1
|
Ikram M, Mahmud MAP, Kalyar AA, Alomayri T, Almahri A, Hussain D. 3D-bioprinting of MXenes: Developments, medical applications, challenges, and future roadmap. Colloids Surf B Biointerfaces 2025; 251:114568. [PMID: 40020571 DOI: 10.1016/j.colsurfb.2025.114568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/03/2025] [Accepted: 02/15/2025] [Indexed: 03/03/2025]
Abstract
MXenes is a member of 2D transition metals carbides and nitrides with promising application prospects in energy storage, sensing, nanomedicine, tissue engineering, catalysis, and electronics. In the current era, MXenes have been widely applied in biomedical applications due to their unique rheological and electrochemical attributes. They have a larger surface area with more active sites, higher conductivity, lower cytotoxicity, and greater biocompatibility, making them highly suitable candidates for in-vivo biomedical applications. Due to recent advancemnets in MXenes 3D bioprinting, they are widely applied in regenerative medicine to combat challenges in suitable transplantation of tissues and organs. However, 3D bioprinting of MXenes has several complexities based on cell type, cytotoxicity, cell viability, and differentiation. To address these intricacies, surface modifications of MXene materials are done, which makes them highly fascinating for the 3D printing of tissues and organs. In the current review, we summarized recent progress in 3D bioprinting of MXene materials to construct scaffolds with desired rheological and biological properties, focusing on their potential applications in cancer phototherapy, tissue engineering, bone regeneration, and biosensing. We also discussed parameters affecting their biomedical applications and possible solutions by applying surface modifications. In addition, we addressed current challenges and future roadmaps for 3D bioprinting of MXene materials, such as generating high throughput 3D printed tissue constructs, drug delivery, drug discovery, and toxicology.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, United States of America.
| | - M A Parvez Mahmud
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Amina Akbar Kalyar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Pakistan
| | - Thamer Alomayri
- Department of Physics, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Albandary Almahri
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
2
|
Alagarsamy KN, Saleth LR, Sekaran S, Fusco L, Delogu LG, Pogorielov M, Yilmazer A, Dhingra S. MXenes as emerging materials to repair electroactive tissues and organs. Bioact Mater 2025; 48:583-608. [PMID: 40123746 PMCID: PMC11926619 DOI: 10.1016/j.bioactmat.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 03/25/2025] Open
Abstract
Nanomaterials with electroactive properties have taken a big leap for tissue repair and regeneration due to their unique physiochemical properties and biocompatibility. MXenes, an emerging class of electroactive materials have generated considerable interest for their biomedical applications from bench to bedside. Recently, the application of these two-dimensional wonder materials have been extensively investigated in the areas of biosensors, bioimaging and repair of electroactive organs, owing to their outstanding electromechanical properties, photothermal capabilities, hydrophilicity, and flexibility. The currently available data reports that there is significant potential to employ MXene nanomaterials for repair, regeneration and functioning of electroactive tissues and organs such as brain, spinal cord, heart, bone, skeletal muscle and skin. The current review is the first report that compiles the most recent advances in the application of MXenes in bioelectronics and the development of biomimetic scaffolds for repair, regeneration and functioning of electroactive tissues and organs including heart, nervous system, skin, bone and skeletal muscle. The content in this article focuses on unique features of MXenes, synthesis process, with emphasis on MXene-based electroactive tissue engineering constructs, biosensors and wearable biointerfaces. Additionally, a section on the future of MXenes is presented with a focus on the clinical applications of MXenes.
Collapse
Affiliation(s)
- Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Laura Fusco
- University of Science & Technology, Abu Dhabi, United Arab Emirates
- ImmuneNano-Lab, Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Lucia Gemma Delogu
- University of Science & Technology, Abu Dhabi, United Arab Emirates
- ImmuneNano-Lab, Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Maksym Pogorielov
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy, 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga, LV-1004, Latvia
| | - Açelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, 06830, Turkey
- Stem Cell Institute, Ankara University, Balgat, Ankara, 06520, Turkey
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada
| |
Collapse
|
3
|
Alagarsamy KN, Saleth LR, Diedkova K, Zahorodna V, Gogotsi O, Pogorielov M, Dhingra S. MXenes in healthcare: transformative applications and challenges in medical diagnostics and therapeutics. NANOSCALE 2025; 17:11785-11811. [PMID: 40261131 DOI: 10.1039/d4nr04853a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
MXenes, a novel class of two-dimensional transition metal carbides, exhibit exceptional physicochemical properties that make them highly promising for biomedical applications. Their application has been explored in bioinstrumentation, tissue engineering, and infectious disease management. In bioinstrumentation, MXenes enhance the sensitivity and response time of wearable sensors, including piezoresistive, electrochemical, and electrophysiological sensors. They also function effectively as contrast agents in MRI and CT imaging for cancer diagnostics and therapy. In tissue engineering, MXenes contribute to both hard and soft tissue regeneration, playing a key role in neural, cardiac, skin and bone repair. Additionally, they offer innovative solutions in combating infectious and inflammatory diseases by facilitating antimicrobial surfaces and immune modulation. Despite their potential, several challenges hinder the clinical translation of MXene-based technologies. Issues related to synthesis, scalability, biocompatibility, and long-term safety must be addressed to ensure their practical implementation in medical applications. This review provides a comprehensive overview of MXenes in next-generation medical diagnostics, including the role they play in wearable sensors and imaging contrast agents. It further explores their applications in tissue engineering and infectious disease management, highlighting their antimicrobial and immunomodulatory properties. Finally, we discuss the key barriers to clinical translation and propose strategies for overcoming these limitations. This review aims to bridge current advancements with future opportunities for integration of MXenes in healthcare.
Collapse
Affiliation(s)
- Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada.
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada.
| | - Kateryna Diedkova
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, Riga, Latvia, LV-1004
- Biomedical Research Center, Sumy State University, Kharkivska street 116, Sumy, Ukraine, 40007
| | - Veronika Zahorodna
- Materials Research Center, 19/33A Yaroslaviv Val/O.Honchara str, Kyiv, 01034, Ukraine
| | - Oleksiy Gogotsi
- Biomedical Research Center, Sumy State University, Kharkivska street 116, Sumy, Ukraine, 40007
- Materials Research Center, 19/33A Yaroslaviv Val/O.Honchara str, Kyiv, 01034, Ukraine
| | - Maksym Pogorielov
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, Riga, Latvia, LV-1004
- Biomedical Research Center, Sumy State University, Kharkivska street 116, Sumy, Ukraine, 40007
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada.
| |
Collapse
|
4
|
Wang H, Zhao Z, Wang Z, Mou L, Feng N, Li S, Lun D. Near-infrared Mo 2Ti 2C 3 MXene gelatin-chitosan hydrogels with antioxidative, anti-inflammation activity for osteoarthritis treatment. Int J Biol Macromol 2025; 307:141979. [PMID: 40081708 DOI: 10.1016/j.ijbiomac.2025.141979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Knee Osteoarthritis (OA) is prevalent in older adults which eventually lead to disability. Current treatment only alleviates symptoms but does not cure the disease. Herein, we implanted Mo2Ti2C3 MXene gelatin-chitosan hydrogels into the osteoarthritis knee joint in mice and treated with 808 nm laser radiation. We investigated MXene hydrogel structure and near infrared radiation (NIR) effect on cell biocompatibility, cartilage matrix synthesis, reactive oxygen species (ROS)production and inflammation in vitro. In vivo anterior cruciate ligament transection (ACLT) OA model treated with MXene hydrogel and NIR exhibits delayed osteoarthritis progression with fewer osteophyte and wider articular space, reduced cartilage lesion, lower Osteoarthritis Research Society International (OARSI) score, higher glycosaminoglycan (GAG) content, higher number of aggrecan and col-II positive cells. Mo2Ti2C3 MXene hydrogel with NIR reduced M1 macrophage related IL-1β and IL-6, increased M2 macrophage related TGF-β and IL-10 in cartilage in OA. Mo2Ti2C3 MXene hydrogel with NIR attenuated ROS and chondrocytes apoptosis in vivo. Mo2Ti2C3 MXene hydrogel may provide a new strategy in treatment of OA.
Collapse
Affiliation(s)
- Hongyu Wang
- WeiFang People's Hospital, Shandong Second Medical University, Shandong Province, China; Bone tumor laboratory, WeiFang People's Hospital, China
| | - Ziming Zhao
- WeiFang People's Hospital, Shandong Second Medical University, Shandong Province, China
| | - Zongjiang Wang
- WeiFang People's Hospital, Shandong Second Medical University, Shandong Province, China
| | - Leming Mou
- WeiFang People's Hospital, Shandong Second Medical University, Shandong Province, China
| | - Naibo Feng
- WeiFang People's Hospital, Shandong Second Medical University, Shandong Province, China
| | - Siying Li
- WeiFang People's Hospital, Shandong Second Medical University, Shandong Province, China; Bone tumor laboratory, WeiFang People's Hospital, China
| | - Dengxing Lun
- WeiFang People's Hospital, Shandong Second Medical University, Shandong Province, China; Bone tumor laboratory, WeiFang People's Hospital, China.
| |
Collapse
|
5
|
Yang W, Li X, Lei J, Jiang S, Sun J, Liu Q, Zhang R, Zheng C, Guo X, Wei Y. Targeted Anti-Inflammatory Nanozymes with Pro-Angiogenic Activity for Myocardial Infarction Therapy. Adv Healthc Mater 2025:e2404979. [PMID: 40304163 DOI: 10.1002/adhm.202404979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/02/2025] [Indexed: 05/02/2025]
Abstract
Myocardial infarction (MI) poses a significant threat to human health. Current treatments emphasize early revascularization to restore blood supply to the myocardium, often overlooking the extensive oxidative damage and autophagy dysfunction resulting from reactive oxygen species (ROS) release after MI. Therefore, timely and effective interventions to clear ROS in the early stages of MI are crucial for inhibiting the MI pathological progression and restoring cardiac function. This study constructed a ROS-responsive biomimetic nanoparticle (PNP@Nb2C-MSN) by integrating niobium carbide MXenes (Nb2C) onto mesoporous silica nanoparticle (MSN) coated with platelet membrane. During the MI acute phase, these nanoparticles are targeted and delivered to the infarcted heart via intravenous injection. The MSN mesoporous structure enhances the ROS scavenging capacity of Nb2C, eliminating excess ROS in the infarct region and inhibiting the oxidative stress progression. Silicon ions released from MSN further promote angiogenesis within the infarct region. PNP@Nb2C-MSN reduces inflammation by downregulating the NF-κB pathway and enhances autophagy by activating the AMPK pathway, thereby blocking pathological microenvironmental progression after MI and improving cardiac function. In vitro and in vivo results highlight the therapeutic potential of PNP@Nb2C-MSN in MI, offering a promising MI treatment strategy.
Collapse
Affiliation(s)
- Wenling Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, 430022, China
| | - Xuelian Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, 430022, China
| | - Jie Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
- Department of Spine Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Shijiu Jiang
- Department of Cardiology, The First Affiliated Hospital, Shihezi University, Shihezi, 832002, China
| | - Jinpeng Sun
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, 430022, China
| | - Qingyi Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, 430022, China
| | - Ruiyu Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, 430022, China
| |
Collapse
|
6
|
He S, Lv Y, Gao Z, Peng L. The Nb 4C 3 MXenzyme Attenuates MASH by Scavenging ROS in a Mouse Model. Int J Nanomedicine 2025; 20:5645-5659. [PMID: 40321802 PMCID: PMC12050042 DOI: 10.2147/ijn.s500891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/21/2025] [Indexed: 05/08/2025] Open
Abstract
Objective The incidence of metabolic dysfunction-associated steatohepatitis (MASH) is increasing because people's dietary habits are dominated by high caloric intake and sedentary lifestyles, leading to the accumulation of lipid, reactive oxygen species (ROS) and inflammation. However, treating MASH remains a challenge. Methods Two-dimensional (2D) niobium carbide (Nb4C3) MXene nanoenzymes (MXenzymes) possess both antioxidant and anti-inflammatory properties and have attracted considerable attention in the tumor and engineering fields. The Nb4C3 MXenzyme was developed for MASH therapy and exhibited biosafety and antilipid peroxidation activity. Results Nb4C3 reduced excessive ROS and proinflammatory cytokine levels through its antilipid peroxidation activities, resulting in the inhibition of hepatocyte lipid accumulation and inflammation in a methionine-choline-deficient diet (MCD)-induced murine MASH model. Mechanistically, Nb4C3 not only inhibited lipid accumulation and disrupted lipid metabolism in hepatocytes but also attenuated fatty acid-induced cell death by reducing intracellular ROS levels, which significantly promoted the polarization of M1 macrophages to M2 macrophages by alleviating oxidative stress and suppressing inflammatory factor expression. Conclusion The Nb4C3 MXenzyme can be used as a multifunctional bioactive material to alleviate hepatic steatosis and inflammation in MASH mice through its robust antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Shuying He
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou city, Guangdong Province, People’s Republic of China
| | - Yuerong Lv
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou city, Guangdong Province, People’s Republic of China
| | - Zixian Gao
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou city, Guangdong Province, People’s Republic of China
| | - Liang Peng
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou city, Guangdong Province, People’s Republic of China
- Department of Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou city, Guangdong Province, People’s Republic of China
| |
Collapse
|
7
|
Wu H, Huang J, Wu H, Xu W, Zhong Q, Song J, Linghu X, Gao B, Wa Q. Enhancement of in vitro and in vivo bone repair performance of decalcified bone/gelma by desferrioxamine. Sci Rep 2025; 15:14092. [PMID: 40269226 PMCID: PMC12019368 DOI: 10.1038/s41598-025-99101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/16/2025] [Indexed: 04/25/2025] Open
Abstract
Autologous and allogeneic bone grafting is currently the clinical gold standard for the treatment of bone defects; however, it is limited by the scarcity of autologous sources and the risk of secondary trauma, as well as the complications of disease transmission and immune rejection associated with allogeneic grafts. The clinical management of bone defects remains a significant challenge. In this study, we prepared a demineralized bone matrix/gelatin methacrylate composite hydrogel loaded with deferoxamine (GelMA/DBM/DFO) using a freeze-drying method and investigated its properties. Assessments using CCK-8, live-dead fluorescence staining, alkaline phosphatase staining, and Alizarin Red staining indicated that the GelMA/DBM/DFO composite hydrogel demonstrated superior biocompatibility and in vitro osteogenic differentiation capacity compared with the GelMA/DBM composite hydrogel. We established a cranial defect model in Sprague-Dawley (SD) rats and examined peripheral blood indices, micro-computed tomography (Micro-CT), hematoxylin and eosin (HE) staining, Masson's trichrome staining, and immunohistochemical staining for bone morphogenetic protein-2 (BMP-2) and collagen type I (COL-1). Both hydrogels exhibited good biosafety and the GelMA/DBM/DFO hydrogel showed more effective repair of cranial defects in SD rats. This study provides a novel material for bone-defect repair.
Collapse
Affiliation(s)
- Honghan Wu
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510632, China
| | - Hengpeng Wu
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Weikang Xu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510632, China
| | - Qian Zhong
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Jiaxiang Song
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Xitao Linghu
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510632, China.
| | - Qingde Wa
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China.
| |
Collapse
|
8
|
Wang H, Zhang J, Li Z, Liu J, Chang H, Jia S, Di Z, Liu H, Wang J, Gao D, Wang C, Li G, Zhao X. NIR-programmable 3D-printed shape-memory scaffold with dual-thermal responsiveness for precision bone regeneration and bone tumor management. J Nanobiotechnology 2025; 23:300. [PMID: 40247322 PMCID: PMC12007331 DOI: 10.1186/s12951-025-03375-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/06/2025] [Indexed: 04/19/2025] Open
Abstract
Clinically, intraoperative treatment of bone tumors presents several challenges, including the effective inactivation of tumors and filling of irregular bone defects after tumor removal. In this study, intelligent thermosensitive composite materials with shape-memory properties were constructed using polylactic acid (PLA) and polycaprolactone (PCL), which have excellent biocompatibility and degradability. Additionally, beta-tricalcium phosphate (β-TCP), with its osteogenic properties, and magnesium (Mg) powder, with its photothermal and bone-promoting abilities, were incorporated to improve the osteogenic potential of the composite and enable the material to respond intelligently to near-infrared (NIR) light. Utilizing 3D printing technology, the composite material was prepared into an NIR-responsive shape-memory bone-filling implant that deforms when the scaffold temperature increases to 48 ℃ under NIR laser irradiation. Moreover, at a lower temperature of 42 ℃, mild photothermal therapy promotes macrophage polarization toward the M2 phenotype. This process regulates the secretion of interleukin (IL)-4, IL-10, tumor necrosis factor-α, IL-6, and bone morphogenetic protein (BMP)-2, reducing local inflammation, enhancing the release of pro-healing factors, and improving osteogenesis. Overall, this innovative scaffold is a promising and efficient treatment for filling irregular bone defects after bone tumor surgery.
Collapse
Affiliation(s)
- Hui Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Jiaxin Zhang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zuhao Li
- Department of Orthopaedics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Jiaqi Liu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Haoran Chang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Shipu Jia
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zexin Di
- Department of Orthopaedics, School of Economics and Management, Beihua University, Jilin, 132013, China
| | - He Liu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Jincheng Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Delong Gao
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China.
| | - Chenyu Wang
- Department of Plastic & Reconstruct Surgery, First Hospital of Jilin University, Changchun, 130061, China.
| | - Guiwei Li
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China.
| | - Xin Zhao
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
9
|
Yan Z, Deng Y, Huang L, Zeng J, Wang D, Tong Z, Fan Q, Tan W, Yan J, Zang X, Chen S. Biopolymer-based bone scaffold for controlled Pt (IV) prodrug release and synergistic photothermal-chemotherapy and immunotherapy in osteosarcoma. J Nanobiotechnology 2025; 23:286. [PMID: 40205459 PMCID: PMC11983740 DOI: 10.1186/s12951-025-03253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/19/2025] [Indexed: 04/11/2025] Open
Abstract
Achieving bone defect repair while preventing tumor recurrence after osteosarcoma surgery has consistently posed a clinical challenge. Local treatment with 3D-printed scaffolds loaded with chemotherapeutic drugs can exert certain effects in tumor inhibition and bone regeneration. However, the non-specific activation of chemotherapeutic drugs leads to high local toxic side effects and the formation of an immunosuppressive tumor microenvironment, thereby limiting their clinical application and therapeutic efficacy. To address this, we designed a Pt (IV) prodrug with low toxicity and minimal side effects, which releases Pt (II) in response to glutathione. This prodrug was grafted onto polydopamine (PDA) through an amidation reaction, resulting in a composite nanomaterial (PDA@Pt) that possesses both photothermal synergistic chemotherapy and immuno-oncological properties. Subsequently, we innovatively employed selective laser sintering technology to incorporate PDA@Pt into a poly (L-lactic acid)/bioactive glass matrix, successfully constructing a composite scaffold with dual anti-tumor and bone repair capabilities. The study revealed that the composite scaffold significantly inhibited the growth of osteosarcoma cells and activated the cGAS-STING pathway by inducing DNA damage, ultimately converting the 'cold tumor' into a 'hot tumor.' Additionally, the composite scaffold could induce osteogenic differentiation of bone marrow mesenchymal stem cells and exhibited excellent bone repair capabilities in vivo.
Collapse
Affiliation(s)
- Zuyun Yan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Liping Huang
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Jin Zeng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Dong Wang
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhaochen Tong
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Qizhi Fan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410017, P. R. China
| | - Xiaofang Zang
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Shijie Chen
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China.
| |
Collapse
|
10
|
Yang N, Hua R, Lai Y, Zhu P, Ding J, Ma X, Yu G, Xia Y, Liang C, Gao W, Wang Z, Zhang H, Yang L, Zhou K, Ge L. Microenvironment-adaptive nanomedicine MXene promotes flap survival by inhibiting ROS cascade and endothelial pyroptosis. J Nanobiotechnology 2025; 23:282. [PMID: 40197477 PMCID: PMC11978011 DOI: 10.1186/s12951-025-03343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
In the field of large-area trauma flap transplantation, preventing avascular necrosis remains a critical challenge. Key mechanisms for improving flap viability include angiogenesis promotion, oxidative stress inhibition, and cell death prevention. Recently, two-dimensional ultrathin Ti3C2TX (MXene) nanosheets have gained attention for their potential contributions to these processes, though MXene's physiological impact on flap survival had not been previously investigated. This study is the first to confirm MXene's biological effects on the ischaemic microenvironment post-skin flap transplantation. Findings indicated that MXene significantly decreased the necrotic area in ischaemic flaps (37.96% ± 2.00%), with reductions of 30.40% ± 1.86% at 1 mg/mL and 20.19% ± 2.11% at 2 mg/mL in a concentration-dependent manner. Mechanistically, MXene facilitated in situ angiogenesis, mitigated oxidative stress, suppressed pro-inflammatory pyroptosis, and activated the PI3K-Akt pathway, particularly influencing vascular endothelial cells. Comparative transcriptome analysis of skin tissues with and without MXene treatment provided additional evidence, highlighting mechanisms such as pro-inflammatory pyroptosis, ROS metabolic processes, endothelial cell proliferation regulation, and PI3K-Akt signaling pathway activation. Overall, MXene demonstrated biological activity, effectively promoting ischaemic flaps survival and presenting a novel strategy for addressing ischaemic necrosis in skin flaps.
Collapse
Affiliation(s)
- Ningning Yang
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Rongrong Hua
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yingying Lai
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Peijun Zhu
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jian Ding
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xianhui Ma
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Gaoxiang Yu
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yiheng Xia
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
| | - Chao Liang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
| | - Weiyang Gao
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhouguang Wang
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| | - Liangliang Yang
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| | - Kailiang Zhou
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| | - Lu Ge
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| |
Collapse
|
11
|
Wang X, Wang H, Li Y, Yang J, Huang X, Li F, Zhang Y. Bioinspired Paste-Extrusion Printed Microlattices with Natural Bone-Like Porosity and Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501060. [PMID: 40059599 DOI: 10.1002/smll.202501060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/27/2025] [Indexed: 04/29/2025]
Abstract
The structure feature determines its performance. In the field of biological implants, microlattices are commonly used as building blocks for light-weight and adaptive purposes, which however show limitations in biological and mechanical properties as compared with natural bones. Inspired by the efficient mass transfer and high fault tolerance of biological neural networks derived from the hierarchical structure and functional gradient, a bioinspired paste-extrusion printed microlattice (BPPM) structure is developed and its tunable properties are demonstrated. The mechanical properties of non-crossing microlattice structures are first verified outweigh crossing one under equivalent compressive stress. Then, by introducing gradient components and a paste-extrusion 3D printing process, a BPPM structure with a hierarchical porosity, and gradient composites is fabricated. As a result, the BPPM shows the eliminated deformation along the gradient direction, a fine surface roughness (Sa 3.65-15.67 µm), a wide range of porosity (56-78%) and compressive strength (3.44-22.3 MPa), a favorable permeability (3.02 × 103-3.22 × 103D), and good biocompatibility and promoted cell proliferation. This work not only demonstrates the properties of BPPM in a range of natural bones but also provides a robust way to realize it.
Collapse
Affiliation(s)
- Xianwen Wang
- Shanghai Key Laboratory for High Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haolei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200241, China
| | - Yetao Li
- Shanghai Key Laboratory for High Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Yang
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering and Science, Shanghai, 201620, China
| | - Xiaolu Huang
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fei Li
- Shanghai Key Laboratory for High Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaozhong Zhang
- Shanghai Key Laboratory for High Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
12
|
Zhang Y, Li M, Zhang H, You J, Zhou J, Ren S, Feng J, Han Y, Zhang Y, Zhou Y. 3D-printed intelligent photothermal conversion Nb 2C MXene composite scaffolds facilitate the regulation of angiogenesis-osteogenesis coupling for vascularized bone regeneration. Mater Today Bio 2025; 31:101647. [PMID: 40161928 PMCID: PMC11950769 DOI: 10.1016/j.mtbio.2025.101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/18/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
Personalized porous scaffold materials for bone defect repair, with adjustable mechanical strength and porosity via 3D printing technology, have made significant strides in the bone tissue engineering. However, their ability to regulate the angiogenesis processes at the defect site remains constrained, hindering the effective coupling of angiogenesis-bone regeneration. In this study, we incorporated Nb2C MXene as a photothermal agent and enhancer for both angiogenesis and osteogenesis, embedded into a poly (lactic-co-glycolic acid)/β-tricalcium phosphate (PLGA/β-TCP) composite biological ink. Nb releasing and precisely gentle thermotherapy successfully enhanced both angiogenesis and bone regeneration while promoting their coupling. The in vitro experiments demonstrate that the scaffold induces the upregulation of MMP family members, particularly MMP-1, MMP-3, and MMP-10, during the initial stage of bone defect repair under mild hyperthermia conditions. It promotes vascular basement membrane degradation, effectively initiating angiogenesis. Moreover, it directly activates the HIF-1/STAT3/VEGF pathway in HUVECs and triggers HSP90 expression, which stabilizes and activates the PI3K-AKT pathway in BMSCs. Consequently, this sequential linkage between PI3K-AKT and HIF-1 pathways enhances bone formation while facilitating angiogenic bone regeneration, as evidenced by the increased expression of specialized H-type vessels in rat cranial critical defect models. In vivo experimental findings further validate the effective promotion of angiogenic bone regeneration by this precision-designed PTMN scaffold under mild hyperthermia conditions, making it an effective solution for large-area bone defect repair. In summary, the precise design and manufacture of the PTMN scaffold using mild hyperthermia to fix large bone defects is a promising approach that has huge implications.
Collapse
Affiliation(s)
- Yi Zhang
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Affiliated Maternal and Child Health Care Hospital of Nantong University, Nantong, 226000, Jiangsu, China
| | - Mucong Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Hao Zhang
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Department of Stomatology, People's Hospital of Xizang Autonomous Region, Xizang, 850000, China
| | - Jiaqian You
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, Guangdong, China
| | - Jing Zhou
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Sicong Ren
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Jian Feng
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Yuzhu Han
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Yidi Zhang
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Yanmin Zhou
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| |
Collapse
|
13
|
Zhang H, Zhao Z, Wu C. Bioactive Inorganic Materials for Innervated Multi-Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415344. [PMID: 40013907 PMCID: PMC11967777 DOI: 10.1002/advs.202415344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Tissue engineering aims to repair damaged tissues with physiological functions recovery. Although several therapeutic strategies are there for tissue regeneration, the functional recovery of regenerated tissues still poses significant challenges due to the lack of concerns of tissue innervation. Design rationale of multifunctional biomaterials with both tissue-induction and neural induction activities shows great potential for functional tissue regeneration. Recently, the research and application of inorganic biomaterials attracts increasing attention in innervated multi-tissue regeneration, such as central nerves, bone, and skin, because of its superior tunable chemical composition, topographical structures, and physiochemical properties. More importantly, inorganic biomaterials are easily combined with other organic materials, biological factors, and external stimuli to enhance their therapeutic effects. This review presents a comprehensive overview of recent advancements of inorganic biomaterials for innervated multi-tissue regeneration. It begins with introducing classification and properties of typical inorganic biomaterials and design rationale of inorganic-based material composites. Then, recent progresses of inorganic biomaterials in regenerating various nerves and nerve-innervated tissues with functional recovery are systematically reviewed. Finally, the existing challenges and future perspectives are proposed. This review may pave the way for the direction of inorganic biomaterials and offers a new strategy for tissue regeneration in combination of innervation.
Collapse
Affiliation(s)
- Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Ziyi Zhao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
14
|
Zhang S, Wang L, Feng Z, Wang Z, Wang Y, Wei B, Liu H, Zhao W, Li J. Engineered MXene Biomaterials for Regenerative Medicine. ACS NANO 2025; 19:9590-9635. [PMID: 40040439 DOI: 10.1021/acsnano.4c16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
MXene-based materials have attracted significant interest due to their distinct physical and chemical properties, which are relevant to fields such as energy storage, environmental science, and biomedicine. MXene has shown potential in the area of tissue regenerative medicine. However, research on its applications in tissue regeneration is still in its early stages, with a notable absence of comprehensive reviews. This review begins with a detailed description of the intrinsic properties of MXene, followed by a discussion of the various nanostructures that MXene can form, spanning from 0 to 3 dimensions. The focus then shifts to the applications of MXene-based biomaterials in tissue engineering, particularly in immunomodulation, wound healing, bone regeneration, and nerve regeneration. MXene's physicochemical properties, including conductivity, photothermal characteristics, and antibacterial properties, facilitate interactions with different cell types, influencing biological processes. These interactions highlight its potential in modulating cellular functions essential for tissue regeneration. Although the research on MXene in tissue regeneration is still developing, its versatile structural and physicochemical attributes suggest its potential role in advancing regenerative medicine.
Collapse
Affiliation(s)
- Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Liang Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Zhichao Feng
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhiqi Wang
- Department of Head and Neck Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Benjie Wei
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Weiwei Zhao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| |
Collapse
|
15
|
Liu X, Zhang P, Xu M, Zhao Z, Yin X, Pu X, Wang J, Liao X, Huang Z, Cao S, Yin G. Mixed-valence vanadium-doped mesoporous bioactive glass for treatment of tumor-associated bone defects. J Mater Chem B 2025; 13:3138-3160. [PMID: 39905825 DOI: 10.1039/d4tb02290d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Vanadium is a bioactive trace element with variable valence. Its pentavalent form has been confirmed to be capable of predominantly regulating the early and mid-stage osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) without tumor inhibition, while its tetravalent form exhibits tumor inhibition but only primarily modulates late osteogenic differentiation and angiogenesis. In this study, a multifunctional bone tissue scaffold consisting of mixed-valence vanadium-doped mesoporous bioactive glass and poly(lactic-co-glycolic acid) (V(IV/V)-MBG/PLGA) was developed to simultaneously inhibit the recurrence of osteosarcoma and promote the regeneration of operative bone defects. The in vitro results showed that the V(IV) and V(V) species could be sustainably released from V(IV/V)-MBG and complementarily enhance the proliferation, osteogenic differentiation, and mineralization of BMSCs by activating multiple signaling pathways throughout the whole osteogenesis process. More importantly, the co-existence of mixed-valent vanadium species was able to continuously stimulate the generation of excessive ROS and the depletion of GSH by synergistically supplying an appropriate ratio of V(IV) and V(V) to thermodynamically and kinetically maintain the stable self-circulation of the valence state alteration, thus inducing UMR-106 cell death. In a rat model, V(IV/V)-MBG/PLGA scaffolds effectively suppressed tumor invasion and promoted bone regeneration. These results suggest that V(IV/V)-MBG/PLGA scaffolds are a promising strategy for treating tumor-associated bone defects, offering dual tumor inhibition and bone regeneration.
Collapse
Affiliation(s)
- Xin Liu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Peng Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Mengjie Xu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Zihao Zhao
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Xing Yin
- West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Shunze Cao
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
16
|
Rahim FA, Niyas K, Vivek R, Pathan S, Rasheed PA. An overview of the use of non-titanium MXenes for photothermal therapy and their combinatorial approaches for cancer treatment. NANOSCALE ADVANCES 2025; 7:963-983. [PMID: 39830015 PMCID: PMC11740912 DOI: 10.1039/d4na00931b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
Since the initial publication on the first Ti3C2T x MXene in 2011, there has been a significant increase in the number of reports on applications of MXenes in various domains. MXenes have emerged as highly promising materials for various biomedical applications, including photothermal therapy (PTT), drug delivery, diagnostic imaging, and biosensing, owing to their fascinating conductivity, mechanical strength, biocompatibility and hydrophilicity. Through surface modification, MXenes can mitigate cytotoxicity, enhance biological stability, and improve histocompatibility, thereby enabling their potential use in in vivo biomedical applications. MXenes are also known for their ability to absorb light in the near-infrared (NIR) region and generate heat by localised surface plasmon resonance (LSPR) effects and electron-phonon coupling. Optical excitation laser pulses result in hot photocarrier distribution in MXenes, which quickly transfers surplus energy to the crystal lattice and results in the internal conversion of light into heat with nearly 100% efficiency. The relaxation of hot carrier distribution by electron-phonon interactions leads to the cooling of the lattice by dissipating thermal energy to the surrounding environment. This heating effect of MXenes makes them potential photothermal agents (PTAs), particularly for PTT applications. The adjustable surface of MXenes and their high surface area-to-volume ratios are ideal for the combinatorial approach of PTT along with drug delivery, photodynamic therapy (PDT), bone regeneration and other applications. Since non-Ti MXenes are more biocompatible than Ti MXenes, they are promising candidates for different biomedical applications. This comprehensive review provides a concise overview of the current research patterns, properties, and biomedical applications of non-Ti MXenes, particularly in PTT and its combinatorial approaches.
Collapse
Affiliation(s)
- Fathima Abdul Rahim
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678 623 India
| | - K Niyas
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678 623 India
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad Palakkad Kerala 678 623 India
| | - Raju Vivek
- Bio-Nano Theranostic Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Bharathiar University Coimbatore Tamilnadu 641 046 India
| | - Soyeb Pathan
- Research and Development Cell (RDC), Parul Institute of Applied Sciences, Parul University Vadodara Gujarat 391760 India
- Department of Chemistry, Parul Institute of Applied Sciences, Parul University Vadodara Gujarat 391760 India
| | - P Abdul Rasheed
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad Palakkad Kerala 678 623 India
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678 623 India
| |
Collapse
|
17
|
Li K, Wang S, Chen C, Xie Y, Dai X, Chen Y. Sonocatalytic biomaterials. Coord Chem Rev 2025; 522:216242. [DOI: 10.1016/j.ccr.2024.216242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Kareem F, Chau YFC, Ahmed MU. Nb 2CTx-supported bimetallic NPs@ZIF-8 nanohybrid as ECL signal amplifier and peroxidase mimics for chromogranin a immunosensing in human serum and saliva. Int J Biol Macromol 2025; 287:138476. [PMID: 39662547 DOI: 10.1016/j.ijbiomac.2024.138476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Niobium carbide (Nb2CTx), a key component of the MXene family renowned for its utilization in lithium-ion batteries and supercapacitors, remains largely underutilized in biosensing applications. This study introduces a notably sensitive and label-free dual-mode electrochemiluminescence (ECL) and colorimetric immunosensor to specifically detect chromogranin A (CgA) in biological fluids. Initially, AuAg bimetallic nanoparticles (BiMNPs) were synthesized using Nb2CTx as a reducing and supporting material. Furthermore, a promising approach has been put forward to increase the efficacy of the ECL of [Ru (bpy)3]2+ system by integrating the combined use of the zeolitic imidazolate framework-8 (ZIF-8) and the Nb2CTx coated bimetallic NPs. Incorporation produces a significant ~165-fold increase in electrochemical signals and a 4-fold improvement in ECL signals. In particular, BiMNPs@ZIF-8 nanohybrid exhibited significantly enhanced peroxidase-like activity compared to bare BiMNPs, demonstrating synergistic peroxidase enzyme mimicry. This improved activity makes it a potent catalyst for the H₂O₂-mediated oxidation of 3,3,5,5, tetramethylbenzidine (TMB), generating the characteristic blue color. Furthermore, the ECL method achieved a detection range of 0.001 to 1000 pg/mL with LOD of 0.11 fg/mL, while the colorimetric method achieved a LOD of 100 pg/mL and a linear range of 0.1 to 4000 ng/mL. The practical applicability of the sensor was validated by analyzing CgA levels in human serum and saliva samples.
Collapse
Affiliation(s)
- Faheem Kareem
- Biosensor and nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Yuan-Fong Chou Chau
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensor and nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam.
| |
Collapse
|
19
|
Li J, Fan Z, Guan Z, Ruan J. Injectable MXene/Ag-HA composite hydrogel for enhanced alveolar bone healing and mechanistic study. Front Bioeng Biotechnol 2024; 12:1485437. [PMID: 39723126 PMCID: PMC11668567 DOI: 10.3389/fbioe.2024.1485437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Alveolar bone defects pose significant challenges in dentistry. Due to the complexity of alveolar bone anatomy and insufficient repair mechanisms, large bone defects are difficult for the body to heal naturally. Clinical treatment typically involves the use of bone substitute materials. However, current substitutes often suffer from limitations such as insufficient osteoinductivity, rapid degradation, inflammatory responses, and poor mechanical properties. Additionally, the irregular morphology of alveolar bone defects complicates the application of solid bone substitutes, potentially leading to secondary damage at the repair site. Methods To address these challenges, this study introduces an innovative approach by integrating MXene nanomaterials into Ag-HA/GelMA hydrogels to create an injectable MXene/Ag-HA composite hydrogel. MXene nanomaterials are renowned for their excellent biocompatibility, antibacterial properties, and mechanical strength. Results The results indicate that the MXene/Ag-HA composite hydrogel exhibits satisfactory mechanical and biological properties. Specifically, it demonstrates excellent antibacterial, antioxidant, and osteogenic activities. Gene expression analysis further reveals that the MXene composite hydrogel promotes osteogenesis by regulating the expression of Dmp1 and Dusp1. Discussion The findings of this study suggest that the MXene/Ag-HA composite hydrogel is a promising candidate for alveolar bone repair and regeneration. The integration of MXene nanomaterials into the hydrogel enhances its mechanical and biological properties, making it well-suited for the treatment of irregular alveolar bone defects. Furthermore, the study underscores the vast potential of MXene nanomaterials in the biomedical field, hinting at potential applications beyond alveolar bone repair.
Collapse
Affiliation(s)
- Jialing Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Nanchong Central Hospital (Nanchong Hospital of Beijing Anzhen Hospital,Capital Medical University), the Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zilu Fan
- Nanchong Mental Health Center Of Sichuan Province, Nanchong Second People’s Hospital, Nanchong Senior Hospital, Nanchong, Sichuan, China
| | - Zhenju Guan
- Nanchong Central Hospital (Nanchong Hospital of Beijing Anzhen Hospital,Capital Medical University), the Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jianping Ruan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
20
|
Liu S, Manshaii F, Chen J, Wang X, Wang S, Yin J, Yang M, Chen X, Yin X, Zhou Y. Unleashing the Potential of Electroactive Hybrid Biomaterials and Self-Powered Systems for Bone Therapeutics. NANO-MICRO LETTERS 2024; 17:44. [PMID: 39417933 PMCID: PMC11486894 DOI: 10.1007/s40820-024-01536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/08/2024] [Indexed: 10/19/2024]
Abstract
The incidence of large bone defects caused by traumatic injury is increasing worldwide, and the tissue regeneration process requires a long recovery time due to limited self-healing capability. Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration. Inspired by bioelectricity, electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix, thereby accelerating bone regeneration. With ongoing advances in biomaterials and energy-harvesting techniques, electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue. In this review, we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Next, we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering. Finally, we emphasize the significance of simulating the target tissue's electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies.
Collapse
Affiliation(s)
- Shichang Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710018, People's Republic of China
| | - Farid Manshaii
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, 90095, USA
| | - Jinmiao Chen
- Hangzhou Institute of Technology, Xidian University, Hangzhou, 311231, People's Republic of China
| | - Xinfei Wang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, 90095, USA
| | - Shaolei Wang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, 90095, USA
| | - Junyi Yin
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, 90095, USA
| | - Ming Yang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710018, People's Republic of China.
| | - Xuxu Chen
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710018, People's Republic of China.
| | - Xinhua Yin
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710018, People's Republic of China.
| | - Yunlei Zhou
- Hangzhou Institute of Technology, Xidian University, Hangzhou, 311231, People's Republic of China
| |
Collapse
|
21
|
Cohen-Gerassi D, Messer O, Finkelstein-Zuta G, Aviv M, Favelukis B, Shacham-Diamand Y, Sokol M, Adler-Abramovich L. Conductive Peptide-Based MXene Hydrogel as a Piezoresistive Sensor. Adv Healthc Mater 2024; 13:e2303632. [PMID: 38536070 DOI: 10.1002/adhm.202303632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Wearable pressure sensors have become increasingly popular for personal healthcare and motion detection applications due to recent advances in materials science and functional nanomaterials. In this study, a novel composite hydrogel is presented as a sensitive piezoresistive sensor that can be utilized for various biomedical applications, such as wearable skin patches and integrated artificial skin that can measure pulse and blood pressure, as well as monitor sound as a self-powered microphone. The hydrogel is composed of self-assembled short peptides containing aromatic, positively- or negatively charged amino acids combined with 2D Ti3C2Tz MXene nanosheets. This material is low-cost, facile, reliable, and scalable for large areas while maintaining high sensitivity, a wide detection range, durability, oxidation stability, and biocompatibility. The bioinspired nanostructure, strong mechanical stability, and ease of functionalization make the assembled peptide-based composite MXene-hydrogel a promising and widely applicable material for use in bio-related wearable electronics.
Collapse
Affiliation(s)
- Dana Cohen-Gerassi
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Or Messer
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gal Finkelstein-Zuta
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Moran Aviv
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- School of Mechanical Engineering, Afeka Tel Aviv Academic College of Engineering, Tel Aviv, 6910717, Israel
| | - Bar Favelukis
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yosi Shacham-Diamand
- The Scojen Institute for Synthetic Biology, Director, Reichman University, 8 University St., Herzliya, 4610101, Israel
| | - Maxim Sokol
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
22
|
Zorrón M, Cabrera AL, Sharma R, Radhakrishnan J, Abbaszadeh S, Shahbazi M, Tafreshi OA, Karamikamkar S, Maleki H. Emerging 2D Nanomaterials-Integrated Hydrogels: Advancements in Designing Theragenerative Materials for Bone Regeneration and Disease Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403204. [PMID: 38874422 PMCID: PMC11336986 DOI: 10.1002/advs.202403204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
This review highlights recent advancements in the synthesis, processing, properties, and applications of 2D-material integrated hydrogels, with a focus on their performance in bone-related applications. Various synthesis methods and types of 2D nanomaterials, including graphene, graphene oxide, transition metal dichalcogenides, black phosphorus, and MXene are discussed, along with strategies for their incorporation into hydrogel matrices. These composite hydrogels exhibit tunable mechanical properties, high surface area, strong near-infrared (NIR) photon absorption and controlled release capabilities, making them suitable for a range of regeneration and therapeutic applications. In cancer therapy, 2D-material-based hydrogels show promise for photothermal and photodynamic therapies, and drug delivery (chemotherapy). The photothermal properties of these materials enable selective tumor ablation upon NIR irradiation, while their high drug-loading capacity facilitates targeted and controlled release of chemotherapeutic agents. Additionally, 2D-materials -infused hydrogels exhibit potent antibacterial activity, making them effective against multidrug-resistant infections and disruption of biofilm generated on implant surface. Moreover, their synergistic therapy approach combines multiple treatment modalities such as photothermal, chemo, and immunotherapy to enhance therapeutic outcomes. In bio-imaging, these materials serve as versatile contrast agents and imaging probes, enabling their real-time monitoring during tumor imaging. Furthermore, in bone regeneration, most 2D-materials incorporated hydrogels promote osteogenesis and tissue regeneration, offering potential solutions for bone defects repair. Overall, the integration of 2D materials into hydrogels presents a promising platform for developing multifunctional theragenerative biomaterials.
Collapse
Affiliation(s)
- Melanie Zorrón
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Agustín López Cabrera
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Riya Sharma
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Janani Radhakrishnan
- Department of BiotechnologyNational Institute of Animal BiotechnologyHyderabad500 049India
| | - Samin Abbaszadeh
- Department of Pharmacology and ToxicologySchool of PharmacyUrmia University of Medical SciencesUrmia571478334Iran
| | - Mohammad‐Ali Shahbazi
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAntonius Deusinglaan 1GroningenAV, 9713The Netherlands
| | - Omid Aghababaei Tafreshi
- Microcellular Plastics Manufacturing LaboratoryDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
- Smart Polymers & Composites LabDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation11570 W Olympic BoulevardLos AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| |
Collapse
|
23
|
Chen L, Yang J, Cai Z, Huang Y, Xiao P, Wang J, Wang F, Huang W, Cui W, Hu N. Electroactive Biomaterials Regulate the Electrophysiological Microenvironment to Promote Bone and Cartilage Tissue Regeneration. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202314079] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 01/06/2025]
Abstract
AbstractThe incidence of large bone and articular cartilage defects caused by traumatic injury is increasing worldwide; the tissue regeneration process for these injuries is lengthy due to limited self‐healing ability. Endogenous bioelectrical phenomenon has been well recognized to play an important role in bone and cartilage homeostasis and regeneration. Studies have reported that electrical stimulation (ES) can effectively regulate various biological processes and holds promise as an external intervention to enhance the synthesis of the extracellular matrix, thereby accelerating the process of bone and cartilage regeneration. Hence, electroactive biomaterials have been considered a biomimetic approach to ensure functional recovery by integrating various physiological signals, including electrical, biochemical, and mechanical signals. This review will discuss the role of endogenous bioelectricity in bone and cartilage tissue, as well as the effects of ES on cellular behaviors. Then, recent advances in electroactive materials and their applications in bone and cartilage tissue regeneration are systematically overviewed, with a focus on their advantages and disadvantages as tissue repair materials and performances in the modulation of cell fate. Finally, the significance of mimicking the electrophysiological microenvironment of target tissue is emphasized and future development challenges of electroactive biomaterials for bone and cartilage repair strategies are proposed.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Jianye Yang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Zhengwei Cai
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yanran Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Pengcheng Xiao
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Juan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Fan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wei Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Ning Hu
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| |
Collapse
|
24
|
Wang Y, Zhang H, Qiang H, Li M, Cai Y, Zhou X, Xu Y, Yan Z, Dong J, Gao Y, Pan C, Yin X, Gao J, Zhang T, Yu Z. Innovative Biomaterials for Bone Tumor Treatment and Regeneration: Tackling Postoperative Challenges and Charting the Path Forward. Adv Healthc Mater 2024; 13:e2304060. [PMID: 38429938 DOI: 10.1002/adhm.202304060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Surgical resection of bone tumors is the primary approach employed in the treatment of bone cancer. Simultaneously, perioperative interventions, particularly postoperative adjuvant anticancer strategies, play a crucial role in achieving satisfactory therapeutic outcomes. However, the occurrence of postoperative bone tumor recurrence, metastasis, extensive bone defects, and infection are significant risks that can result in unfavorable prognoses or even treatment failure. In recent years, there has been significant progress in the development of biomaterials, leading to the emergence of new treatment options for bone tumor therapy and bone regeneration. This progress report aims to comprehensively analyze the strategic development of unique therapeutic biomaterials with inherent healing properties and bioactive capabilities for bone tissue regeneration. These composite biomaterials, classified into metallic, inorganic non-metallic, and organic types, are thoroughly investigated for their responses to external stimuli such as light or magnetic fields, internal interventions including chemotherapy or catalytic therapy, and combination therapy, as well as their role in bone regeneration. Additionally, an overview of self-healing materials for osteogenesis is provided and their potential applications in combating osteosarcoma and promoting bone formation are explored. Furthermore, the safety concerns of integrated materials and current limitations are addressed, while also discussing the challenges and future prospects.
Collapse
Affiliation(s)
- Yu Wang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, P. R. China
| | - Huaiyuan Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, P. R. China
| | - Huifen Qiang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, P. R. China
| | - Meigui Li
- School of Pharmacy, Henan University, Kaifeng City, Henan, 475004, P. R. China
| | - Yili Cai
- Department of Gastroenterology, Naval Medical Center, Naval Medical University, Shanghai, 200052, P. R. China
| | - Xuan Zhou
- School of Pharmacy, Henan University, Kaifeng City, Henan, 475004, P. R. China
| | - Yanlong Xu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, P. R. China
| | - Zhenzhen Yan
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
| | - Jinhua Dong
- The Women and Children Hospital Affiliated to Jiaxing University, Jiaxing, Zhejiang, 314000, P. R. China
| | - Yuan Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200433, P. R. China
| | - Chengye Pan
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
| | - Xiaojing Yin
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, P. R. China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, P. R. China
| | - Zuochong Yu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, P. R. China
| |
Collapse
|
25
|
Ren D, Zhang Y, Du B, Wang L, Gong M, Zhu W. An Antibacterial, Conductive Nanocomposite Hydrogel Coupled with Electrical Stimulation for Accelerated Wound Healing. Int J Nanomedicine 2024; 19:4495-4513. [PMID: 38799696 PMCID: PMC11123069 DOI: 10.2147/ijn.s460700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Background Electrical stimulation (ES) can effectively promote skin wound healing; however, single-electrode-based ES strategies are difficult to cover the entire wound area, and the effectiveness of ES is often limited by the inconsistent mechanical properties of the electrode and wound tissue. The above factors may lead to ES treatment is not ideal. Methods A multifunctional conductive hydrogel dressing containing methacrylated gelatin (GelMA), Ti3C2 and collagen binding antimicrobial peptides (V-Os) was developed to improve wound management. Ti3C2 was selected as the electrode component due to its excellent electrical conductivity, the modified antimicrobial peptide V-Os could replace traditional antibiotics to suppress bacterial infections, and GelMA hydrogel was used due to its clinical applicability in wound healing. Results The results showed that this new hydrogel dressing (GelMA@Ti3C2/V-Os) not only has excellent electrical conductivity and biocompatibility but also has a durable and efficient bactericidal effect. The modified antimicrobial peptides V-Os used were able to bind more closely to GelMA hydrogel to exert long-lasting antibacterial effects. The results of cell experiment showed that the GelMA@Ti3C2/V-Os hydrogel dressing could enhance the effect of current stimulation and significantly improve the migration, proliferation and tissue repair related genes expression of fibroblasts. In vitro experiments results showed that under ES, GelMA@Ti3C2/V-Os hydrogel dressing could promote re-epithelialization, enhance angiogenesis, mediate immune response and prevent wound infection. Conclusion This multifunctional nanocomposite hydrogel could provide new strategies for promoting infectious wound healing.
Collapse
Affiliation(s)
- Dawei Ren
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yan Zhang
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bo Du
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Lina Wang
- Department of Pediatric Respiration, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Meiheng Gong
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Wei Zhu
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
26
|
Huang L, Zhang S, Bian M, Xiang X, Xiao L, Wang J, Lu S, Chen W, Zhang C, Mo G, Jiang L, Li Y, Zhang J. Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute promotes bone regeneration by moderating oxidative stress in osteoporotic bone defect. Acta Biomater 2024; 180:82-103. [PMID: 38621599 DOI: 10.1016/j.actbio.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
The treatment of osteoporotic bone defect remains a big clinical challenge because osteoporosis (OP) is associated with oxidative stress and high levels of reactive oxygen species (ROS), a condition detrimental for bone formation. Anti-oxidative nanomaterials such as selenium nanoparticles (SeNPs) have positive effect on osteogenesis owing to their pleiotropic pharmacological activity which can exert anti-oxidative stress functions to prevent bone loss and facilitate bone regeneration in OP. In the current study a strategy of one-pot method by introducing Poly (lactic acid-carbonate) (PDT) and β-Tricalcium Phosphate (β-TCP) with SeNPs, is developed to prepare an injectable, anti-collapse, shape-adaptive and adhesive bone graft substitute material (PDT-TCP-SE). The PDT-TCP-SE bone graft substitute exhibits sufficient adhesion in biological microenvironments and osteoinductive activity, angiogenic effect and anti-inflammatory as well as anti-oxidative effect in vitro and in vivo. Moreover, the PDT-TCP-SE can protect BMSCs from erastin-induced ferroptosis through the Sirt1/Nrf2/GPX4 antioxidant pathway, which, in together, demonstrated the bone graft substitute material as an emerging biomaterial with potential clinical application for the future treatment of osteoporotic bone defect. STATEMENT OF SIGNIFICANCE: Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute was successfully synthesized. Incorporation of SeNPs with PDT into β-TCP regenerated new bone in-situ by moderating oxidative stress in osteoporotic bone defects area. The PDT-TCP-SE bone graft substitute reduced high ROS levels in osteoporotic bone defect microenvironment. The bone graft substitute could also moderate oxidative stress and inhibit ferroptosis via Sirt1/Nrf2/GPX4 pathway in vitro. Moreover, the PDT-TCP-SE bone graft substitute could alleviate the inflammatory environment and promote bone regeneration in osteoporotic bone defect in vivo. This biomaterial has the advantages of simple synthesis, biocompatibility, anti-collapse, injectable, and regulation of oxidative stress level, which has potential application value in bone tissue engineering.
Collapse
Affiliation(s)
- Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shihao Zhang
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xingdong Xiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia
| | - Jiayi Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shunyi Lu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weisin Chen
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Cheng Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guokang Mo
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
27
|
Wang H, Hsu YC, Wang C, Xiao X, Yuan Z, Zhu Y, Yang D. Conductive and Enhanced Mechanical Strength of Mo 2Ti 2C 3 MXene-Based Hydrogel Promotes Neurogenesis and Bone Regeneration in Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17208-17218. [PMID: 38530974 DOI: 10.1021/acsami.3c19410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Bone defects are common with increasing high-energy fractures, tumor bone invasion, and implantation revision surgery. Bone is an electroactive tissue that has electromechanical interaction with collogen, osteoblasts, and osteoclasts. Hydrogel provides morphological plasticity and extracellular matrix (ECM) 3D structures for cell survival, and is widely used as a bone engineering material. However, the hydrogels have poor mechanical intensity and lack of cell adhesion, slow gelation time, and limited conductivity. MXenes are novel nanomaterials with hydrophilic groups that sense cell electrophysiology and improve hydrogel electric conductivity. Herein, gelatin had multiple active groups (NH2, OH, and COOH) and an accelerated gelation time. Acrylamide has Schiff base bonds to cross-link with gelatin and absorb metal ions. Deacetylated chitosan improved cell adhesion and active groups to connect MXene and acrylamide. We constructed Mo2Ti2C3 MXene hydrogel with improved elastic modulus and viscosity, chemical cross-linking structure, electric conductivity, and good compatibility. Mo2Ti2C3 MXene hydrogel exhibits outstanding osteogenesis in vitro. Mo2Ti2C3 MXene hydrogel promotes osteogenesis via alkaline phosphatase (ALP) and alizarin red S (ARS) staining, improving osteogenic marker genes and protein expressions in vitro. Mo2Ti2C3 MXene hydrogel aids new bone formation in the in vivo calvarial bone defect model via micro-CT and histology. Mo2Ti2C3 MXene hydrogel facilitates neurogenesis factors nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) expression, and aids newly born neuron marker Tuj-1 and sensory neuron marker serotonin (5-HT) and osteogenesis pathway proteins, runt-related transcription factor 2 (Runx2), osteocalcin (OCN), SMAD family member 4 (SMAD4), and bone morphogenetic protein-2 (BMP2) in the bone defect repair process. Mo2Ti2C3 MXene hydrogel promotes osteogenesis and neurogenesis, which extends its biomedical application in bone defect reconstruction.
Collapse
Affiliation(s)
- Hongyu Wang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Reconstruction of Structure and Function in Sports System, Shenzhen 518000, Guangdong Province, China
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu-Ching Hsu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong 999077, China
| | - Chune Wang
- Department of Ophthalmology, Jiyang People's Hospital of Jinan, Jinan 250000, China
| | - Xiao Xiao
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhengbin Yuan
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong Zhu
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Dazhi Yang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Reconstruction of Structure and Function in Sports System, Shenzhen 518000, Guangdong Province, China
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
28
|
Iravani S, Nazarzadeh Zare E, Makvandi P. Multifunctional MXene-Based Platforms for Soft and Bone Tissue Regeneration and Engineering. ACS Biomater Sci Eng 2024; 10:1892-1909. [PMID: 38466909 DOI: 10.1021/acsbiomaterials.3c01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
MXenes and their composites hold great promise in the field of soft and bone tissue regeneration and engineering (TRE). However, there are challenges that need to be overcome, such as ensuring biocompatibility and controlling the morphologies of MXene-based scaffolds. The future prospects of MXenes in TRE include enhancing biocompatibility through surface modifications, developing multifunctional constructs, and conducting in vivo studies for clinical translation. The purpose of this perspective about MXenes and their composites in soft and bone TRE is to critically evaluate their potential applications and contributions in this field. This perspective aims to provide a comprehensive analysis of the challenges, advantages, limitations, and future prospects associated with the use of MXenes and their composites for soft and bone TRE. By examining the existing literature and research, the review seeks to consolidate the current knowledge and highlight the key findings and advancements in MXene-based TRE. It aims to contribute to the understanding of MXenes' role in promoting soft and bone TRE, addressing the challenges faced in terms of biocompatibility, morphology control, and tissue interactions.
Collapse
Affiliation(s)
- Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Avenue, Isfahan 81756-33551, Iran
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran
- Centre of Research Impact and Outreach, Chitkara University, Rajpura 140417, Punjab, India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, Zhejiang, China
- Chitkara Centre for Research and Development, Chitkara University, Kalujhanda 174103, Himachal Pradesh, India
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| |
Collapse
|
29
|
Jo HJ, Kang MS, Heo HJ, Jang HJ, Park R, Hong SW, Kim YH, Han DW. Skeletal muscle regeneration with 3D bioprinted hyaluronate/gelatin hydrogels incorporating MXene nanoparticles. Int J Biol Macromol 2024; 265:130696. [PMID: 38458288 DOI: 10.1016/j.ijbiomac.2024.130696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
There has been significant progress in the field of three-dimensional (3D) bioprinting technology, leading to active research on creating bioinks capable of producing structurally and functionally tissue-mimetic constructs. Ti3C2Tx MXene nanoparticles (NPs), promising two-dimensional nanomaterials, are being investigated for their potential in muscle regeneration due to their unique physicochemical properties. In this study, we integrated MXene NPs into composite hydrogels made of gelatin methacryloyl (GelMA) and hyaluronic acid methacryloyl (HAMA) to develop bioinks (namely, GHM bioink) that promote myogenesis. The prepared GHM bioinks were found to offer excellent printability with structural integrity, cytocompatibility, and microporosity. Additionally, MXene NPs within the 3D bioprinted constructs encouraged the differentiation of C2C12 cells into skeletal muscle cells without additional support of myogenic agents. Genetic analysis indicated that representative myogenic markers both for early and late myogenesis were significantly up-regulated. Moreover, animal studies demonstrated that GHM bioinks contributed to enhanced regeneration of skeletal muscle while reducing immune responses in mice models with volumetric muscle loss (VML). Our results suggest that the GHM hydrogel can be exploited to craft a range of strategies for the development of a novel bioink to facilitate skeletal muscle regeneration because these MXene-incorporated composite materials have the potential to promote myogenesis.
Collapse
Affiliation(s)
- Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Jin Heo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hee Jeong Jang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Rowoon Park
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Periodontal Disease Signaling Network Research Center & Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
30
|
Shi Q, Chen J, Chen J, Liu Y, Wang H. Application of additively manufactured bone scaffold: a systematic review. Biofabrication 2024; 16:022007. [PMID: 38507799 DOI: 10.1088/1758-5090/ad35e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
The application of additive manufacturing (AM) technology plays a significant role in various fields, incorporating a wide range of cutting-edge technologies such as aerospace, medical treatment, electronic information, and materials. It is currently widely adopted for medical services, national defense, and industrial manufacturing. In recent years, AM has also been extensively employed to produce bone scaffolds and implant materials. Through AM, products can be manufactured without being constrained by complex internal structures. AM is particularly advantageous in the production of macroscopically irregular and microscopically porous biomimetic bone scaffolds, with short production cycles required. In this paper, AM commonly used to produce bone scaffolds and orthopedic implants is overviewed to analyze the different materials and structures adopted for AM. The applications of antibacterial bone scaffolds and bone scaffolds in biologically relevant animal models are discussed. Also, the influence on the comprehensive performance of product mechanics, mass transfer, and biology is explored. By identifying the reasons for the limited application of existing AM in the biomedical field, the solutions are proposed. This study provides an important reference for the future development of AM in the field of orthopedic healthcare. In conclusion, various AM technologies, the requirements of bone scaffolds and the important role of AM in building bridges between biomaterials, additives, and bone tissue engineering scaffolds are described and highlighted. Nevertheless, more caution should be exercised when designing bone scaffolds and conducting in vivo trials, due to the lack of standardized processes, which prevents the accuracy of results and reduces the reliability of information.
Collapse
Affiliation(s)
- Qianyu Shi
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Jibing Chen
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Junsheng Chen
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Yanfeng Liu
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Hongze Wang
- School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
31
|
He Y, Jiang H, Dong S. Bioactives and Biomaterial Construction for Modulating Osteoclast Activities. Adv Healthc Mater 2024; 13:e2302807. [PMID: 38009952 DOI: 10.1002/adhm.202302807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/28/2023] [Indexed: 11/29/2023]
Abstract
Bone tissue constitutes 15-20% of human body weight and plays a crucial role in supporting the body, coordinating movement, regulating mineral homeostasis, and hematopoiesis. The maintenance of bone homeostasis relies on a delicate balance between osteoblasts and osteoclasts. Osteoclasts, as the exclusive "bone resorbers" in the human skeletal system, are of paramount significance yet often receive inadequate attention. When osteoclast activity becomes excessive, it frequently leads to various bone metabolic disorders, subsequently resulting in secondary bone injuries, such as fractures. This not only reduces life quality of patients, but also imposes a significant economic burden on society. In response to the pressing need for biomaterials in the treatment of osteoclast dysregulation, there is a surge of research and investigations aimed at osteoclast regulation. Promising progress is achieved in this domain. This review seeks to provide a comprehensive understanding of how to modulate osteoclast activities. It summarizes bioactive substances that influence osteoclasts and elucidates strategies for constructing related biomaterial systems. It offers practical insights and ideas for the development and application of biomaterials and tissue engineering, with the hope of guiding the clinical treatment of osteoclast-related bone diseases using biomaterials in the future.
Collapse
Affiliation(s)
- Yuwei He
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Hong Jiang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, 400038, P. R. China
| |
Collapse
|
32
|
Tang Z, Yu D, Bao S, Li C, Wu H, Dong H, Wang N, Liu Y, Wu Q, Chen C, Wang M, Cao P, Zheng Z, Huang H, Li X, Guo Z. Porous Titanium Scaffolds with Mechanoelectrical Conversion and Photothermal Function: A Win-Win Strategy for Bone Reconstruction of Tumor-Resected Defects. Adv Healthc Mater 2024; 13:e2302901. [PMID: 38102773 DOI: 10.1002/adhm.202302901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Bone metastases severely threaten the lives of patients. Although surgical treatment combined with adjuvant chemotherapy significantly improves the survival rate of patients, tumor recurrence, or metastasis after surgical resection and bone defects caused by surgical treatment remain major challenges for clinicians. Given the abovementioned clinical requirements, barium titanate-containing iron-coated porous titanium alloy scaffolds have been proposed to promote bone defect repair and inhibit tumor recurrence. Fortunately, in vitro and in vivo experimental research confirms that barium titanate containing iron-coated porous titanium alloy scaffolds promote osteogenesis and bone reconstruction in defect repair via mechanoelectric conversion and inhibit tumor recurrence via photothermal effects. Furthermore, the underlying and intricate mechanisms of bone defect repair and tumor recurrence prevention of barium titanate-containing iron-coated porous titanium alloy scaffolds are explored. A win-win strategy for mechanoelectrical conversion and photothermal functionalization provides promising insights into bone reconstruction of tumor-resected defects.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Dongmei Yu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Shusen Bao
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Chenyu Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hao Wu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hui Dong
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Ning Wang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yichao Liu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Qi Wu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Changcheng Chen
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Mo Wang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Pengfei Cao
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Zenghui Zheng
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hai Huang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xiaokang Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Zheng Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| |
Collapse
|
33
|
Liu H, He L, Kuzmanović M, Huang Y, Zhang L, Zhang Y, Zhu Q, Ren Y, Dong Y, Cardon L, Gou M. Advanced Nanomaterials in Medical 3D Printing. SMALL METHODS 2024; 8:e2301121. [PMID: 38009766 DOI: 10.1002/smtd.202301121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Indexed: 11/29/2023]
Abstract
3D printing is now recognized as a significant tool for medical research and clinical practice, leading to the emergence of medical 3D printing technology. It is essential to improve the properties of 3D-printed products to meet the demand for medical use. The core of generating qualified 3D printing products is to develop advanced materials and processes. Taking advantage of nanomaterials with tunable and distinct physical, chemical, and biological properties, integrating nanotechnology into 3D printing creates new opportunities for advancing medical 3D printing field. Recently, some attempts are made to improve medical 3D printing through nanotechnology, providing new insights into developing advanced medical 3D printing technology. With high-resolution 3D printing technology, nano-structures can be directly fabricated for medical applications. Incorporating nanomaterials into the 3D printing material system can improve the properties of the 3D-printed medical products. At the same time, nanomaterials can be used to expand novel medical 3D printing technologies. This review introduced the strategies and progresses of improving medical 3D printing through nanotechnology and discussed challenges in clinical translation.
Collapse
Affiliation(s)
- Haofan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liming He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maja Kuzmanović
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiting Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qi Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ya Ren
- Huahang Microcreate Technology Co., Ltd, Chengdu, 610042, China
| | - Yinchu Dong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Chengdu OrganoidMed Medical Laboratory, Chengdu, 610000, China
| | - Ludwig Cardon
- Centre for Polymer and Material Technologies, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, 9159052, Belgium
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
34
|
Gong C, Wang J, Tang F, Tong D, Wang Z, Zhou Z, Ruan R, Zhang J, Song J, Yang H. Bionic Bilayer Scaffold for Synchronous Hyperthermia Therapy of Orthotopic Osteosarcoma and Osteochondral Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8538-8553. [PMID: 38343191 DOI: 10.1021/acsami.3c18171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Large osseous void, postsurgical neoplastic recurrence, and slow bone-cartilage repair rate raise an imperative need to develop functional scaffold in clinical osteosarcoma treatment. Herein, a bionic bilayer scaffold constituting croconaine dye-polyethylene glycol@sodium alginate hydrogel and poly(l-lactide)/hydroxyapatite polymer matrix is fabricated to simultaneously achieve a highly efficient killing of osteosarcoma and an accelerated osteochondral regeneration. First, biomimetic osteochondral structure along with adequate interfacial interaction of the bilayer scaffold provide a structural reinforcement for transverse osseointegration and osteochondral regeneration, as evidenced by upregulated specific expressions of collagen type-I, osteopontin, and runt-related transcription factor 2. Meanwhile, thermal ablation of the synthesized nanoparticles and mitochondrial dysfunction caused by continuously released hydroxyapatite induce residual tumor necrosis synergistically. To validate the capabilities of inhibiting tumor growth and promoting osteochondral regeneration of our proposed scaffold, a novel orthotopic osteosarcoma model simulating clinical treatment scenarios of bone tumors is established on rats. Based on amounts of in vitro and in vivo results, an effective killing of osteosarcoma and a suitable osteal-microenvironment modulation of such bionic bilayer composite scaffold are achieved, which provides insightful implications for photonic hyperthermia therapy against osteosarcoma and following osseous tissue regeneration.
Collapse
Affiliation(s)
- Chenchi Gong
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Faqiang Tang
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350013, P. R. China
| | - Dongmei Tong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ziyi Wang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Zijie Zhou
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350013, P. R. China
| | - Renjie Ruan
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
35
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
36
|
Chen Y, Gan W, Cheng Z, Zhang A, Shi P, Zhang Y. Plant molecules reinforce bone repair: Novel insights into phenol-modified bone tissue engineering scaffolds for the treatment of bone defects. Mater Today Bio 2024; 24:100920. [PMID: 38226013 PMCID: PMC10788623 DOI: 10.1016/j.mtbio.2023.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Bone defects have become a major cause of disability and death. To overcome the limitations of natural bone implants, including donor shortages and immune rejection risks, bone tissue engineering (BTE) scaffolds have emerged as a promising therapy for bone defects. Despite possessing good biocompatibility, these metal, ceramic and polymer-based scaffolds are still challenged by the harsh conditions in bone defect sites. ROS accumulation, bacterial infection, excessive inflammation, compromised blood supply deficiency and tumor recurrence negatively impact bone tissue cells (BTCs) and hinder the osteointegration of BTE scaffolds. Phenolic compounds, derived from plants and fruits, have gained growing application in treating inflammatory, infectious and aging-related diseases due to their antioxidant ability conferred by phenolic hydroxyl groups. The prevalent interactions between phenols and functional groups also facilitate their utilization in fabricating scaffolds. Consequently, phenols are increasingly incorporated into BTE scaffolds to boost therapeutic efficacy in bone defect. This review demonstrated the effects of phenols on BTCs and bone defect microenvironment, summarized the intrinsic mechanisms, presented the advances in phenol-modified BTE scaffolds and analyzed their potential risks in practical applications. Overall, phenol-modified BTE scaffolds hold great potential for repairing bone defects, offering novel patterns for BTE scaffold construction and advancing traumatological medicine.
Collapse
Affiliation(s)
| | | | | | - Anran Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
37
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
38
|
Kang MS, Yu Y, Park R, Heo HJ, Lee SH, Hong SW, Kim YH, Han DW. Highly Aligned Ternary Nanofiber Matrices Loaded with MXene Expedite Regeneration of Volumetric Muscle Loss. NANO-MICRO LETTERS 2024; 16:73. [PMID: 38175358 PMCID: PMC10767178 DOI: 10.1007/s40820-023-01293-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Current therapeutic approaches for volumetric muscle loss (VML) face challenges due to limited graft availability and insufficient bioactivities. To overcome these limitations, tissue-engineered scaffolds have emerged as a promising alternative. In this study, we developed aligned ternary nanofibrous matrices comprised of poly(lactide-co-ε-caprolactone) integrated with collagen and Ti3C2Tx MXene nanoparticles (NPs) (PCM matrices), and explored their myogenic potential for skeletal muscle tissue regeneration. The PCM matrices demonstrated favorable physicochemical properties, including structural uniformity, alignment, microporosity, and hydrophilicity. In vitro assays revealed that the PCM matrices promoted cellular behaviors and myogenic differentiation of C2C12 myoblasts. Moreover, in vivo experiments demonstrated enhanced muscle remodeling and recovery in mice treated with PCM matrices following VML injury. Mechanistic insights from next-generation sequencing revealed that MXene NPs facilitated protein and ion availability within PCM matrices, leading to elevated intracellular Ca2+ levels in myoblasts through the activation of inducible nitric oxide synthase (iNOS) and serum/glucocorticoid regulated kinase 1 (SGK1), ultimately promoting myogenic differentiation via the mTOR-AKT pathway. Additionally, upregulated iNOS and increased NO- contributed to myoblast proliferation and fiber fusion, thereby facilitating overall myoblast maturation. These findings underscore the potential of MXene NPs loaded within highly aligned matrices as therapeutic agents to promote skeletal muscle tissue recovery.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Yeuni Yu
- Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Rowoon Park
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hye Jin Heo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Seok Hyun Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
- Osstem Implant Inc., Seoul, 07789, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
- Engineering Research Center for Color‑Modulated Extra‑Sensory Perception Technology, Pusan National University, Busan, 46241, Republic of Korea.
| | - Yun Hak Kim
- Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea.
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea.
- Periodontal Disease Signaling Network Research Center and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea.
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
39
|
Wen X, Wang J, Pei X, Zhang X. Zinc-based biomaterials for bone repair and regeneration: mechanism and applications. J Mater Chem B 2023; 11:11405-11425. [PMID: 38010166 DOI: 10.1039/d3tb01874a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Zinc (Zn) is one of the most important trace elements in the human body and plays a key role in various physiological processes, especially in bone metabolism. Zn-containing materials have been reported to enhance bone repair through promoting cell proliferation, osteogenic activity, angiogenesis, and inhibiting osteoclast differentiation. Therefore, Zn-based biomaterials are potential substitutes for traditional bone grafts. In this review, the specific mechanisms of bone formation promotion by Zn-based biomaterials were discussed, and recent developments in their application in bone tissue engineering were summarized. Moreover, the challenges and perspectives of Zn-based biomaterials were concluded, revealing their attractive potential and development directions in the future.
Collapse
Affiliation(s)
- Xinyu Wen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
40
|
Yu Z, Wang H, Ying B, Mei X, Zeng D, Liu S, Qu W, Pan X, Pu S, Li R, Qin Y. Mild photothermal therapy assist in promoting bone repair: Related mechanism and materials. Mater Today Bio 2023; 23:100834. [PMID: 38024841 PMCID: PMC10643361 DOI: 10.1016/j.mtbio.2023.100834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Achieving precision treatment in bone tissue engineering (BTE) remains a challenge. Photothermal therapy (PTT), as a form of precision therapy, has been extensively investigated for its safety and efficacy. It has demonstrated significant potential in the treatment of orthopedic diseases such as bone tumors, postoperative infections and osteoarthritis. However, the high temperatures associated with PTT can lead to certain limitations and drawbacks. In recent years, researchers have explored the use of biomaterials for mild photothermal therapy (MPT), which offers a promising approach for addressing these limitations. This review provides a comprehensive overview of the mechanisms underlying MPT and presents a compilation of photothermal agents and their utilization strategies for bone tissue repair. Additionally, the paper discusses the future prospects of MPT-assisted bone tissue regeneration, aiming to provide insights and recommendations for optimizing material design in this field.
Collapse
Affiliation(s)
- Zehao Yu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Hao Wang
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Boda Ying
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Xiaohan Mei
- National & Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
| | - Dapeng Zeng
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Shibo Liu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Wenrui Qu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Xiangjun Pan
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Si Pu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Ruiyan Li
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Yanguo Qin
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| |
Collapse
|
41
|
Wang Z, Geest ICMVD, Leeuwenburgh SCG, van den Beucken JJJP. Bifunctional bone substitute materials for bone defect treatment after bone tumor resection. Mater Today Bio 2023; 23:100889. [PMID: 38149015 PMCID: PMC10749907 DOI: 10.1016/j.mtbio.2023.100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Aggressive benign, malignant and metastatic bone tumors can greatly decrease the quality of patients' lives and even lead to substantial mortality. Several clinical therapeutic strategies have been developed to treat bone tumors, including preoperative chemotherapy, surgical resection of the tumor tissue, and subsequent systemic chemo- or radiotherapy. However, those strategies are associated with inevitable drawbacks, such as severe side effects, substantial local tumor recurrence, and difficult-to-treat bone defects after tumor resection. To overcome these shortcomings and achieve satisfactory clinical outcomes, advanced bifunctional biomaterials which simultaneously promote bone regeneration and combat bone tumor growth are increasingly advocated. These bifunctional bone substitute materials fill bone defects following bone tumor resection and subsequently exert local anticancer effects. Here we describe various types of the most prevalent bone tumors and provide an overview of common treatment options. Subsequently, we review current progress regarding the development of bifunctional bone substitute materials combining osteogenic and anticancer efficacy. To this end, we categorize these biomaterials based on their anticancer mechanism deriving from i) intrinsic biomaterial properties, ii) local drug release of anticancer agents, and iii) oxidative stress-inducing and iv) hyperthermia-inducing biomaterials. Consequently, this review offers researchers, surgeons and oncologists an up-to-date overview of our current knowledge on bone tumors, their treatment options, and design of advanced bifunctional biomaterials with strong potential for clinical application in oncological orthopedics.
Collapse
Affiliation(s)
- Zhule Wang
- Radboud University Medical Center, Department of Dentistry – Regenerative Biomaterials, Nijmegen, the Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, the Netherlands
| | - Ingrid CM van der Geest
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, the Netherlands
- Radboud University Medical Center, Department of Orthopedics, Nijmegen, the Netherlands
| | - Sander CG. Leeuwenburgh
- Radboud University Medical Center, Department of Dentistry – Regenerative Biomaterials, Nijmegen, the Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, the Netherlands
| | - Jeroen JJP. van den Beucken
- Radboud University Medical Center, Department of Dentistry – Regenerative Biomaterials, Nijmegen, the Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
42
|
Wu J, Liang B, Lu S, Xie J, Song Y, Wang L, Gao L, Huang Z. Application of 3D printing technology in tumor diagnosis and treatment. Biomed Mater 2023; 19:012002. [PMID: 37918002 DOI: 10.1088/1748-605x/ad08e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/01/2023] [Indexed: 11/04/2023]
Abstract
3D printing technology is an increasing approach consisting of material manufacturing through the selective incremental delamination of materials to form a 3D structure to produce products. This technology has different advantages, including low cost, short time, diversification, and high precision. Widely adopted additive manufacturing technologies enable the creation of diagnostic tools and expand treatment options. Coupled with its rapid deployment, 3D printing is endowed with high customizability that enables users to build prototypes in shorts amounts of time which translates into faster adoption in the medical field. This review mainly summarizes the application of 3D printing technology in the diagnosis and treatment of cancer, including the challenges and the prospects combined with other technologies applied to the medical field.
Collapse
Affiliation(s)
- Jinmei Wu
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, No. 138 Xianling Rd., Nanjing 210023, Jiangsu, People's Republic of China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
| | - Bing Liang
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, No. 138 Xianling Rd., Nanjing 210023, Jiangsu, People's Republic of China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
| | - Shuoqiao Lu
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
| | - Jinlan Xie
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
| | - Yan Song
- China Automotive Engineering Research Institute Co., Ltd (CAERI), Chongqing 401122, People's Republic of China
| | - Lude Wang
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, No. 138 Xianling Rd., Nanjing 210023, Jiangsu, People's Republic of China
| | - Lingfeng Gao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Zaiyin Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
43
|
Kang J, Li Y, Qin Y, Huang Z, Wu Y, Sun L, Wang C, Wang W, Feng G, Qi Y. In Situ Deposition of Drug and Gene Nanoparticles on a Patterned Supramolecular Hydrogel to Construct a Directionally Osteochondral Plug. NANO-MICRO LETTERS 2023; 16:18. [PMID: 37975889 PMCID: PMC10656386 DOI: 10.1007/s40820-023-01228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023]
Abstract
The integrated repair of bone and cartilage boasts advantages for osteochondral restoration such as a long-term repair effect and less deterioration compared to repairing cartilage alone. Constructing multifactorial, spatially oriented scaffolds to stimulate osteochondral regeneration, has immense significance. Herein, targeted drugs, namely kartogenin@polydopamine (KGN@PDA) nanoparticles for cartilage repair and miRNA@calcium phosphate (miRNA@CaP) NPs for bone regeneration, were in situ deposited on a patterned supramolecular-assembled 2-ureido-4 [lH]-pyrimidinone (UPy) modified gelation hydrogel film, facilitated by the dynamic and responsive coordination and complexation of metal ions and their ligands. This hydrogel film can be rolled into a cylindrical plug, mimicking the Haversian canal structure of natural bone. The resultant hydrogel demonstrates stable mechanical properties, a self-healing ability, a high capability for reactive oxygen species capture, and controlled release of KGN and miR-26a. In vitro, KGN@PDA and miRNA@CaP promote chondrogenic and osteogenic differentiation of mesenchymal stem cells via the JNK/RUNX1 and GSK-3β/β-catenin pathways, respectively. In vivo, the osteochondral plug exhibits optimal subchondral bone and cartilage regeneration, evidenced by a significant increase in glycosaminoglycan and collagen accumulation in specific zones, along with the successful integration of neocartilage with subchondral bone. This biomaterial delivery approach represents a significant toward improved osteochondral repair.
Collapse
Affiliation(s)
- Jiawei Kang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310009, Zhejiang Province, People's Republic of China
| | - Yaping Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, Zhejiang, People's Republic of China
| | - Yating Qin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, Zhejiang, People's Republic of China
| | - Zhongming Huang
- The Affiliated Nanhua Hospital, Orthopedic Research Centre, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yifan Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310009, Zhejiang Province, People's Republic of China
| | - Long Sun
- Department of Radiology, Jining No. 1 People's Hospital, Jining Medical University, Jining, 272000, Shandong, People's Republic of China
| | - Cong Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310009, Zhejiang Province, People's Republic of China
| | - Wei Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, Zhejiang, People's Republic of China.
| | - Gang Feng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310009, Zhejiang Province, People's Republic of China.
| | - Yiying Qi
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310009, Zhejiang Province, People's Republic of China.
| |
Collapse
|
44
|
Chao B, Jiao J, Yang L, Wang Y, Jiang W, Yu T, Wang L, Liu H, Zhang H, Wang Z, Wu M. Application of advanced biomaterials in photothermal therapy for malignant bone tumors. Biomater Res 2023; 27:116. [PMID: 37968707 PMCID: PMC10652612 DOI: 10.1186/s40824-023-00453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/21/2023] [Indexed: 11/17/2023] Open
Abstract
Malignant bone tumors are characterized by severe disability rate, mortality rate, and heavy recurrence rate owing to the complex pathogenesis and insidious disease progression, which seriously affect the terminal quality of patients' lives. Photothermal therapy (PTT) has emerged as an attractive adjunctive treatment offering prominent hyperthermal therapeutic effects to enhance the effectiveness of surgical treatment and avoid recurrence. Simultaneously, various advanced biomaterials with photothermal capacity are currently created to address malignant bone tumors, performing distinctive biological functions, including nanomaterials, bioceramics (BC), polymers, and hydrogels et al. Furthermore, PTT-related combination therapeutic strategies can provide more significant curative benefits by reducing drug toxicity, improving tumor-killing efficiency, stimulating anti-cancer immunity, and improving immune sensitivity relative to monotherapy, even in complex tumor microenvironments (TME). This review summarizes the current advanced biomaterials applicable in PTT and relevant combination therapies on malignant bone tumors for the first time. The multiple choices of advanced biomaterials, treatment methods, and new prospects for future research in treating malignant bone tumors with PTT are generalized to provide guidance. Malignant bone tumors seriously affect the terminal quality of patients' lives. Photothermal therapy (PTT) has emerged as an attractive adjunctive treatment enhancing the effectiveness of surgical treatment and avoiding recurrence. In this review, advanced biomaterials applicable in the PTT of malignant bone tumors and their distinctive biological functions are comprehensively summarized for the first time. Simultaneously, multiple PTT-related combination therapeutic strategies are classified to optimize practical clinical issues, contributing to the selection of biomaterials, therapeutic alternatives, and research perspectives for the adjuvant treatment of malignant bone tumors with PTT in the future.
Collapse
Affiliation(s)
- Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Lili Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Weibo Jiang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Tong Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Linfeng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.
| |
Collapse
|
45
|
Lei H, Li Q, Pei Z, Liu L, Yang N, Cheng L. Nonferrous Ferroptosis Inducer Manganese Molybdate Nanoparticles to Enhance Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303438. [PMID: 37420331 DOI: 10.1002/smll.202303438] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/27/2023] [Indexed: 07/09/2023]
Abstract
Tumor immunotherapy is an important tool in oncology treatment. However, only a small percentage of patients have an effective immune response to tumor immunotherapy due to the poor infiltration of pro-inflammatory immune cells in immune "cold" tumors and an immunosuppressive network in the tumor microenvironment (TME). Ferroptosis has been widely used as a novel strategy to enhance tumor immunotherapy. Herein, manganese molybdate nanoparticles (MnMoOx NPs) depleted the highly expressed glutathione (GSH) in tumors and inhibited glutathione peroxidase 4 (GPX4) expression, thus triggering ferroptosis, inducing immune cell death (ICD), further releasing damage-associated molecular patterns (DAMPs), and enhancing tumor immunotherapy. Furthermore, MnMoOx NPs can efficiently suppress tumors, promote the maturation of dendritic cells (DCs), infiltrate T cells, and reverse the immunosuppressive microenvironment, making the tumor an immune "hot" tumor. Combination with an immune checkpoint inhibitor (ICI) (α-PD-L1) further enhanced the anti-tumor effect and inhibited metastases as well. The work provides a new idea for the development of nonferrous inducers of ferroptosis to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Quguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Lin Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Suzhou University, Suzhou, 215000, China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| |
Collapse
|
46
|
Ma J, Zhang L, Lei B. Multifunctional MXene-Based Bioactive Materials for Integrated Regeneration Therapy. ACS NANO 2023; 17:19526-19549. [PMID: 37804317 DOI: 10.1021/acsnano.3c01913] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
The reconstruction engineering of tissue defects accompanied by major diseases including cancer, infection, and inflammation is one of the important challenges in clinical medicine. The development of innovative tissue engineering strategies such as multifunctional bioactive materials presents a great potential to overcome the challenge of disease-impaired tissue regeneration. As the major representative of two-dimensional nanomaterials, MXenes have shown multifunctional physicochemical properties and have been diffusely studied as multimodal nanoplatforms in the field of biomedicine. This review summarized the recent advances in the multifunctional properties of MXenes and integrated regeneration-therapy applications of MXene-based biomaterials, including tissue regeneration-tumor therapy, tissue regeneration-infection therapy, and tissue regeneration-inflammation therapy. MXenes have been recognized as good candidates for promoting tissue regeneration and treating diseases through photothermal therapy, regulating cell behavior, and drug and gene delivery. The current challenges and future perspectives of MXene-based biomaterials in integrated regeneration-therapy are also discussed well in this review. In summary, MXene-based biomaterials have shown promising potential for integrated tissue regeneration and disease treatment due to their favorable physicochemical properties and bioactive functions. However, there are still many obstacles and challenges that must be addressed for the regeneration-therapy applications of MXene-based biomaterials, including understanding the bioactive mechanism, ensuring long-term biosafety, and improving their targeting therapy capacity.
Collapse
Affiliation(s)
- Junping Ma
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Long Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
| |
Collapse
|
47
|
Wojciechowska A, Jakubczak M, Moszczyńska D, Wójcik A, Prenger K, Naguib M, Jastrzębska AM. Engineering the surface of Nb n+1C nT x MXenes to versatile bio-activity towards microorganisms. BIOMATERIALS ADVANCES 2023; 153:213581. [PMID: 37572598 DOI: 10.1016/j.bioadv.2023.213581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/17/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Two-dimensional (2D) transition metal carbides/nitrides (MXenes) are potential antibacterial agents. However, their activity against microorganisms is not fully understood. It could relate to MXenes' surface which further influences their biocidal action. Herein, we report no continuous biocidal activity for delaminated 2D niobium-based MXenes (Nbn+1XnTx) such as Nb2CTx and Nb4C3Tx prepared with HF/TMAOH protocol. Biocidal activity towards Bacillus subtilis and Staphylococcus aureus microorganisms was achieved by surface-functionalization with lysozyme macromolecule. MXenes' engineering with lysozyme changed MXene's surface charge from negative into positive thus enabling the elimination of bacteria cells during 48 h of incubation. In contrast, Nb4C3Tx functionalized with collagen stimulated the growth of Bacillus subtilis by 225 %, showing MXene's biocompatibility towards this particular strain. Altogether, our results show that MXenes are incredibly bio-tunable. Opposing bio-effects such as antimicrobial or growth-stimulating can be achieved towards various microorganisms with rational surface engineering.
Collapse
Affiliation(s)
- Anita Wojciechowska
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Woloska 141, Poland.
| | - Michał Jakubczak
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Woloska 141, Poland.
| | - Dorota Moszczyńska
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Woloska 141, Poland.
| | - Anna Wójcik
- Polish Academy of Sciences, Institute of Metallurgy and Materials Science, W. Reymonta 25, 30-059 Cracow, Poland.
| | - Kaitlyn Prenger
- INM - Leibniz Institute for New Materials, Campus D22, 66123 Saarbrücken, Germany.
| | - Michael Naguib
- Tulane University, Department of Physics and Engineering Physics, New Orleans, LA 70118, USA.
| | - Agnieszka Maria Jastrzębska
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Woloska 141, Poland.
| |
Collapse
|
48
|
Dürig J, Calcagni M, Buschmann J. Transition metals in angiogenesis - A narrative review. Mater Today Bio 2023; 22:100757. [PMID: 37593220 PMCID: PMC10430620 DOI: 10.1016/j.mtbio.2023.100757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The aim of this paper is to offer a narrative review of the literature regarding the influence of transition metals on angiogenesis, excluding lanthanides and actinides. To our knowledge there are not any reviews up to date offering such a summary, which inclined us to write this paper. Angiogenesis describes the process of blood vessel formation, which is an essential requirement for human growth and development. When the complex interplay between pro- and antiangiogenic mediators falls out of balance, angiogenesis can quickly become harmful. As it is so fundamental, both its inhibition and enhancement take part in various diseases, making it a target for therapeutic treatments. Current methods come with limitations, therefore, novel agents are constantly being researched, with metal agents offering promising results. Various transition metals have already been investigated in-depth, with studies indicating both pro- and antiangiogenic properties, respectively. The transition metals are being applied in various formulations, such as nanoparticles, complexes, or scaffold materials. Albeit the increasing attention this field is receiving, there remain many unanswered questions, mostly regarding the molecular mechanisms behind the observed effects. Notably, approximately half of all the transition metals have not yet been investigated regarding potential angiogenic effects. Considering the promising results which have already been established, it should be of great interest to begin investigating the remaining elements whilst also further analyzing the established effects.
Collapse
Affiliation(s)
- Johannes Dürig
- University of Zürich, Faculty of Medicine, Pestalozzistrasse 3, 8032, Zurich, Switzerland
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Maurizio Calcagni
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Johanna Buschmann
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| |
Collapse
|
49
|
Sagadevan S, Oh WC. Comprehensive utilization and biomedical application of MXenes - A systematic review of cytotoxicity and biocompatibility. J Drug Deliv Sci Technol 2023; 85:104569. [DOI: 10.1016/j.jddst.2023.104569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
50
|
Huang L, Lu S, Bian M, Wang J, Yu J, Ge J, Zhang J, Xu Q. Punicalagin attenuates TNF-α-induced oxidative damage and promotes osteogenic differentiation of bone mesenchymal stem cells by activating the Nrf2/HO-1 pathway. Exp Cell Res 2023:113717. [PMID: 37429372 DOI: 10.1016/j.yexcr.2023.113717] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Oxidative stress is one of the most important factors in changing bone homeostasis. Redox homeostasis plays a key role in the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) and the angiogenesis ability of human umbilical vein endothelial cells (HUVECs) for bone regeneration. Currently, this study assessed the effects of punicalagin (PUN) on BMSCs and HUVECs. Cell viability was determined by CCK-8 assay. A flow cytometry analysis was adopted to detect macrophage polarization. The production of reactive oxygen stress (ROS), glutathione (GSH), malonaldehyde (MDA) and superoxide dismutase (SOD) activities were evaluated by using commercially-available kits. Osteogenic capacity of BMSCs was evaluated by ALP activity, ALP staining and ARS staining. The expression of osteogenic-related proteins (OCN, Runx-2, OPN) and Nrf/HO-1 levles were evaluated by Western blotting. Osteogenic-related genes (Osterix, COL-1, BMP-4, ALP) were evaluated by RT-PCR. Migration ability and invasion ability of HUVECs were evaluated by wound healing assay and Transwell assay. Angiogenic ability was detected by tube formation assay and the expression of angiogenic-related genes (VEGF, vWF, CD31) were evaluated by RT-PCR. Results showed that PUN alleviated oxidative stress by TNF-α, enhanced osteogenic differentiation in BMSCs and angiogenesis in HUVECs. Moreover, PUN regulate immune microenvironment by promoting the polarization of M2 macrophages and reduce the oxidative stress related products by activating Nrf2/HO-1 pathway. Altogether, these results suggested that PUN can promote osteogenic capacity of BMSCs, angiogenesis of HUVECs, alleviate oxidative stress via Nrf2/HO-1 pathway, offering PUN as a novel antioxidant agent for treating bone loss diseases.
Collapse
Affiliation(s)
- Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shunyi Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiayi Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jieqin Yu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Ge
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Qintong Xu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|