieving high capacity and fast reaction kinetics, while overlooking capacity fluctuation and lacking a systematic discussion on strategies to enhance the cycling stability of these materials. Thus, in this review, the energy storage mechanisms of manganese-based ZIBs with different structures are systematically elucidated and summarized. Next, the capacity fluctuation in manganese-based ZIBs, including capacity activation, degradation, and dynamic evolution in the whole cycle calendar are comprehensively analyzed. Finally, the constructive optimization strategies based on the reaction chemistry of one-electron and two-electron transfers for achieving durable cycling performance in manganese-based ZIBs are proposed.
Collapse
Affiliation(s)
- Yanxin Liao
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Chun Yang
- Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University Qingdao 266071 China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hong Kong SAR 999077 China
| | - Jie Bai
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Haichao Chen
- Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Qichun Zhang
- Department Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| |
Collapse
|
6
|
Zhang B, Dong P, Yuan S, Zhang Y, Zhang Y, Wang Y. Manganese-Based Oxide Cathode Materials for Aqueous Zinc-Ion Batteries: Materials, Mechanism, Challenges, and Strategies. CHEM & BIO ENGINEERING 2024; 1:113-132. [PMID: 39975639 PMCID: PMC11835183 DOI: 10.1021/cbe.3c00120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2025]
Abstract
Aqueous zinc-ion batteries (AZIBs) have recently attracted worldwide attention due to the natural abundance of Zn, low cost, high safety, and environmental benignity. Up to the present, several kinds of cathode materials have been employed for aqueous zinc-ion batteries, including manganese-based, vanadium-based, organic electrode materials, Prussian Blues, and their analogues, etc. Among all the cathode materials, manganese (Mn)-based oxide cathode materials possess the advantages of low cost, high theoretical specific capacity, and abundance of reserves, making them the most promising cathode materials for commercialization. However, several critical issues, including intrinsically poor conductivity, sluggish diffusion kinetics of Zn2+, Jahn-Teller effect, and Mn dissolution, hinder their practical applications. This Review provides an overview of the development history, research status, and scientific challenges of manganese-based oxide cathode materials for aqueous zinc-ion batteries. In addition, the failure mechanisms of manganese-based oxide materials are also discussed. To address the issues facing manganese-based oxide cathode materials, various strategies, including pre-intercalation, defect engineering, interface modification, morphology regulation, electrolyte optimization, composite construction, and activation of dissolution/deposition mechanism, are summarized. Finally, based on the analysis above, we provide future guidelines for designing Mn-based oxide cathode materials for aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Bao Zhang
- National
and Local Joint Engineering Laboratory for Lithium-ion Batteries and
Materials Preparation Technology, Key Laboratory of Advanced Battery
Materials of Yunnan Province, Faculty of Metallurgical and Energy
Engineering Kunming, Kunming University
of Science and Technology, Kunming 650093, PR China
| | - Peng Dong
- National
and Local Joint Engineering Laboratory for Lithium-ion Batteries and
Materials Preparation Technology, Key Laboratory of Advanced Battery
Materials of Yunnan Province, Faculty of Metallurgical and Energy
Engineering Kunming, Kunming University
of Science and Technology, Kunming 650093, PR China
| | - Shouyi Yuan
- National
and Local Joint Engineering Laboratory for Lithium-ion Batteries and
Materials Preparation Technology, Key Laboratory of Advanced Battery
Materials of Yunnan Province, Faculty of Metallurgical and Energy
Engineering Kunming, Kunming University
of Science and Technology, Kunming 650093, PR China
| | - Yannan Zhang
- National
and Local Joint Engineering Laboratory for Lithium-ion Batteries and
Materials Preparation Technology, Key Laboratory of Advanced Battery
Materials of Yunnan Province, Faculty of Metallurgical and Energy
Engineering Kunming, Kunming University
of Science and Technology, Kunming 650093, PR China
| | - Yingjie Zhang
- National
and Local Joint Engineering Laboratory for Lithium-ion Batteries and
Materials Preparation Technology, Key Laboratory of Advanced Battery
Materials of Yunnan Province, Faculty of Metallurgical and Energy
Engineering Kunming, Kunming University
of Science and Technology, Kunming 650093, PR China
| | - Yonggang Wang
- Department
of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative
Materials, Center of Chemistry for Energy
Materials, Shanghai 200433, PR China
| |
Collapse
|
7
|
Wang Z, Zhu J. Recent Advances on Stretchable Aqueous Zinc-Ion Batteries for Wearable Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311012. [PMID: 38334244 DOI: 10.1002/smll.202311012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Indexed: 02/10/2024]
Abstract
The rapid development of wearable electronics has stimulated the pursuit of advanced stretchable power sources. As a promising candidate, stretchable aqueous zinc-ion batteries (AZIBs), have attracted unprecedented attention owing to their intrinsic safety, low cost, environmental benignity, and high performance, and can be endowed with additional functionalities to broaden the applications of wearable electronics. Here, a comprehensive review on the latest advances of stretchable AZIBs is presented. The materials and methods for stretchable components in AZIBs are first summarized, covering current collectors, electrodes, electrolytes/separators, and encapsulating layers. Subsequently, the benefits of the coplanar, fiber-shaped, and sandwiched configurations for stretchable AZIBs are analyzed. Moreover, the additional features integrated into stretchable AZIBs are highlighted. Finally, the challenges and prospects of stretchable AZIBs for wearable applications in the future are proposed.
Collapse
Affiliation(s)
- Zhao Wang
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Jian Zhu
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
- Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
8
|
Wen L, Zhang Q, Shi J, Wang F, Wang S, Chen Z, Yue Y, Gao Y. Layered Topological Insulator MnBi 2Te 4 as a Cathode for a High Rate Performance Aqueous Zinc-Ion Battery. ACS NANO 2024. [PMID: 38335299 DOI: 10.1021/acsnano.4c01137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Recently, the topological insulator MnBi2Te4 has aroused great attention owing to its exotic quantum phenomena and intriguing device applications, but the superior performances of MnBi2Te4 have not been researched in the field of electrochemistry. By theoretical calculations, it is found that MnBi2Te4 exhibits excellent Zn2+ storage and transport properties. Therefore, it is speculated that MnBi2Te4 has excellent electrochemical performance in zinc-ion batteries (ZIBs). In this research, MnBi2Te4 as a pioneer has been explored in ZIBs, showing surprising electrochemical properties. The MnBi2Te4 electrode displays a high average discharge specific capacity (264.8 mA h g-1 at 0.40 A g-1), a competitive cycle life (88.6% of initial capacity after 400 cycles at 4.00 A g-1), and an excellent rate performance (average capacity retention rate of 95.1% from 0.40 to 8.00 A g-1) owing to the fast ion transport of the conductive topological surface state and dissipationless channel of the edge state. Surprisingly, the quasi-solid-state (QSS) MnBi2Te4/Zn battery delivers excellent Zn2+ storage capability and possesses a capacity retention of 79.9% after 1000 cycles at 4.00 A g-1. In addition, the QSS MnBi2Te4/Zn battery can exhibit excellent performance and the GCD curves maintain stability without distortion deformation even at temperatures of 0 and 75 °C.
Collapse
Affiliation(s)
- Li Wen
- Center for Nanoscale Characterization & Devices (CNCD), School of Physics and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Qixiang Zhang
- Center for Nanoscale Characterization & Devices (CNCD), School of Physics and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Junjie Shi
- Center for Nanoscale Characterization & Devices (CNCD), School of Physics and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Fei Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei 230601, China
| | - Siliang Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei 230601, China
| | - Zhiwei Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei 230601, China
| | - Yang Yue
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yihua Gao
- Center for Nanoscale Characterization & Devices (CNCD), School of Physics and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
9
|
Bashir T, Zhou S, Yang S, Ismail SA, Ali T, Wang H, Zhao J, Gao L. Progress in 3D-MXene Electrodes for Lithium/Sodium/Potassium/Magnesium/Zinc/Aluminum-Ion Batteries. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00174-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
10
|
Li X, Tang Y, Han C, Wei Z, Fan H, Lv H, Cai T, Cui Y, Xing W, Yan Z, Zhi C, Li H. A Static Tin-Manganese Battery with 30000-Cycle Lifespan Based on Stabilized Mn 3+/Mn 2+ Redox Chemistry. ACS NANO 2023; 17:5083-5094. [PMID: 36853201 DOI: 10.1021/acsnano.3c00242] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
High-potential Mn3+/Mn2+ redox couple (>1.3 V vs SHE) in a static battery system is rarely reported due to the shuttle and disproportionation of Mn3+ in aqueous solutions. Herein, based on reversible stripping/plating of the Sn anode and stabilized Mn2+/Mn3+ redox couple in the cathode, an aqueous Sn-Mn full battery is established in acidic electrolytes. Sn anode exhibits high deposition efficiency, low polarization, and excellent stability in acidic electrolytes. With the help of H+ and a complexing agent, a reversible conversion between Mn2+ and Mn3+ ions takes place on the graphite surface. Pyrophosphate ligand is initially employed to form a protective layer through a complexation process with Sn4+ on the electrode surface, effectively preventing Mn3+ from disproportionation and hindering the uncontrollable diffusion of Mn3+ to electrolytes. Benefiting from the rational design, the full battery delivers satisfied electrochemical performance including a large capacity (0.45 mAh cm-2 at 5 mA cm-2), high discharge plateau voltage (>1.6 V), excellent rate capability (58% retention from 5 to 30 mA cm-2), and superior cycling stability (no decay after 30 000 cycles). The battery design strategy realizes a robustly stable Mn3+/Mn2+ redox reaction, which broadens research into ultrafast acidic battery systems.
Collapse
Affiliation(s)
- Xuejin Li
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, PR China
| | - Yongchao Tang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, PR China
| | - Cuiping Han
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, PR China
| | - Zhiquan Wei
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, PR China
| | - Haodong Fan
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Haiming Lv
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, PR China
| | - Tonghui Cai
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Yongpeng Cui
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Wei Xing
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Zifeng Yan
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Chunyi Zhi
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, PR China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, PR China
| | - Hongfei Li
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| |
Collapse
|
11
|
Zhang N, Wang JC, Guo YF, Wang PF, Zhu YR, Yi TF. Insights on rational design and energy storage mechanism of Mn-based cathode materials towards high performance aqueous zinc-ion batteries. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Nanostructured Zn Mn3‒O4 thin films by pulsed laser deposition: a spectroscopic and electrochemical study towards the application in aqueous Zn-ion batteries. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Xie S, Li X, Li Y, Liang Q, Dong L. Material Design and Energy Storage Mechanism of Mn-Based Cathodes for Aqueous Zinc-Ion Batteries. CHEM REC 2022; 22:e202200201. [PMID: 36126168 DOI: 10.1002/tcr.202200201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/03/2022] [Indexed: 11/06/2022]
Abstract
Mn-based cathodes have been widely explored for aqueous zinc-ion batteries (ZIBs), by virtue of their high theoretical capacity and low cost. However, Mn-based cathodes suffer from poor rate capability and cycling performance. Researchers have presented various approaches to address these issues. Therefore, these endeavors scattered in various directions (e. g., designing electrode structures, defect engineering and optimizing electrolytes) are necessary to be connected through a systematic review. Hence, we comprehensively overview Mn-based cathode materials for ZIBs from the aspects of phase compositions, electrochemical behaviors and energy storage mechanisms, and try to build internal relations between these factors. Modification strategies of Mn-based cathodes are then introduced. Furthermore, this review also provides some new perspectives on future efforts toward high-energy and long-life Mn-based cathodes for ZIBs.
Collapse
Affiliation(s)
- Shiyin Xie
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, China
| | - Xu Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, China
| | - Yang Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, China
| | - Qinghua Liang
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Liubing Dong
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
14
|
Liu A, Wu F, Zhang Y, Zhou J, Zhou Y, Xie M. Insight on Cathodes Chemistry for Aqueous Zinc-Ion Batteries: From Reaction Mechanisms, Structural Engineering, and Modification Strategies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201011. [PMID: 35710875 DOI: 10.1002/smll.202201011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/26/2022] [Indexed: 06/15/2023]
Abstract
By virtue of low cost, eco-friendliness, competitive gravimetric energy density, and intrinsic safety, more and more attention has increasingly focused on aqueous zinc ion batteries (AZIBs) as a promising alternative for scalable energy storage. However, plagued by a complex interfacial process, sluggish dynamics, lability of electrodes and electrolytes, insufficient energy density, and poor cycle life heavily restrict practical applications of AZIBs, indicating that profound understandings on cathode storage chemistry are necessarily needed. Hence, this paper comprehensively summarizes recent advance in cathodes with critical insight on the energy storage mechanism. Furthermore, the issues and challenges for high-performance cathodes are meticulously explored, presenting inspiring structural engineering and modification strategies. Finally, rational evaluations on representative cathodes are rendered, suggesting the potential development direction of AZIBs.
Collapse
Affiliation(s)
- Anni Liu
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Wu
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yixin Zhang
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiahui Zhou
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yaozong Zhou
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Man Xie
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
15
|
Meng H, Ran Q, Dai TY, Shi H, Zeng SP, Zhu YF, Wen Z, Zhang W, Lang XY, Zheng WT, Jiang Q. Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery. NANO-MICRO LETTERS 2022; 14:128. [PMID: 35699828 PMCID: PMC9198195 DOI: 10.1007/s40820-022-00867-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 05/25/2023]
Abstract
Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic ZnxCuy alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the ZnxCuy/Zn galvanic couples, the self-supported nanoporous ZnxCuy/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm‒2, exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous ZnxCuy/Zn anode and KzMnO2 cathode to achieve specific energy of as high as ~ 430 Wh kg‒1 with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h.
Collapse
Affiliation(s)
- Huan Meng
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, People's Republic of China
| | - Qing Ran
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, People's Republic of China
| | - Tian-Yi Dai
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, People's Republic of China
| | - Hang Shi
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, People's Republic of China
| | - Shu-Pei Zeng
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, People's Republic of China
| | - Yong-Fu Zhu
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, People's Republic of China
| | - Zi Wen
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, People's Republic of China
| | - Xing-You Lang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, People's Republic of China.
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130022, People's Republic of China.
| | - Wei-Tao Zheng
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, People's Republic of China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, People's Republic of China.
| |
Collapse
|
16
|
Zhou T, Zhu L, Xie L, Han Q, Yang X, Cao X, Ma J. New Insight on K 2 Zn 2 V 10 O 28 as an Advanced Cathode for Rechargeable Aqueous Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107102. [PMID: 35088521 DOI: 10.1002/smll.202107102] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Aqueous zinc-ion batteries (ZIBs) have recently attracted people's extensive attention in their application in energy storage systems resulting from their exclusive characteristics of low cost and environmental compatibility. However, finding suitable cathode materials continues to be the major challenge. Polyoxovanadates (POVs), as an important branch of polyoxometalates (POMs), are considered as a promising electrode material for reversible aqueous ZIBs relying on the flexible valence state of V. Herein, POVs (K2 Zn2 V10 O28 : KZVO) are reported as an advanced cathode for storing Zn2+ , which delivers a high discharge capacity of 223.4 mAh g-1 at 0.1 A g-1 , considerable energy density (182.9 Wh kg-1 ) and power density (40.38 W kg-1 ), and robust cyclic performance. In addition, the dynamic properties of the KZVO/Zn battery are revealed by pseudocapacitance analysis and GITT tests. Meanwhile, the storage mechanism of Zn2+ is further analyzed by ex situ XRD, XPS, TEM, and HRTEM. Overall, this work not only draws up a cathode material for the POMs system in aqueous ZIBs, but also demonstrates that POMs are the rising star in energy storage and electric energy applications.
Collapse
Affiliation(s)
- Tao Zhou
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, Zhengzhou, 450001, P. R. China
| | - Limin Zhu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, Zhengzhou, 450001, P. R. China
| | - Lingling Xie
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, Zhengzhou, 450001, P. R. China
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| | - Qing Han
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, Zhengzhou, 450001, P. R. China
| | - Xinli Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, Zhengzhou, 450001, P. R. China
| | - Xiaoyu Cao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, Zhengzhou, 450001, P. R. China
| | - Jianmin Ma
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
17
|
Guo HX, Wang WM, He CY, Liu BH, Yu DM, Liu G, Gao XH. Entropy-Assisted High-Entropy Oxide with a Spinel Structure toward High-Temperature Infrared Radiation Materials. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1950-1960. [PMID: 34958543 DOI: 10.1021/acsami.1c20055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing advanced materials with a high-entropy concept is one of the hot trends in materials science. The configurational entropy of high-entropy materials can be tuned by introducing different atomic species, which can also impart a result in excellent physical and chemical properties. In this work, we synthesized a solid-solution oxide (Cu, Mn, Fe, Cr)3O4 by a simple and scalable solid-phase synthesis method. We extensively investigated the microstructure and chemical composition, indicating that (Cu, Mn, Fe, Cr)3O4 has a single-phase spinel structure. Simultaneously, we reasonably evaluated the position occupied by the elements of (Cu, Mn, Fe, Cr)3O4 in a spinel structure as (Cu0.75Fe0.25)(Fe0.25Cr0.375Mn0.375)2O4. Here, we first evaluated the infrared radiation performance of (Cu, Mn, Fe, Cr)3O4. The new, high-entropy oxide (HEO) (Cu, Mn, Fe, Cr)3O4 powder exhibits high infrared emissivity values of 0.879 and 0.848 in the wavelengths of 0.78-2.5 and 2.5-16 μm, respectively, and has excellent thermal stability. More importantly, the infrared emissivity values of as-prepared HEO coating reach 0.955 (0.78-2.5 μm) at room temperature and 0.936 (3-16 μm) at 800 °C. This work provides a viable strategy toward the laboratory mass production of this HEO for infrared radiation materials, which shows great potential in the energy-related applications.
Collapse
Affiliation(s)
- Hui-Xia Guo
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Wei-Ming Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Cheng-Yu He
- Research and Development Center for Eco-Chemistry and Eco-Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bao-Hua Liu
- Research and Development Center for Eco-Chemistry and Eco-Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Dong-Mei Yu
- Research and Development Center for Eco-Chemistry and Eco-Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gang Liu
- Research and Development Center for Eco-Chemistry and Eco-Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Hu Gao
- Research and Development Center for Eco-Chemistry and Eco-Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Jin J, Xiao T, Zhang YF, Zheng H, Wang H, Wang R, Gong Y, He B, Liu X, Zhou K. Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemical energy storage and conversion. NANOSCALE 2021; 13:19740-19770. [PMID: 34821248 DOI: 10.1039/d1nr05799e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MXenes have gained rapidly increasing attention owing to their two-dimensional (2D) layered structures and unique mechanical and physicochemical properties. However, MXenes have some intrinsic limitations (e.g., the restacking tendency of the 2D structure) that hinder their practical applications. Transition metal chalcogenide (TMC) materials such as SnS, NiS, MoS2, FeS2, and NiSe2 have attracted much interest for energy storage and conversion by virture of their earth-abundance, low costs, moderate overpotentials, and unique layered structures. Nonetheless, the intrinsic poor electronic conductivity and huge volume change of TMC materials during the alkali metal-ion intercalation/deintercalation process cause fast capacity fading and poor-rate and poor-cycling performances. Constructing heterostructures based on metallic conductive MXenes and highly electrochemically active TMCs is a promising and effective strategy to solve these problems and enhance the electrochemical performances. This review highlights and discusses the recent research development of MXenes and hierarchical MXene/TMC heterostructures, with a focus on the synthesis strategies, surface/heterointerface engineering, and potential applications for lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, supercapacitors, electrocatalysis, and photocatalysis. The critical challenges and perspectives of the future development of MXenes and hierarchical MXene/TMC heterostructures for electrochemical energy storage and conversion are forecasted.
Collapse
Affiliation(s)
- Jun Jin
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Tuo Xiao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - You-Fang Zhang
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Han Zheng
- Environmental Process Modeling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141.
| | - Huanwen Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Rui Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yansheng Gong
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Beibei He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Kun Zhou
- Environmental Process Modeling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141.
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
19
|
Xie X, Fang G, Xu W, Li J, Long M, Liang S, Cao G, Pan A. In Situ Defect Induction in Close-Packed Lattice Plane for the Efficient Zinc Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101944. [PMID: 34469065 DOI: 10.1002/smll.202101944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/08/2021] [Indexed: 06/13/2023]
Abstract
In situ electrochemical activation brings unexpected electrochemical performance improvements to electrode materials, but the mechanism behind it still needs further study. Herein, an electrochemically in situ defect induction in close-packed lattice plane of vanadium nitride oxide (VNx Oy ) in aqueous zinc-ion battery is reported. It is verified by theoretical calculation and experiment that the original compact structure is not suitable for the insert of Zn2+ ion, while a highly active one after the initial electrochemical activization accompanied by the in situ defect induction in close-packed lattice plane of VNx Oy exhibits efficient zinc ion storage. As expected, activated VNx Oy can achieve very high reversible capacity of 231.4 mA h g-1 at 1 A g-1 and cycle stability upto 6000 cycles at 10 A g-1 with a capacity retention of 94.3%. This work proposes a new insight for understanding the electrochemically in situ transformation to obtain highly active cathode materials for the aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Xuefang Xie
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Guozhao Fang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Key Laboratory of Electronic Packaging and Advanced Functional, Materials of Hunan Province, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Wenjie Xu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi, 710054, P. R. China
| | - Jialin Li
- School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Mengqiu Long
- School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Shuquan Liang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Key Laboratory of Electronic Packaging and Advanced Functional, Materials of Hunan Province, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Guozhong Cao
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Anqiang Pan
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Key Laboratory of Electronic Packaging and Advanced Functional, Materials of Hunan Province, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
20
|
Fabricating dendritic N-C/MnOx to enable a highly efficient oxygen evolution reaction electrocatalysis. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Cai K, Luo SH, Feng J, Wang J, Zhan Y, Wang Q, Zhang Y, Liu X. Recent Advances on Spinel Zinc Manganate Cathode Materials for Zinc-Ion Batteries. CHEM REC 2021; 22:e202100169. [PMID: 34418292 DOI: 10.1002/tcr.202100169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/17/2021] [Indexed: 12/17/2022]
Abstract
Zinc metal is abundant in nature, non-toxic, harmless, and cheap. Zinc-ion batteries (ZIBs) have also emerged as the times require, which has attracted scholars' research interest. In the zinc-ion batteries, the cathode material is indispensable. Manganese oxides are widely used in electrode materials because of their various valence states (+2, +3, +4, +7). ZnMn2 O4 (ZMO) is a mixed metal oxide with a spinel structure similar to LiMn2 O4 . Due to the synergistic effect of Zn and Mn, it has the advantages of high theoretical capacity. In recent years, researchers have gradually applied ZnMn2 O4 to zinc ion batteries. In order to obtain high-energy-density zinc ion batteries, it is also very important to match electrolytes with a wide operating voltage window and develop a highly reversible anode. In the first instance, we investigate the research progress of spinel ZnMn2 O4 as a reliable candidate material for zinc ion batteries. Later on, we review the optimization and modification measures of anode and electrolyte to improve the electrochemical properties of spinel ZnMn2 O4 . On this basis, we propose the reasonable research direction and development prospects for this material. It is hoped that there will be a help to researchers in this field.
Collapse
Affiliation(s)
- Kexing Cai
- School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, P. R. China.,Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, 066004, Qinhuangdao, P. R. China
| | - Shao-Hua Luo
- School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, P. R. China.,State Key Laboratory of Rolling and Automation, Northeastern University, 110819, Shenyang, P. R. China.,School of Resources and Materials, Northeastern University at Qinhuangdao, 066004, Qinhuangdao, P. R. China.,Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, 066004, Qinhuangdao, P. R. China.,Qinhuangdao Laboratory of Resources Cleaner Conversion and Efficient Utilization, 066004, Qinhuangdao, P. R. China
| | - Jie Feng
- School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, P. R. China.,Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, 066004, Qinhuangdao, P. R. China
| | - Jiachen Wang
- School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, P. R. China.,Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, 066004, Qinhuangdao, P. R. China
| | - Yang Zhan
- School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, P. R. China.,Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, 066004, Qinhuangdao, P. R. China
| | - Qing Wang
- School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, P. R. China.,School of Resources and Materials, Northeastern University at Qinhuangdao, 066004, Qinhuangdao, P. R. China.,Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, 066004, Qinhuangdao, P. R. China
| | - Yahui Zhang
- School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, P. R. China.,School of Resources and Materials, Northeastern University at Qinhuangdao, 066004, Qinhuangdao, P. R. China.,Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, 066004, Qinhuangdao, P. R. China
| | - Xin Liu
- School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, P. R. China.,School of Resources and Materials, Northeastern University at Qinhuangdao, 066004, Qinhuangdao, P. R. China.,Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, 066004, Qinhuangdao, P. R. China
| |
Collapse
|
22
|
Wang JW, Yuan YF, Zhang D, Zhu M, Mo CL, Guo SY. Constructing metal-organic framework-derived Mn 2O 3multishelled hollow nanospheres for high-performance cathode of aqueous zinc-ion batteries. NANOTECHNOLOGY 2021; 32:435401. [PMID: 34280901 DOI: 10.1088/1361-6528/ac15cb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Herein, we successfully synthesize Mn2O3multishelled hollow nanospheres through simply oxidizing Mn-based metal-organic framework microspheres. The number of the shells reaches 4. Many cavities and nanograins are hidden underneath the shell. The multishelled hollow structure brings about a wide hierarchical mesopore size range, large pore volume (0.26 cm3g-1) and high specific surface area (117.6 m2g-1). The superior zinc-ion storage performance may be achieved. The reversible capacity reaches 453 mAh g-1at current density of 0.1 A g-1. After 500 cycles at 1 A g-1, the discharge capacity of 152.8 mAh g-1is still delivered. The discharge capacity at 1.5 A g-1stabilizes at 107 mAh g-1. The zinc storage process is further studied through kinetics analyses. It is found that in the zinc storage process, ion diffusion process and capacitive process occur simultaneously, and the capacitive process is dominant. The excellent electrochemical performance is mainly attributed to the multishelled hollow nanosphere structure of Mn2O3. This structure promotes contact of electrode materials/electrolyte, offers more active sites, facilitates infiltration of electrolyte, buffer volume change of Mn2O3, improving electrochemical activity, reaction kinetics and cycling performance of Mn2O3. Overall, Mn2O3multishelled hollow nanosphere is an excellent cathode material for aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- J W Wang
- College of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Y F Yuan
- College of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - D Zhang
- Hang Zhou City of Quality and Technical Supervision and Testing Institute, Hangzhou 310019, People's Republic of China
| | - M Zhu
- College of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - C L Mo
- College of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - S Y Guo
- College of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
23
|
Zhou T, Zhu L, Xie L, Han Q, Yang X, Chen L, Wang G, Cao X. Cathode materials for aqueous zinc-ion batteries: A mini review. J Colloid Interface Sci 2021; 605:828-850. [PMID: 34371427 DOI: 10.1016/j.jcis.2021.07.138] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022]
Abstract
Although lithium-ion batteries (LIBs) have many advantages, they cannot satisfy the demands of numerous large energy storage industries owing to their high cost, low security, and low resource richness. Aqueous zinc-ion batteries (ZIBs) with low cost, high safety, and high synergistic efficiency have attracted an increasing amount of attention and are considered a promising choice to replace LIBs. However, the existing cathode materials for ZIBs have many shortcomings, such as poor electron and zinc ion conductivity and complex energy storage mechanisms. Thus, it is crucial to identify a cathode material with a stable structure, substantial limit, and suitability for ZIBs. In this review, several typical cathode materials for ZIBs employed in recent years and their detailed energy storage mechanisms are summarized, and various methods to enhance the electrochemical properties of ZIBs are briefly introduced. Finally, the existing problems and expected development directions of ZIBs are discussed.
Collapse
Affiliation(s)
- Tao Zhou
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, Zhengzhou 450001, PR China
| | - Limin Zhu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Lingling Xie
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, Zhengzhou 450001, PR China
| | - Qing Han
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, Zhengzhou 450001, PR China
| | - Xinli Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, Zhengzhou 450001, PR China
| | - Lei Chen
- College of Chemical and Printing-dyeing Engineering, Henan University of Engineering, Zhengzhou 450007, PR China
| | - Gongke Wang
- School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Xiaoyu Cao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, Zhengzhou 450001, PR China.
| |
Collapse
|
24
|
Yang H, Chen H, Lin W, Zhang Z, Weng M, Zhou W, Fan H, Fu J. Facile Preparation of Oxygen-Vacancy-Mediated Mn 3O 4 for Catalytic Transfer Hydrogenation of Furfural. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hui Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenwen Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhenya Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mingwei Weng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenhua Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haoan Fan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jie Fu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
25
|
Xu L, Xu N, Yan C, He W, Wu X, Diao G, Chen M. Storage mechanisms and improved strategies for manganese-based aqueous zinc-ion batteries. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Ngo YLT, Nguyen PL, Jana J, Choi WM, Chung JS, Hur SH. Simple paper-based colorimetric and fluorescent glucose sensor using N-doped carbon dots and metal oxide hybrid structures. Anal Chim Acta 2021; 1147:187-198. [DOI: 10.1016/j.aca.2020.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
|
27
|
Jia X, Liu C, Neale ZG, Yang J, Cao G. Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chem Rev 2020; 120:7795-7866. [DOI: 10.1021/acs.chemrev.9b00628] [Citation(s) in RCA: 466] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaoxiao Jia
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chaofeng Liu
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Zachary G. Neale
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jihui Yang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Guozhong Cao
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
28
|
Liu N, Wu X, Yin Y, Chen A, Zhao C, Guo Z, Fan L, Zhang N. Constructing the Efficient Ion Diffusion Pathway by Introducing Oxygen Defects in Mn 2O 3 for High-Performance Aqueous Zinc-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28199-28205. [PMID: 32422034 DOI: 10.1021/acsami.0c05968] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mn-based cathodes are admittedly the most promising candidate to achieve the practical applications of aqueous zinc-ion batteries because of the high operating voltage and economic benefit. However, the design of Mn-based cathodes still remains challenging because of the vulnerable chemical architecture and strong electrostatic interaction that lead to the inferior reaction kinetics and rapid capacity decay. These intrinsic drawbacks need to be fundamentally addressed by rationally decorating the crystal structure. Herein, an oxygen-defective Mn-based cathode (Ocu-Mn2O3) is designed via a doping low-valence Cu-ion strategy. The oxygen defect can modify the internal electric field of the material and enhance the substantial electrostatic stability by compensating for the nonzero dipole moment. With the merits of oxygen deficiency, the Ocu-Mn2O3 electrode exhibits the significant diffusion coefficient in the range from 1 × 10-6 to 1 × 10-8, and good rate performance. In addition, the Ocu-Mn2O3 maintains the highly reversible cyclic stability with the capacity retention of 88% over 600 cycles. The charge storage mechanism is explored as well, illustrating that the oxygen defects can improve the electrochemical active sites of H+ insertion, achieving a better charge-storage capacity than Mn2O3.
Collapse
Affiliation(s)
- Nannan Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Xian Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Yanyou Yin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Aosai Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Chenyang Zhao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Zhikun Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Lishuang Fan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
- Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Naiqing Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
- Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|