1
|
Ge S, Wang XH, Fan J, Liu H, Xin Y, Li X, Yu Y, Yang YW, Gao H. A Dual-Pipeline Lactate Removal Strategy to Reverse Vascular Hyperpermeability for the Management of Lipopolysaccharide-Induced Sepsis. Adv Healthc Mater 2025; 14:e2403592. [PMID: 39887647 DOI: 10.1002/adhm.202403592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Sepsis is an underappreciated yet severe threat to human life, marked by organ dysfunction and high mortality resulting from disordered inflammatory responses to blood infection. Unfortunately, no specific drugs are available for effective sepsis treatment. As a pivotal biomarker for sepsis, lactate levels are closely related to vascular permeability and sepsis-associated mortality. Herein, a dual-pipeline lactate removal strategy is reported from circulating blood to ameliorate vascular permeability and lipopolysaccharide (LPS)-induced sepsis. This is achieved by formulating lactate oxidase (LOX)-encapsulated hollow manganese dioxide (HMnO2) nanohybrids (LOX@HMnO2-P[5]A) bearing pillar[5]arene (P[5]A) macrocycle with excellent host-guest properties. The highly biocompatible nanohybrids enable direct lactate consumption through LOX catalytic degradation and block lactate production by P[5]A-mediated LPS trapping, allowing for dual-pipeline lactate removal to maximize the reversal of lactate-mediated vascular hyperpermeability. Besides, HMnO2 cores decompose hydrogen peroxide produced from lactate oxidation into oxygen, further contributing to lactate consumption and mitigating the hypoxic inflammatory environment. In vivo investigations demonstrate that intravenous administration of LOX@HMnO2-P[5]A nanohybrids with extended blood circulation can effectively ameliorate endothelial barrier dysfunction, inflammatory responses, and multiple organ injury, ultimately improving survival outcomes in LPS-induced sepsis. Taken together, this dual-pipeline lactate removal strategy offers a promising approach for efficient sepsis treatment.
Collapse
Affiliation(s)
- Shuangfeng Ge
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Xing-Huo Wang
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Juntao Fan
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Haofei Liu
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Youtao Xin
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Xiaohui Li
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Yunjian Yu
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
2
|
Zhao YC, Li JK, Zhang YK, Sun ZH, Fu R, Zhang BK, Yan M. Evaluating the influence MRSA Co-infection on 28-day mortality among sepsis patients: insights from the MIMIC-IV database. Front Pharmacol 2025; 16:1534107. [PMID: 40135240 PMCID: PMC11933069 DOI: 10.3389/fphar.2025.1534107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background Sepsis remains a leading cause of mortality in intensive care units (ICUs), with methicillin-resistant Staphylococcus aureus (MRSA) infections presenting significant treatment challenges. The impact of MRSA co-infection on sepsis outcomes necessitates further exploration. Methods We conducted a retrospective observational cohort study using the Medical Information Mart for Critical Care IV (MIMIC-IV-2.2) database. This cohort study included sepsis patients, scrutinizing baseline characteristics, MRSA co-infection, antimicrobial susceptibility, and their relations to mortality through Cox regression and Kaplan-Meier analyses. Results Among 453 sepsis patients analyzed, significant baseline characteristic differences were observed between survivors (N = 324) and non-survivors (N = 129). Notably, non-survivors were older (70.52 ± 14.95 vs. 64.42 ± 16.05, P < 0.001), had higher lactate levels (2.82 ± 1.76 vs. 2.04 ± 1.56 mmol/L, P < 0.001), and higher SOFA scores (8.36 ± 4.18 vs. 6.26 ± 3.65, P < 0.001). Cox regression highlighted SOFA score (HR = 1.122, P = 0.003), body temperature (HR = 0.825, P = 0.048), and age (HR = 1.030, P = 0.004) as significant predictors of 28-day mortality. MRSA co-infection was found in 98.7% of cases without a significant effect on 28-day mortality (P = 0.9). However, sensitivity to cephalosporins, meropenem, and piperacillin/tazobactam was associated with reduced mortality. The area under the ROC curve for the combined model of age, SOFA, and body temperature was 0.73, indicating a moderate predictive value for 28-day mortality. Conclusion While MRSA co-infection's direct impact on 28-day sepsis mortality is minimal, antimicrobial sensitivity, especially to cephalosporins, meropenem, and piperacillin/tazobactam, plays a critical role in improving outcomes, underscoring the importance of antimicrobial stewardship and personalized treatment strategies in sepsis care.
Collapse
Affiliation(s)
- Yi-Chang Zhao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and SoftwareServices, Changsha, Hunan, China
| | - Jia-Kai Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and SoftwareServices, Changsha, Hunan, China
| | - Yu-kun Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, School of Pharmacy, Changsha, Hunan, China
| | - Zhi-Hua Sun
- International Research Center for Precision Medicine, Transformative Technology and SoftwareServices, Changsha, Hunan, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Rao Fu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and SoftwareServices, Changsha, Hunan, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and SoftwareServices, Changsha, Hunan, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and SoftwareServices, Changsha, Hunan, China
| |
Collapse
|
3
|
Jawaid S, Joshi Y, Neelofar N, Khursheed K, Shams S, Chaudhary M, Arora M, Mahajan K, Anwar F. A Cross-talk between Nanomedicines and Cardiac Complications: Comprehensive View. Curr Pharm Des 2025; 31:741-752. [DOI: https:/doi.org/10.2174/0113816128347223241021111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/24/2024] [Indexed: 05/15/2025]
Abstract
Background:
Cardiovascular Diseases (CVDs) are the leading cause of global morbidity and mortality,
necessitating innovative approaches for both therapeutics and diagnostics. Nanoscience has emerged as a
promising frontier in addressing the complexities of CVDs.
Objective:
This study aims to explorethe interaction of CVDs and Nanomedicine (NMs), focusing on applications
in therapeutics and diagnostics.
Observations:
In the realm of therapeutics, nanosized drug delivery systems exhibit unique advantages, such
as enhanced drug bioavailability, targeted delivery, and controlled release. NMs platform, including liposomes,
nanoparticles, and carriers, allows the precise drug targeting to the affected cardiovascular tissues with
minimum adverse effects and maximum therapeutic efficacy. Moreover, nanomaterial (NM) enables the integration
of multifunctional components, such as therapeutic agents and target ligands, into a single system for
comprehensive CVD management. Diagnostic fronts of NMs offer innovative solutions for early detection and
monitoring of CVDs. Nanoparticles and nanosensors enable highly sensitive and specific detection of Cardiac
biomarkers, providing valuable insights into a disease state, its progression, therapeutic outputs, etc. Further,
nano-based technology via imaging modalities offers high high-resolution imaging, aiding in the vascularization
of cardiovascular structures and abnormalities. Nanotechnology-based imaging modalities offer high-resolution
imaging and aid in the visualization of cardiovascular structures and abnormalities.
Conclusion:
The cross-talk of CVDs and NMs holds tremendous potential for revolutionizing cardiovascular
healthcare by providing targeted and efficient therapeutic interventions, as well as sensitive and early detection
for the improvement of patient health if integrated with Artificial Intelligence (AI).
Collapse
Affiliation(s)
- Shagufta Jawaid
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Yogesh Joshi
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Nauroz Neelofar
- Department of Obstetrics and Gynae, Himaliyan Institute of Medical Sciences, Swami Rama Himaliyan University, Jollygrand,
Dehradun, Uttarakhand, India
| | - Khuzamah Khursheed
- Shri Guru Ram Rai Institute of Medical and Health Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, India
| | - Samya Shams
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Mansi Chaudhary
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Mitali Arora
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Karan Mahajan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah,
Saudi Arabia
| |
Collapse
|
4
|
Jawaid S, Joshi Y, Neelofar N, Khursheed K, Shams S, Chaudhary M, Arora M, Mahajan K, Anwar F. A Cross-talk between Nanomedicines and Cardiac Complications: Comprehensive View. Curr Pharm Des 2025; 31:741-752. [PMID: 39506444 DOI: 10.2174/0113816128347223241021111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Cardiovascular Diseases (CVDs) are the leading cause of global morbidity and mortality, necessitating innovative approaches for both therapeutics and diagnostics. Nanoscience has emerged as a promising frontier in addressing the complexities of CVDs. OBJECTIVE This study aims to explore the interaction of CVDs and Nanomedicine (NMs), focusing on applications in therapeutics and diagnostics. OBSERVATIONS In the realm of therapeutics, nanosized drug delivery systems exhibit unique advantages, such as enhanced drug bioavailability, targeted delivery, and controlled release. NMs platform, including liposomes, nanoparticles, and carriers, allows the precise drug targeting to the affected cardiovascular tissues with minimum adverse effects and maximum therapeutic efficacy. Moreover, Nanomaterial (NM) enables the integration of multifunctional components, such as therapeutic agents and target ligands, into a single system for comprehensive CVD management. Diagnostic fronts of NMs offer innovative solutions for early detection and monitoring of CVDs. Nanoparticles and nanosensors enable highly sensitive and specific detection of Cardiac biomarkers, providing valuable insights into a disease state, its progression, therapeutic outputs, etc. Further, nano-based technology via imaging modalities offers high high-resolution imaging, aiding in the vascularization of cardiovascular structures and abnormalities. Nanotechnology-based imaging modalities offer high-resolution imaging and aid in the visualization of cardiovascular structures and abnormalities. CONCLUSION The cross-talk of CVDs and NMs holds tremendous potential for revolutionizing cardiovascular healthcare by providing targeted and efficient therapeutic interventions, as well as sensitive and early detection for the improvement of patient health if integrated with Artificial Intelligence (AI).
Collapse
Affiliation(s)
- Shagufta Jawaid
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Yogesh Joshi
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Nauroz Neelofar
- Department of Obstetrics and Gynae, Himaliyan Institute of Medical Sciences, Swami Rama Himaliyan University, Jollygrand, Dehradun, Uttarakhand, India
| | - Khuzamah Khursheed
- Shri Guru Ram Rai Institute of Medical and Health Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, India
| | - Samya Shams
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Mansi Chaudhary
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Mitali Arora
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Karan Mahajan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Dong X, Hu X, Yu F, Deng P, Jia Y. Interpretable Causal System Optimization Framework for the Advancement of Biological Effect Prediction and Redesign of Nanoparticles. J Am Chem Soc 2024; 146:22747-22758. [PMID: 39086108 DOI: 10.1021/jacs.4c07700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Nanomedicine has promising applications in disease treatment, given the remarkable safety concerns (e.g., nanotoxicity and inflammation) of nanomaterials, and realizing the trade-off between the immune response and organ burden of NPs and deeply understanding the interactions of the organism-nano systems are crucial to facilitate the biological applications of NPs. Here, we propose an interpretable causal system optimization (ICSO) framework and construct the upstream and downstream tasks of accurate prediction and intelligent NP optimization. ICSO framework screens the key drivers (recovery duration, specific surface area, and nanomaterial size) and potential causal information for immune responses and organ burden, revealing the hidden priming/constraint effects in bionano interactions. ICSO can be used to quantify the thresholds of biological responses to multiple properties (e.g., the specific surface area, diameter, and zeta potential). ICSO provides quantitative information and constraint conditions for the design of highly biocompatible and targeted organ delivery nanomaterials. For example, negative inflammation is reduced by 36.19%, and positive lung accumulation is promoted by 40.14% by optimizing the specific surface areas and shape and increasing the diameter-to-length ratio. ICSO overcomes the limitations of experience-dependent approaches and provides powerful and automated solutions for decision-makers during nanomaterial design.
Collapse
Affiliation(s)
- Xu Dong
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fubo Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Deng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuying Jia
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Xin Q, Zhang S, Sun S, Song N, Zhe Y, Tian F, Zhang S, Guo M, Zhang XD, Zhang J, Wang H, Zhang R. Multienzyme Active Nanozyme for Efficient Sepsis Therapy through Modulating Immune and Inflammation Inhibition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36047-36062. [PMID: 38978477 DOI: 10.1021/acsami.4c04994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sepsis, a life-threatening condition caused by a dysregulated immune response to infection, leads to systemic inflammation, immune dysfunction, and multiorgan damage. Various oxidoreductases play a very important role in balancing oxidative stress and modulating the immune response, but they are stored inconveniently, environmentally unstable, and expensive. Herein, we develop multifunctional artificial enzymes, CeO2 and Au/CeO2 nanozymes, exhibiting five distinct enzyme-like activities, namely, superoxide dismutase, catalase, glutathione peroxidase, peroxidase, and oxidase. These artificial enzymes have been used for the biocatalytic treatment of sepsis via inhibiting inflammation and modulating immune responses. These nanozymes significantly reduce reactive oxygen species and proinflammatory cytokines, achieving multiorgan protection. Notably, CeO2 and Au/CeO2 nanozymes with enzyme-mimicking activities can be particularly effective in restoring immunosuppression and maintaining homeostasis. The redox nanozyme offers a promising dual-protective strategy against sepsis-induced inflammation and organ dysfunction, paving the way for biocatalytic-based immunotherapies for sepsis and related inflammatory diseases.
Collapse
Affiliation(s)
- Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Yadong Zhe
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shu Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Jianning Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Ruiping Zhang
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan 030032, China
| |
Collapse
|
7
|
Xiang L, An Z, Wu X, Wang J, Cai S, Lu Y, Li L, Huang W, Wu D, Lu L, Shi S, Bi H, Kou X. Carbon Dot-Loaded Apoptotic Vesicles Improve the Liver Kupffer Cell-Mediated Antibacterial Effect to Synergistically Alleviate Sepsis. ACS NANO 2024; 18:16726-16742. [PMID: 38888383 DOI: 10.1021/acsnano.4c01780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Sepsis is a lethal systemic inflammatory disease against infection that lacks effective therapeutic approaches. Liver resident macrophage Kupffer cell (KC)-initiated bacterial clearance is crucial for the host to defend against infection. However, it remains unclear whether this process also governs the antibacterial therapy of sepsis that would be used to improve therapeutic outcomes. Here, we found that copper-doped carbon dots (Cu-CDs) exhibited superior antibacterial capabilities in vitro but displayed limited therapeutic effects in septic mice due to their limited ability to target the liver and restore KC antimicrobial capacity. Thus, we developed a composite nanodrug of copper-doped carbon dot-loaded apoVs (CC-apoVs) that combined the antibacterial ability of Cu-CDs and liver KC targeting features of apoV. Moreover, intravenous injection of CC-apoVs markedly alleviated the systemic infection and decreased the mortality of septic mice compared to Cu-CD and apoV infusion alone. Mechanistically, CC-apoV injection rescued impaired liver KCs during sepsis and enhanced their ability to capture and kill bloodborne bacteria. In addition, apoV-promoted macrophage killing of bacteria could be blocked by the inhibition of small GTPase Rab5. This study reveals a liver KC-targeted therapeutic strategy for sepsis and provides a nanodrug CC-apoV to improve the host antibacterial defense and amplify the therapeutic effect of the nanodrug.
Collapse
Affiliation(s)
- Lei Xiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zhe An
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xiaoyan Wu
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Jinyang Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Simin Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yongxi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Longchuang Li
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Weiying Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Di Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Lu Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
8
|
Patel J, Kumar GS, Roy H, Maddiboyina B, Leporatti S, Bohara RA. From nature to nanomedicine: bioengineered metallic nanoparticles bridge the gap for medical applications. DISCOVER NANO 2024; 19:85. [PMID: 38724833 PMCID: PMC11082127 DOI: 10.1186/s11671-024-04021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
The escalating global challenge of antimicrobial resistance demands innovative approaches. This review delves into the current status and future prospects of bioengineered metallic nanoparticles derived from natural sources as potent antimicrobial agents. The unique attributes of metallic nanoparticles and the abundance of natural resources have sparked a burgeoning field of research in combating microbial infections. A systematic review of the literature was conducted, encompassing a wide range of studies investigating the synthesis, characterization, and antimicrobial mechanisms of bioengineered metallic nanoparticles. Databases such as PubMed, Scopus, Web of Science, ScienceDirect, Springer, Taylor & Francis online and OpenAthen were extensively searched to compile a comprehensive overview of the topic. The synthesis methods, including green and sustainable approaches, were examined, as were the diverse biological sources used in nanoparticle fabrication. The amalgamation of metallic nanoparticles and natural products has yielded promising antimicrobial agents. Their multifaceted mechanisms, including membrane disruption, oxidative stress induction, and enzyme inhibition, render them effective against various pathogens, including drug-resistant strains. Moreover, the potential for targeted drug delivery systems using these nanoparticles has opened new avenues for personalized medicine. Bioengineered metallic nanoparticles derived from natural sources represent a dynamic frontier in the battle against microbial infections. The current status of research underscores their remarkable antimicrobial efficacy and multifaceted mechanisms of action. Future prospects are bright, with opportunities for scalability and cost-effectiveness through sustainable synthesis methods. However, addressing toxicity, regulatory hurdles, and environmental considerations remains crucial. In conclusion, this review highlights the evolving landscape of bioengineered metallic nanoparticles, offering valuable insights into their current status and their potential to revolutionize antimicrobial therapy in the future.
Collapse
Affiliation(s)
- Jitendra Patel
- Gitam School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, Rudraram, Sangareddy, Hyderabad, TS, 502329, India
| | - G Shiva Kumar
- Gitam School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, Rudraram, Sangareddy, Hyderabad, TS, 502329, India
| | - Harekrishna Roy
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, 522503, India.
| | - Balaji Maddiboyina
- Department of Medical and Scientific Communications, Scientific Writing Services, Freyr Global Regulatory Solutions & Services, Phoenix SEZ, Hitech City, Gachibowli, Hyderabad, 500081, India.
| | - Stefano Leporatti
- CNR Nanotec-Istituto Di Nanotecnologia, C\O Campus EcotekneVia Monteroni, 3100, Lecce, Italy
| | - Raghvendra A Bohara
- D.Y. Patil Education Society (Deemed to be University), Kolhapur, MS, India.
- University of Galway, Galway, Ireland.
| |
Collapse
|
9
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Guo J, Miao Y, Nie F, Gao F, Li H, Wang Y, Liu Q, Zhang T, Yang X, Liu L, Fan H, Wang Q, Qiao H. Zn-Shik-PEG nanoparticles alleviate inflammation and multi-organ damage in sepsis. J Nanobiotechnology 2023; 21:448. [PMID: 38001490 PMCID: PMC10675904 DOI: 10.1186/s12951-023-02224-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by excessive formation of reactive oxygen species (ROS) and dysregulated inflammatory response. Previous studies have reported that shikonin (Shik) possess prominent anti-inflammatory and antioxidant effects and holds promise as a potential therapeutic drug for sepsis. However, the poor water solubility and the relatively high toxicity of shikonin hamper its clinical application. To address this challenge, we constructed Zn2+-shikonin nanoparticles, hereafter Zn-Shik-PEG NPs, based on an organic-inorganic hybridization strategy of metal-polyphenol coordination to improve the aqueous solubility and biosafety of shikonin. Mechanistic studies suggest that Zn-Shik-PEG NPs could effectively clear intracellular ROS via regulating the Nrf2/HO-1 pathway, meanwhile Zn-Shik-PEG NPs could inhibit NLRP3 inflammasome-mediated activation of inflammation and apoptosis by regulating the AMPK/SIRT1 pathway. As a result, the Zn-Shik-PEG NPs demonstrated excellent therapeutic efficacies in lipopolysaccharide (LPS) as well as cecal ligation puncture (CLP) induced sepsis model. These findings suggest that Zn-Shik-PEG NPs may have therapeutic potential for the treatment of other ROS-associated and inflammatory diseases.
Collapse
Affiliation(s)
- Jie Guo
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuqing Miao
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Fayi Nie
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Fei Gao
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Hua Li
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuan Wang
- Shaanxi Key Laboratory of Integrated Acupuncture and Drugs, College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Qi Liu
- Shaanxi Key Laboratory of Integrated Acupuncture and Drugs, College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Tingbin Zhang
- Center for Health Science and Engineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Xiaohang Yang
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Li Liu
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Qiang Wang
- Shaanxi Key Laboratory of Integrated Acupuncture and Drugs, College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Haifa Qiao
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- Shaanxi Key Laboratory of Integrated Acupuncture and Drugs, College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
11
|
Meng J, Wang J, Zhu J, Li S, Qiu T, Wang W, Ding J, Wang W, Liu J. Bacteriostatic Effects of Yujin Powder and Its Components on Clinical Isolation of Multidrug-Resistant Avian Pathogenic Escherichia coli. Vet Sci 2023; 10:vetsci10050328. [PMID: 37235411 DOI: 10.3390/vetsci10050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Escherichia coli is one of the most common pathogenic bacteria in diarrheal chickens, leading to serious economic losses in the poultry industry. The limited effect of antibiotics on antibiotic-resistant E. coli makes this bacterium a potential threat to human health. Yujin powder (YJP) has been reported as an agent that releases the symptoms caused by E. coli for a long time. The objective of this study is to investigate the effect of Yujin powder (YJP) and its components, Scutellariae Radix (SR) and Baicalin (Bac), anti-against multi-drug-resistant E. coli in vitro and in vivo. A multi-drug-resistant bacteria was isolated and identified from a clinical diarrheal chick. Then, the anti-bacterial effects of drugs were assessed in vitro and in vivo by analyzing the bacteria loads of organs, the levels of endotoxin, TNF-α, IL-1β, and IL-6 of the serum. Results found that the pathogenic E. coli was resistant to 19 tested antibiotics. YJP, SR, and Bac could directly inhibit the growth of this strain at high concentrations in vitro, and presents obvious anti-bacterial effects by reducing the bacterial loads, the release of endotoxin, and inflammation in vivo, which was much more effective than the resistant antibiotic ciprofloxacin. This study demonstrates that those natural medicines have the potential to be used as novel treatments to treat the disease caused by this isolated MDREC strain.
Collapse
Affiliation(s)
- Jinwu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinli Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- College of Agriculture, Jinhua Polytechnic, Jinhua 321000, China
| | - Jinyue Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Siya Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianxin Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiran Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinxue Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjia Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaguo Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Li Z, Feng Y, Zhang S, Li T, Li H, Wang D, Hao K, He C, Tian H, Chen X. A Multifunctional Nanoparticle Mitigating Cytokine Storm by Scavenging Multiple Inflammatory Mediators of Sepsis. ACS NANO 2023; 17:8551-8563. [PMID: 37129445 DOI: 10.1021/acsnano.3c00906] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sepsis is a disease caused by infection, which is characterized by a dysregulated immune response in the host and affects more than 30 million people worldwide each year. However, the current single therapeutic approaches are not effective in controlling the progression of sepsis. Here, we synthesize a nanoparticle (TMP) containing tannic acid (TA), Polymyxin B (PMB), and Mn2+ (Mn) by a simple one-pot method. TMP has the following characteristics: (1) All components have good biocompatibility; (2) simple preparation process without subsequent processing; (3) antibacterial and remove multiple inflammatory mediators; and (4) effectively mitigating cytokine storm both in the acute lung injury (ALI) and the cecal ligation and puncture (CLP) model. Our results demonstrate the critical role of targeting multiple mediators to mitigate cytokine storms for the treatment of sepsis.
Collapse
Affiliation(s)
- Zhen Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13022, China
- University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Yuanji Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sijia Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13022, China
- University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Tong Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13022, China
- University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Huixin Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13022, China
- University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Dianwei Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Kai Hao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13022, China
- University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| |
Collapse
|
13
|
Lin T, Qin T, Jiang S, Zhang C, Wang L. Anti-inflammatory and anti-biotic drug metronidazole loaded ZIF-90 nanoparticles as a pH responsive drug delivery system for improved pediatric sepsis management. Microb Pathog 2023; 176:105941. [PMID: 36509311 DOI: 10.1016/j.micpath.2022.105941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Sepsis is a life-threatening disease caused by the dis-functioning of the immune response to pathogenic infections. Despite, the discovery of modern therapeutics and treatments of sepsis are lacking due to the resistance of pathogens. Metronidazole is an antibiotic commonly used to treat bacterial infections, but usage is limited and challenging by a short half-life period. In this research work, fabricate a pH-responsive drug delivery system for controlled release of metronidazole targeted molecules. We exemplified that, the encapsulation of hydrophilic metronidazole drug within a hydrophobic ZIF-90 framework can be enhanced the pH-responsive drug release under acidic conditions. The ZIF-90 frameworks only decompose in under acidic solutions, they are highly stable in physiological conditions. The pH-responsive protonation mechanism of ZIF-90 frameworks promotes the quick release of metronidazole within cells. The antimicrobial proficiency of zinc and metronidazole will expose a synergistic effect in ROS-mediated bacterial inhibition and auto-immunity boosting of normal cells. In vitro, antibacterial activity results revealed that the MI@ZIF-90 nano drug delivery system effectively eradicated human infectious pathogens at the lowest concentrations. In anti-fungal activity, studies show excellent growth inhibition against human pathogenic fungi Aspergillus fumigatus and Candida albicans. Finally, the PBMC cytocompatibility study concludes, that the fabricated MI@ZIF-90 drug delivery system is non-toxic to biomedical applications. The overall research findings highlight the design of a smart drug delivery system for sepsis treatment. In future it will be an efficient, low-cost, and biocompatible pharmaceutics for pediatric sepsis management processes.
Collapse
Affiliation(s)
- Tingting Lin
- Department of Neonatology, Wenling First People's Hospital, Wenling, Zhejiang Province, 317500, China.
| | - Tao Qin
- Department of Neonatology, Wenling First People's Hospital, Wenling, Zhejiang Province, 317500, China
| | - Shanshan Jiang
- Department of Neonatology, Wenling First People's Hospital, Wenling, Zhejiang Province, 317500, China
| | - Chunfeng Zhang
- Department of Neonatology, Wenling First People's Hospital, Wenling, Zhejiang Province, 317500, China
| | - Ling Wang
- Department of Neonatology, Wenling First People's Hospital, Wenling, Zhejiang Province, 317500, China.
| |
Collapse
|
14
|
Song C, Xu J, Gao C, Zhang W, Fang X, Shang Y. Nanomaterials targeting macrophages in sepsis: A promising approach for sepsis management. Front Immunol 2022; 13:1026173. [PMID: 36569932 PMCID: PMC9780679 DOI: 10.3389/fimmu.2022.1026173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction resulting from dysregulated host responses to infection. Macrophages play significant roles in host against pathogens and the immunopathogenesis of sepsis, such as phagocytosis of pathogens, secretion of cytokines, and phenotype reprogramming. However, the rapid progression of sepsis impairs macrophage function, and conventional antimicrobial and supportive treatment are not sufficient to restore dysregulated macrophages roles. Nanoparticles own unique physicochemical properties, surface functions, localized surface plasmon resonance phenomenon, passive targeting in vivo, good biocompatibility and biodegradability, are accessible for biomedical applications. Once into the body, NPs are recognized by host immune system. Macrophages are phagocytes in innate immunity dedicated to the recognition of foreign substances, including nanoparticles, with which an immune response subsequently occurs. Various design strategies, such as surface functionalization, have been implemented to manipulate the recognition of nanoparticles by monocytes/macrophages, and engulfed by them to regulate their function in sepsis, compensating for the shortcomings of sepsis traditional methods. The review summarizes the mechanism of nanomaterials targeting macrophages and recent advances in nanomedicine targeting macrophages in sepsis, which provides good insight for exploring macrophage-based nano-management in sepsis.
Collapse
|
15
|
Li Y, Zhang H, Chen C, Qiao K, Li Z, Han J, Han X, Li K, Lai K, Liu N, Li A, Xiao N, Zhang Y, Zhao X, Gao W, Zhang Y, Liu H, Sun T. Biomimetic Immunosuppressive Exosomes that Inhibit Cytokine Storms Contribute to the Alleviation of Sepsis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108476. [PMID: 35267211 DOI: 10.1002/adma.202108476] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Sepsis is a disease characterized by multiple organ failure caused by immune hyperactivation and cytokine storms. Studies have shown that the incidence of sepsis in melanoma patients is substantially lower compared to the general population. It is also observed that experimental tumor-bearing animals have high survival rates after sepsis induction, suggesting that tumors may suppress sepsis-associated immune overactivation, thereby alleviating sepsis. Based on the above-described findings, this work assesses whether tumor cells play an antisepsis role in mice through the secretion of exosomes. Analysis of exosome activity reveals that the induced exosomes (iExo) secreted by tumor cells following lipopolysaccharide (LPS) treatment improve sepsis to a greater extent than normal secretory exosomes. Further analysis reveals that iExo exert their protective effects mainly through seven key miRNAs. In vitro bionic simulation of exosomes is carried out using exosome mimics generated by loading the aforementioned microRNAs into hyaluronic acid-polyethylenimine nanoparticles. Exosome mimics at specific miRNA ratios alleviate sepsis in mice and cynomolgus monkeys, indicating that biomimetic simulation of tumor-suppressive exosomes may represent a promising therapeutic method for the treatment of sepsis and cytokine-storm-related conditions.
Collapse
Affiliation(s)
- Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Caihong Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Kailiang Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Zhiyang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Xu Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Kun Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Keguan Lai
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Ning Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Nannan Xiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Xiangshuai Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Wenqing Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Yang Zhang
- Department of Anesthesiology, Tianjin Fourth Central Hospital, Tianjin, 300142, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| |
Collapse
|
16
|
Li Z, Chen J, Tian H, Chen X. Sepsis Treatment Strategies Based on Nanomaterials ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|