1
|
Xiao F, Lin H, Yuan Z, Zeng L, Lin C, Huang C, Fang Y, Liu M, Yu Q, Qian Q, Chen Q, Xiong P. Constructing VN-V 2O 3 Heterogeneous Interface to Improve Wide Temperature Zinc Storage Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2504019. [PMID: 40411836 DOI: 10.1002/smll.202504019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Indexed: 05/26/2025]
Abstract
Vanadium-based cathode materials deliver high specific capacity and multivalent property for zinc storage, but face challenges including dissolution, capacity decay, and slow ion transport at low temperatures, hindering their widespread application. Herein, a porous vanadium nitride-vanadium oxide (VN-V2O3) heterostructure is fabricated by a facile solvothermal and pyrolysis method, which enables the construction of the built-in electric field at the VN-V2O3 heterointerface and provides multi-channel active sites. During electrochemical activation, V2O3 in the VN-V2O3 heterojunction undergoes an insertion reaction, while crystal structure of VN alters with the amorphous transformation, thereby promoting Zn2+ storage and diffusion. The VN-V2O3 electrode exhibits a high reversible capacity of 335 mAh g-1 and ultra-long cycling capability up to 6000 cycles at 10 A g-1. It is noteworthy that the VN-V2O3 cathode demonstrates excellent zinc storage performance with Zn(CF3SO3)2-based gel electrolyte over wide temperature range (-35 to 60 °C). This work provides a new reference for the construction of vanadium-based heterostructures, constituting a feasible strategy for achieving long cycle stability and wide temperature range adaptability in cathode materials for aqueous ZIBs application.
Collapse
Affiliation(s)
- Fuyu Xiao
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Hui Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Ziyan Yuan
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Lingxing Zeng
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuyuan Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Chengxiu Huang
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yixing Fang
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Minghui Liu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Qijia Yu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Qingrong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qinghua Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Peixun Xiong
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| |
Collapse
|
2
|
Xu J, Liu Q, Yin Q, Tang M, Huang X, Shen L, Lu Y. β-MnOOH Converted δ-MnO 2 with New Layer-to-Layer Charge Storage as Cathode for Zinc-Ion Batteries. SMALL METHODS 2025:e2500552. [PMID: 40207791 DOI: 10.1002/smtd.202500552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Indexed: 04/11/2025]
Abstract
Layer-structured birnessite δ-MnO2 is viewed as a promising cathode material for harnessing the copious potential of aqueous zinc-ion batteries (ZIBs). However, discharging δ-MnO2 has resulted in diverse non-layer-structured products being reported, rendering it unfavorable for reversible charge storage compared to intercalation electrochemistry in conventional layered materials. Here, feitknechtite β-MnOOH and its isostructural δ-MnO2 obtained from an anodization method are first applied as cathode materials for ZIBs. Relative to the β-MnOOH, the anodized δ-MnO2 with larger interlayer spacing manifested boosted charge transfer kinetic and reversibility of Mn-based redox electrochemistry, showing significant enhancements in cyclicity and rate capability when coupled with Zn metal anodes in aqueous electrolytes. Importantly, experimental results combined with theoretical simulations revealed that the minor presence of β-MnOOH in the anodized δ-MnO2 (due to incomplete deprotonation) is linked to a new layer-to-layer charge storage mechanism, where anodized δ-MnO2 transformed into β-MnOOH during the reversible charge and discharge process. This work uncovers a new phase transformation in Mn-based cathodes and can pave the way for the development of more efficient layered materials for ZIBs.
Collapse
Affiliation(s)
- Jinhui Xu
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, Shanghai, 200092, China
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Qian Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Qingyang Yin
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Mue Tang
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, Shanghai, 200092, China
| | - Xuecong Huang
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, Shanghai, 200092, China
| | - Li Shen
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, Shanghai, 200092, China
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Zhang A, Chen T, Zhao R, Wang Y, Yang J, Han X, Wang X, Wu C, Bai Y. Tunable Organic-Inorganic p-π-d Electron Conjugation Triggers d-π Hybridization in Quinonized MnO 2 Superlattice toward Ultrastable and High-Rate Zn-MnO 2 Batteries. Angew Chem Int Ed Engl 2025; 64:e202423824. [PMID: 39829039 DOI: 10.1002/anie.202423824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Zn-MnO2 batteries with two-electron transfer harvest high energy density, high working voltage, inherent safety, and cost-effectiveness. Zn2+ as the dominant charge carriers suffer from sluggish kinetics due to the strong Zn2+-MnO2 coulombic interaction, which is also the origin of pestilent MnO2 lattice deformation and performance degradation. Current studies particularly involve H+ insertion-dominating chemistry, where the long-term cycle stability remains challenging due to the accumulative Zn2+ insertion and structural collapse. Herein, a simultaneously enhanced and stabilized Zn2+/H+ co-insertion chemistry is proposed by the quinone-hybridized MnO2 superlattice, a first-of-this-kind structure with a distinctive organic-inorganic-extended p-π-d conjugation, which enables a tunable interlayer d-π hybridization. Theoretical and experimental results substantiate that the interlayer d-π hybridization triggers the enhancement of polarons occupancy near Fermi level, the downward shift of O p-band center, the elevated Mn t2g occupation and thus improved [MnO6] stability upon unprecedentedly high Zn2+ contribution. The notable d-π hybridization endows MnO2 superlattice an ultrahigh specific capacity (435.9 mAh g-1 at 0.25 A g-1), state-of-the-art cycle stability (~100 % capacity retention after 30,000 cycles at 10 A g-1) with substantially enhanced rate performance. Our findings enlighten a new paradigm in the adjustment of Zn2+/H+ co-insertion chemistry towards high-performance rechargeable aqueous batteries.
Collapse
Affiliation(s)
- Anqi Zhang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Tiande Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
- Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing, 314019, PR China
| | - Ran Zhao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
- Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing, 314019, PR China
| | - Yahui Wang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
- Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing, 314019, PR China
| | - Jingjing Yang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xiaomin Han
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xinran Wang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
- Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing, 314019, PR China
| | - Chuan Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
- Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing, 314019, PR China
| | - Ying Bai
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
- Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing, 314019, PR China
| |
Collapse
|
4
|
Lv W, Shen Z, Liu J, Li X, Ding F, Zhang D, Miao L, Lyu X, Li R, Wang M, Li Y, Meng J, Xu C. In situ synthetic C encapsulated δ-MnO 2 with O vacancies: a versatile programming in bio-engineering. Sci Bull (Beijing) 2025; 70:203-211. [PMID: 39550274 DOI: 10.1016/j.scib.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/06/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
In this study, we successfully synthesized a δ-MnO2 cathode with O vacancies, encapsulated by C derived from pyromellitic acid, using a facile hydrothermal method followed by annealing in an Ar atmosphere. The cathode's structural stability and charge transfer kinetics are enhanced by inhibiting the formation of the by-product Zn4SO4(OH)6·4H2O, regulating the Mn valence state, and suppressing the Jahn-Teller effect through the synergy of C encapsulation and O vacancies. This results in remarkable electrochemical performance, including a large capacity of 421.2 mAh g-1 at 0.1 A g-1, a high specific energy density of 595.53 Wh kg-1, and exceptional long-cycle life stability with 90.88% over 4000 cycles at 10 A g-1, together with superior coulombic efficiency (∼100%) in pure ZnSO4 electrolyte. Moreover, the cathode materials demonstrate specific antitumor efficacy. In brief, this work introduces an in situ synthetic C encapsulated δ-MnO2 with O vacancies expected to be applied in both large-scale energy storage and biomedicine.
Collapse
Affiliation(s)
- Wei Lv
- Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China.
| | - Zilei Shen
- Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China
| | - Junlin Liu
- Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China
| | - Xudong Li
- Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China
| | - Fang Ding
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Dongyue Zhang
- Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China
| | - Licheng Miao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xuefeng Lyu
- Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China
| | - Ruijie Li
- Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China
| | - Miaomiao Wang
- Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China
| | - Yiming Li
- Collaborative Innovation Center of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Jingwen Meng
- Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China
| | - Chao Xu
- Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
5
|
Hashem Abdelmohsen A, El-Khodary SA, Ismail N, Song Z, Lian J. Basics and Advances of Manganese-Based Cathode Materials for Aqueous Zinc-Ion Batteries. Chemistry 2025; 31:e202403425. [PMID: 39530974 DOI: 10.1002/chem.202403425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/26/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
It is greatly crucial to develop low-cost energy storage candidates with high safety and stability to replace alkali metal systems for a sustainable future. Recently, aqueous zinc-ion batteries (ZIBs) have received tremendous interest owing to their low cost, high safety, wide oxidation states, and sophisticated fabrication process. Nanostructured manganese (Mn)-based oxides in different polymorphs are the potential cathode materials for the widespread application of ZIBs. However, Mn-based oxide materials suffer from several drawbacks, such as low electronic/ionic conductivity and poor cycling performance. To overcome these issues, various structural modification strategies have been adopted to enhance their electrochemical activity, including phase/defect engineering, doping with foreign atoms (e. g., metal and/or nonmetal atoms), and coupling with carbon materials or conducting polymers. Herein, this review targets to summarize the advantages and disadvantages of the above-mentioned strategies to improve the electrochemical performance of the cathodic part of ZIBs. The challenges and suggestions for the development of manganese oxides for ZIBs are put forward.
Collapse
Affiliation(s)
- Ahmed Hashem Abdelmohsen
- Institute for Energy Research, School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China NOT applicable
- The Central Laboratory, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt NOT applicable
| | - Sherif A El-Khodary
- Institute for Energy Research, School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China NOT applicable
- Building Physics and Environment Institute, Housing & Building National Research Center (HBRC), Dokki, Cairo 12311, Egypt NOT applicable
| | - Nahla Ismail
- Physical Chemistry Department, Centre of Excellence for Advanced Sciences, Renewable Energy Group, National Research Centre, 12311 Dokki, Giza, Egypt
| | - Zhilong Song
- Institute for Energy Research, School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China NOT applicable
| | - Jiabiao Lian
- Institute for Energy Research, School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China NOT applicable
| |
Collapse
|
6
|
Zhou T, Wu B, Li C, Zhang X, Li W, Pang H. Advancements in Manganese-Based Cathode for Sustainable Energy Utilization. CHEMSUSCHEM 2024; 17:e202400890. [PMID: 38924355 DOI: 10.1002/cssc.202400890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Manganese-based compounds, especially manganese oxides, are one of the most exceptional electrode materials. Specifically, manganese oxides have gained significant interest owing to their unique crystal structures, high theoretical capacity, abundant natural availability and eco-friendly nature. However, as transition metal semiconductors, manganese oxide possess low electrical conductivity, limited rate capacity, and suboptical cycle stability. Thus, combining manganese oxides with carbon or other metallic materials can significantly improve their electrochemical performance. These composites increase active sites and conductivity, thereby improving electrode reaction kinetics, cycle stability, and lifespan of supercapacitors (SCs) and batteries. This paper reviews the latest applications of Mn-based cathodes in SCs and advanced batteries. Moreover, the energy storage mechanisms were also proposed. In this review, the development prospects and challenges for advanced energy storage applications of Mn-based cathodes are summarized.
Collapse
Affiliation(s)
- Ting Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Binjing Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Chengze Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xinhuan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Wenting Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
7
|
Li W, Song Q, Dong Q, Zhang J, Wang J, Wu Y, Yu Y, Li X. Proton Storage Chemistry in Aqueous Zinc-Inorganic Batteries with Moderate Electrolytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414019. [PMID: 39663692 DOI: 10.1002/adma.202414019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/26/2024] [Indexed: 12/13/2024]
Abstract
The proton (H+) has been proved to be another important energy storage ion besides Zn2+ in aqueous zinc-inorganic batteries with moderate electrolytes. H+ storage usually possesses better thermodynamics and reaction kinetics than Zn2+, and is found to be an important addition for Zn2+ storage. Thus, understanding, characterizing, and modulating H+ storage in inorganic cathode materials is particularly important. In this review, recent advances regarding the proton storage chemistry in aqueous zinc-inorganic batteries with moderate electrolytes are systematically reviewed. First, the four proton storage reaction patterns of H+ insertion, H+/Zn2+ co-insertion, H+-dependent conversion, and H+-dependent dissolution/deposition reaction are explicitly presented. Meanwhile, the proton storage processes of multi-sites and multi-steps, and the Hopping and Grotthuss proton transport mechanisms are carefully introduced. Second, the characterization techniques of proton storage are systematically classified into four types of electrochemical characterization techniques of batteries, structural characterization techniques of inorganic cathodes, pH characterization technique of electrolyte, and quantitative analysis technologies of H+ storage contribution. Third, the structural engineering of proton storage modulation is preliminarily refined to be interlayer engineering, doping engineering, defect engineering, composite engineering, and other engineering. Finally, the emerging challenges and perspectives about future directions of proton storage chemistry are proposed.
Collapse
Affiliation(s)
- Wenbin Li
- Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - QianQian Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qi Dong
- Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Jianhua Zhang
- Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Jingjing Wang
- Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Yumei Wu
- Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xifei Li
- Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| |
Collapse
|
8
|
Suresh S, Baji DS, Santhanagopalan D, Batabyal SK. Sustainable Fabrication of Graphene Oxide Cathodes from Graphite of Failed Commercial Li-Ion Batteries for High-Performance Aqueous Zn-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404106. [PMID: 39263782 DOI: 10.1002/smll.202404106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The need for revamping spent graphite (SG) from battery waste of commercial lithium-ion batteries and employing it as a source for the synthesis of graphene oxide (GO) is focused. Thus, this work emphasizes the study of GO sheets, synthesized via modified Hummer's method from spent graphite (SG-GO) as cathodes for an aqueous zinc ion battery (AZIB) system, for the first time in literature. For comparison, graphene oxide is also synthesized using commercial graphite powder, its structural and morphological properties are analyzed with SG-GO. The coin cell AZIB device is fabricated for both the GOs and the electrochemical performances revealed that SG-GO portrayed an enhanced charge capacity of 270 mAh g-1 at 0.1 A g-1 in 3 m ZnSO4 in comparison to GO which delivered ≈198 mAh g-1 at the same current density of 0.1 A g-1. The long-run cycling analysis of SG-GO elucidated the capacity retention of 77.3% at 1 A g-1 even after 1000 cycles. Moreover, the performance of SG-GO is inspected in different electrolyte systems and the suitable electrolyte underwent concentration variation studies to figure out the capability of the system in storing Zn2+ ions which is found to be more in 3 M ZnSO4 electrolyte.
Collapse
Affiliation(s)
- Swapnika Suresh
- Department of Physics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, 641112, India
| | - Dona Susan Baji
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, 682041, India
| | - Dhamodaran Santhanagopalan
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, 682041, India
| | - Sudip K Batabyal
- Department of Physics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, 641112, India
- Amrita Center for Industrial Research & Innovation (ACIRI), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, 641112, India
| |
Collapse
|
9
|
Isa Khan M, Khurshid M, Alarfaji SS, Majid A. Bismuthene as a novel anode material of magnesium/zinc ion batteries with high capacity and stability: a DFT calculation. Phys Chem Chem Phys 2024; 26:27007-27018. [PMID: 39422900 DOI: 10.1039/d4cp03154g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In our research, we utilize density functional theory (DFT) to explore the properties of magnesium and zinc atoms adsorbed on bismuthene. Our findings indicate that the hollow site is the most favorable adsorption site for Mg and Zn atoms on bismuthene. The results indicate that Mg and Zn adsorption on the bismuthene surface results in significantly high conductivity, with notable adsorption energies of -3.38 eV for Mg and -3.91 eV for Zn. The bismuthene structure can adsorb 9 Mg and 18 Zn atoms with negative average adsorption energy. These findings suggest excellent stability of bismuthene during the adsorption of magnesium and zinc. Notably, we propose theoretical storage capacities of 2308 mA h g-1 for magnesium-ion batteries (MgIBs) and 4616 mA h g-1 for zinc-ion batteries (ZnIBs), while maintaining structural stability during the adsorption of these metal ions. The observed average open-circuit voltages for bismuthene are 0.01 V for Mg and 0.03 V for Zn, with the material retaining its metallic properties throughout the adsorption process. Furthermore, the calculated diffusion barriers for Mg and Zn are 0.1 eV and 0.21 eV, respectively. Our findings like storage capacity, diffusion energies, and low OCV surpass those of most studied two-dimensional materials, positioning bismuthene as a promising anode material for metal-ion rechargeable batteries.
Collapse
Affiliation(s)
- Muhammad Isa Khan
- Department of Physics, Rahim Yar Khan Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Mahnaz Khurshid
- Department of Physics, Rahim Yar Khan Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Saleh S Alarfaji
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudia Arabia.
| | - Abdul Majid
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudia Arabia.
- Department of Physics, University of Gujrat, Gujrat, Pakistan
| |
Collapse
|
10
|
Bai Y, Liang W, Zhang H. Constructing surface protective film of V-Se-O to promote zinc ion storage by surface oxygen implantation strategy. J Colloid Interface Sci 2024; 672:455-464. [PMID: 38850870 DOI: 10.1016/j.jcis.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Interfacial chemical modification is an effective strategy to adjust the strong Coulombic ion-lattice interactions with high valence cations experienced by electrode materials, facilitating the reaction kinetic. In this paper, a simple and fast surface oxygen implantation strategy was designed to adjust the electronic structure of stainless steel (SS) supported vanadium diselenide (VSe2) nanosheets and form a surface protective film, which effectively accelerates the reaction kinetics of Zn2+ and extends the cycle life of the battery. It is demonstrated that the conductivity, pseudocapacitance and specific capacity can be tuned by selectively introducing oxygen species to the surface, which provides an important reference for the design of electrodes with controlled surface chemistry. Density functional theory (DFT) calculations also confirm that the electronic structure can be adjusted by surface oxygen injection strategy, which not only improves the conductivity, but also adjusts the adsorption energy, thus providing favorable conditions for zinc ion storage. Benefiting from the selenium vacancies and pores generated by the removal of part of selenium, and the oxide film formed on the surfaces, the VSe2-xOx-SS-30 electrode showed higher specific capacity (188.4 mAh/g at 0.5 A g-1 after 50 cycles), better rate performance (107.1 mAh/g at 4 A g-1) and more satisfactory cycling stability (83.1 mAh/g at 5 A g-1 after 1800 cycles) than VSe2-SS electrode. Importantly, the flexible quasi-solid-state VSe2-xOx-SS-30//Zn battery also exhibits high specific capacity and excellent environmental adaptability. Furthermore, the zinc (de)intercalation and transformation reactions mechanism was revealed by some ex-situ/in-situ techniques.
Collapse
Affiliation(s)
- Youcun Bai
- School of Materials Science and Engineering, Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenhao Liang
- Department of Mechanical Engineering, Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Heng Zhang
- School of Materials Science and Engineering, Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
11
|
He Q, Liao Y, Xue M, Wang H, Bai J, Chen L. Large scale and oxygen vacancy VO 2 porous thin sheets to enable high-performance zinc ion storage. Chem Commun (Camb) 2024; 60:6051-6054. [PMID: 38779871 DOI: 10.1039/d4cc01377h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Herein, we report the first result of large scale and oxygen vacancy VO2 porous thin sheets assembled by a 3D interconnected nanoflake array framework, which is recorded as VOd. The as-prepared VOd was characterized by various methods and Zn2+ intercalation/deintercalation and structural decomposition mechanisms were proposed based on ex situ X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).
Collapse
Affiliation(s)
- Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Yanxin Liao
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Mengda Xue
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Jie Bai
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
12
|
Xiao X, Zhang L, Xin W, Yang M, Geng Y, Niu M, Zhang H, Zhu Z. Self-Assembled Layer of Organic Phosphonic Acid Enables Highly Stable MnO2 Cathode for Aqueous Znic Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309271. [PMID: 38178225 DOI: 10.1002/smll.202309271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Manganese dioxide (MnO2) is an attractive cathode material for aqueous zinc batteries (AZBs) owing to its environmental benignity, low cost, high operating voltage, and high theoretical capacity. However, the severe dissolution of Mn2+ leads to rapid capacity decay. Herein, a self-assembled layer of amino-propyl phosphonic acid (AEPA) on the MnO2 surface, which significantly improves its cycle performance is successfully modified. Specifically, AEPA can be firmly attached to MnO2 through a strong chemical bond, forming a hydrophobic, and uniform organic coating layer with a few nanometers thickness. This coating layer can significantly inhibit the dissolution of Mn2+ by avoiding the direct contact between the electrolyte and cathode, thus enhancing the structural integrity and redox reversibility of MnO2. As a result, the MnO2@AEPA cathode achieves a high reversible capacity of 223 mAh g-1 at 0.5 A g-1 and a high capacity retention of 97% after 1700 cycles at 1 A g-1. This work provides new insights in developing stable Mn-based cathodes for aqueous batteries.
Collapse
Affiliation(s)
- Xilin Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
| | - Lei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
| | - Wenli Xin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
| | - Min Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
- School of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Yaheng Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
| | - Mengfan Niu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
| | - Hui Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
| | - Zhiqiang Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
| |
Collapse
|
13
|
Çamurcu T, Demirbaş E, Ateş MN. Achieving Long Cycle Life of Zn-Ion Batteries through Three-Dimensional Copper Foam. ACS APPLIED MATERIALS & INTERFACES 2024; 16:23209-23219. [PMID: 38661059 DOI: 10.1021/acsami.4c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metallic zinc anodes in aqueous zinc-ion batteries (ZIBs) suffer from dendritic growth, low Coulombic efficiency, and high polarization during cycling. To mitigate these challenges, current collectors based on three-dimensional (3D) commercial copper foam (CCuF) are generally preferred. However, their utilization is constrained by their thickness, low electroactive surface area, and increased manufacturing expenses. In this study, the synthesis of cost-effective current collectors with exceptionally large surface areas designed for ZIBs that can be cycled hundreds of times is reported. A zinc-coated CuF anode (Zn/CuF) was prepared with a 3D porous CuF current collector produced by the dynamic hydrogen bubble template (DHBT) method. Electrochemically generated copper foam could be obtained within seconds while offering a thickness as low as 30-40 μm (CuF5 achieved a thickness of ∼38 μm in 5 s) via the DHBT method. The excellent electrical conductivity and open pore structure of the 3D porous copper scaffold ensured the uniform deposition/stripping of Zn during cycling. During the 500 h Zn deposition/stripping process, the as-synthesized CuF5 current collector offered fast electrochemical kinetics and low polarization as well as a relatively high average Coulombic efficiency of 99% (at a current density of 5 mA cm-2 and a capacity of 1 mAh cm-2). Furthermore, the symmetric cell exhibited low voltage polarization and a stable voltage profile for 1000 h at a current density of 0.1 mA cm-2. In addition, full cells containing the Zn/CuF anode coupled with an as-synthesized α-MnO2 nanoneedle cathode in aqueous electrolyte were also prepared. Capacities of 266 mAh g-1 at 0.1 A g-1 and 94 mAh g-1 at 2 A g-1 were achieved after 200 charge/discharge cycles with a stable Coulombic efficiency value close to 99.9%.
Collapse
Affiliation(s)
- Taşkın Çamurcu
- Gebze Technical University, Department of Chemistry, 41400 Gebze, Kocaeli, Türkiye
- TÜBİTAK Rail Transport Technologies Institute, Energy Storage Division, TÜBİTAK, Gebze Campus, 41470 Gebze, Kocaeli, Türkiye
| | - Erhan Demirbaş
- Gebze Technical University, Department of Chemistry, 41400 Gebze, Kocaeli, Türkiye
| | - Mehmet Nurullah Ateş
- Bogazici University, Department of Chemistry, Bebek 34342, Istanbul, Türkiye
- TÜBİTAK Rail Transport Technologies Institute, Energy Storage Division, TÜBİTAK, Gebze Campus, 41470 Gebze, Kocaeli, Türkiye
| |
Collapse
|
14
|
Bai Y, Luo L, Song W, Man S, Zhang H, Li CM. Nitrogen-Vacancy-Rich VN Clusters Embedded in Carbon Matrix for High-Performance Zinc Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308668. [PMID: 38477515 PMCID: PMC11109659 DOI: 10.1002/advs.202308668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Vanadium nitride (VN) is a potential cathode material with high capacity and high energy density for aqueous zinc batteries (AZIBs). However, the slow kinetics resulting from the strong electrostatic interaction of the electrode materials with zinc ions is a major challenge for fast storage. Here, VN clusters with nitrogen-vacancy embedded in carbon (C) (Nv-VN/C-SS-2) are prepared for the first time to improve the slow reaction kinetics. The nitrogen vacancies can effectively accelerate the reaction kinetics, reduce the electrochemical polarization, and improve the performance. The density functional theory (DFT) calculations also prove that the rapid adsorption and desorption of zinc ions on Nv-VN/C-SS-2 can release more electrons to the delocalized electron cloud of the material, thus adding more active sites. The Nv-VN/C-SS-2 exhibits a specific capacity and outstanding cycle life. Meanwhile, the quasi-solid-state battery exhibits a high capacity of 186.5 mAh g-1, ultra-high energy density of 278.9 Wh kg-1, and a high power density of 2375.1 W kg-1 at 2.5 A g-1, showing excellent electrochemical performance. This work provides a meaningful reference value for improving the comprehensive electrochemical performance of VN through interface engineering.
Collapse
Affiliation(s)
- Youcun Bai
- Institute for Materials Science and DevicesSchool of Materials Science & EngineeringSuzhou University of Science & TechnologySuzhou215011P. R. China
| | - Liang Luo
- School of Chemistry and Chemical EngineeringChongqing UniversityChongqing401331China
| | - Wenliang Song
- School of Materials and ChemistryUniversity of Shanghai for Science and TechnologyShanghai200093P. R. China
| | - Shuaishuai Man
- School of Environment and EcologyJiangnan UniversityWuxi214122P. R. China
| | - Heng Zhang
- Institute for Materials Science and DevicesSchool of Materials Science & EngineeringSuzhou University of Science & TechnologySuzhou215011P. R. China
| | - Chang Ming Li
- Institute for Materials Science and DevicesSchool of Materials Science & EngineeringSuzhou University of Science & TechnologySuzhou215011P. R. China
| |
Collapse
|
15
|
Chen F, Zhao BQ, Huang K, Ma XF, Li HY, Zhang X, Diao J, Yue J, Huang G, Wang J, Pan F. Dual-Defect Engineering Strategy Enables High-Durability Rechargeable Magnesium-Metal Batteries. NANO-MICRO LETTERS 2024; 16:184. [PMID: 38684597 PMCID: PMC11058737 DOI: 10.1007/s40820-024-01410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/22/2024] [Indexed: 05/02/2024]
Abstract
Rechargeable magnesium-metal batteries (RMMBs) are promising next-generation secondary batteries; however, their development is inhibited by the low capacity and short cycle lifespan of cathodes. Although various strategies have been devised to enhance the Mg2+ migration kinetics and structural stability of cathodes, they fail to improve electronic conductivity, rendering the cathodes incompatible with magnesium-metal anodes. Herein, we propose a dual-defect engineering strategy, namely, the incorporation of Mg2+ pre-intercalation defect (P-Mgd) and oxygen defect (Od), to simultaneously improve the Mg2+ migration kinetics, structural stability, and electronic conductivity of the cathodes of RMMBs. Using lamellar V2O5·nH2O as a demo cathode material, we prepare a cathode comprising Mg0.07V2O5·1.4H2O nanobelts composited with reduced graphene oxide (MVOH/rGO) with P-Mgd and Od. The Od enlarges interlayer spacing, accelerates Mg2+ migration kinetics, and prevents structural collapse, while the P-Mgd stabilizes the lamellar structure and increases electronic conductivity. Consequently, the MVOH/rGO cathode exhibits a high capacity of 197 mAh g-1, and the developed Mg foil//MVOH/rGO full cell demonstrates an incredible lifespan of 850 cycles at 0.1 A g-1, capable of powering a light-emitting diode. The proposed dual-defect engineering strategy provides new insights into developing high-durability, high-capacity cathodes, advancing the practical application of RMMBs, and other new secondary batteries.
Collapse
Affiliation(s)
- Fuyu Chen
- National Innovation Center for Lndustry-Education Integration of Energy Storage Technology, School of Materials Science and Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
- National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Bai-Qing Zhao
- Materials and Energy Division, Beijing Computational Science Research Center, Beijing, 100193, People's Republic of China
| | - Kaifeng Huang
- National Innovation Center for Lndustry-Education Integration of Energy Storage Technology, School of Materials Science and Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
- National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Xiu-Fen Ma
- National Innovation Center for Lndustry-Education Integration of Energy Storage Technology, School of Materials Science and Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
- National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Hong-Yi Li
- National Innovation Center for Lndustry-Education Integration of Energy Storage Technology, School of Materials Science and Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.
- National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Xie Zhang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Jiang Diao
- National Innovation Center for Lndustry-Education Integration of Energy Storage Technology, School of Materials Science and Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
- National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Jili Yue
- National Innovation Center for Lndustry-Education Integration of Energy Storage Technology, School of Materials Science and Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
- National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Guangsheng Huang
- National Innovation Center for Lndustry-Education Integration of Energy Storage Technology, School of Materials Science and Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
- National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Jingfeng Wang
- National Innovation Center for Lndustry-Education Integration of Energy Storage Technology, School of Materials Science and Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
- National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Fusheng Pan
- National Innovation Center for Lndustry-Education Integration of Energy Storage Technology, School of Materials Science and Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.
- National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044, People's Republic of China.
- National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
16
|
Li L, Yue S, Jia S, Wang C, Zhang D. Recent Advances in Graphene-Based Materials for Zinc-Ion Batteries. CHEM REC 2024; 24:e202300341. [PMID: 38180284 DOI: 10.1002/tcr.202300341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/16/2023] [Indexed: 01/06/2024]
Abstract
Zinc-ion batteries (ZIBs) are a promising alternative for large-scale energy storage due to their advantages of environmental protection, low cost, and intrinsic safety. However, the utilization of their full potential is still hindered by the sluggish electrode reaction kinetics, poor structural stability, severe Zn dendrite growth, and narrow electrochemical stability window of the whole battery. Graphene-based materials with excellent physicochemical properties hold great promise for addressing the above challenges foe ZIBs. In this review, the energy storage mechanisms and challenges faced by ZIBs are first discussed. Key issues and recent progress in design strategies for graphene-based materials in optimizing the electrochemical performance of ZIBs (anode, cathode, electrolyte, separator and current collector) are then discussed. Finally, some potential challenges and future research directions of graphene-based materials in high-performance ZIBs are proposed for practical applications.
Collapse
Affiliation(s)
- Le Li
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, China E-mail: addresses
| | - Shi Yue
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, China E-mail: addresses
| | - Shaofeng Jia
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, China E-mail: addresses
| | - Conghui Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Dan Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| |
Collapse
|
17
|
Wang Z, Zhu J. Recent Advances on Stretchable Aqueous Zinc-Ion Batteries for Wearable Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311012. [PMID: 38334244 DOI: 10.1002/smll.202311012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Indexed: 02/10/2024]
Abstract
The rapid development of wearable electronics has stimulated the pursuit of advanced stretchable power sources. As a promising candidate, stretchable aqueous zinc-ion batteries (AZIBs), have attracted unprecedented attention owing to their intrinsic safety, low cost, environmental benignity, and high performance, and can be endowed with additional functionalities to broaden the applications of wearable electronics. Here, a comprehensive review on the latest advances of stretchable AZIBs is presented. The materials and methods for stretchable components in AZIBs are first summarized, covering current collectors, electrodes, electrolytes/separators, and encapsulating layers. Subsequently, the benefits of the coplanar, fiber-shaped, and sandwiched configurations for stretchable AZIBs are analyzed. Moreover, the additional features integrated into stretchable AZIBs are highlighted. Finally, the challenges and prospects of stretchable AZIBs for wearable applications in the future are proposed.
Collapse
Affiliation(s)
- Zhao Wang
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Jian Zhu
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
- Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
18
|
Bai Y, Zhang H, Liang W, Zhu C, Yan L, Li C. Advances of Zn Metal-Free "Rocking-Chair"-Type Zinc Ion Batteries: Recent Developments and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306111. [PMID: 37821411 DOI: 10.1002/smll.202306111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/07/2023] [Indexed: 10/13/2023]
Abstract
Aqueous zinc ion battery (AZIBs) has attracted the attention of many researchers because of its safety, economy, environmental protection, and high ionic conductivity of electrolytes. However, the battery greatly suffers from zinc dendrite produced by zinc metal anode leading to poor cycle life and even unsafe problems, which limit its further development for various important applications. It is known that the success of the commercialization of lithium-ion batteries (LIBs) is mainly due to replacement of lithium metal anode with graphite, which avoids the formation of Li dendrite. Therefore, it is an important step to develop aqueous zinc ion anode to replace conventional zinc metal one with zinc-metal free anode material. In this review, the working principle and development prospect of "rocking-chair" AZIBs are introduced. The research progress of different types of zinc metal-free anode materials and cathode materials in "rocking-chair" AZIBs is reviewed. Finally, the limitations and challenges of the Zn metal-free "rocking-chair" AZIBs as well as solutions are deeply discussed, aiming to provide new strategies for the development of advanced zinc-ion batteries.
Collapse
Affiliation(s)
- Youcun Bai
- Institute for Materials Science and Devices, School of Materials Science & Engineering, Suzhou University of Science & Technology, Suzhou, 215011, P. R. China
| | - Heng Zhang
- Institute for Materials Science and Devices, School of Materials Science & Engineering, Suzhou University of Science & Technology, Suzhou, 215011, P. R. China
| | - Wenhao Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chong Zhu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Lijin Yan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Changming Li
- Institute for Materials Science and Devices, School of Materials Science & Engineering, Suzhou University of Science & Technology, Suzhou, 215011, P. R. China
| |
Collapse
|
19
|
Jia S, Li L, Shi Y, Wang C, Cao M, Ji Y, Zhang D. Recent development of manganese dioxide-based materials as zinc-ion battery cathode. NANOSCALE 2024; 16:1539-1576. [PMID: 38170865 DOI: 10.1039/d3nr04996e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The development of advanced cathode materials for zinc-ion batteries (ZIBs) is a critical step in building large-scale green energy conversion and storage systems in the future. Manganese dioxide is one of the most well-studied cathode materials for zinc-ion batteries due to its wide range of crystal forms, cost-effectiveness, and well-established synthesis processes. This review describes the recent research progress of manganese dioxide-based ZIBs, and the reaction mechanism, electrochemical performance, and challenges of manganese dioxide-based ZIBs materials are systematically introduced. Optimization strategies for high-performance manganese dioxide-based materials for ZIBs with different crystal forms, nanostructures, morphologies, and compositions are discussed. Finally, the current challenges and future research directions of manganese dioxide-based cathodes in ZIBs are envisaged.
Collapse
Affiliation(s)
- Shaofeng Jia
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Le Li
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Yue Shi
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Conghui Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Minghui Cao
- School of Electronic and Information Engineering, Qingdao University, Qingdao 266071, China
| | - Yongqiang Ji
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Dan Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| |
Collapse
|
20
|
Aizudin M, Fu W, Pottammel RP, Dai Z, Wang H, Rui X, Zhu J, Li CC, Wu XL, Ang EH. Recent Advancements of Graphene-Based Materials for Zinc-Based Batteries: Beyond Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305217. [PMID: 37661581 DOI: 10.1002/smll.202305217] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Graphene-based materials (GBMs) possess a unique set of properties including tunable interlayer channels, high specific surface area, and good electrical conductivity characteristics, making it a promising material of choice for making electrode in rechargeable batteries. Lithium-ion batteries (LIBs) currently dominate the commercial rechargeable battery market, but their further development has been hampered by limited lithium resources, high lithium costs, and organic electrolyte safety concerns. From the performance, safety, and cost aspects, zinc-based rechargeable batteries have become a promising alternative of rechargeable batteries. This review highlights recent advancements and development of a variety of graphene derivative-based materials and its composites, with a focus on their potential applications in rechargeable batteries such as LIBs, zinc-air batteries (ZABs), zinc-ion batteries (ZIBs), and zinc-iodine batteries (Zn-I2 Bs). Finally, there is an outlook on the challenges and future directions of this great potential research field.
Collapse
Affiliation(s)
- Marliyana Aizudin
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637616, Singapore
| | - Wangqin Fu
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637616, Singapore
| | - Rafeeque Poolamuri Pottammel
- Department of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, India, 695551, India
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huanwen Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jixin Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230001, China
| | - Cheng Chao Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xing-Long Wu
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637616, Singapore
| |
Collapse
|
21
|
Gu H, Yang X, Chen S, Zhang W, Yang HY, Li Z. Oxygen Vacancies Boosted Proton Intercalation Kinetics for Aqueous Aluminum-Manganese Batteries. NANO LETTERS 2023; 23:11842-11849. [PMID: 38071640 DOI: 10.1021/acs.nanolett.3c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Aluminum-ion batteries have garnered an extensive amount of attention due to their superior electrochemical performance, low cost, and high safety. To address the limitation of battery performance, exploring new cathode materials and understanding the reaction mechanism for these batteries are of great significance. Among numerous candidates, multiple structures and valence states make manganese-based oxides the best choice for aqueous aluminum-ion batteries (AAIBs). In this work, a new cathode consists of γ-MnO2 with abundant oxygen vacancies. As a result, the electrode shows a high discharge capacity of 481.9 mAh g-1 at 0.2 A g-1 and a sustained reversible capacity of 128.6 mAh g-1 after 200 cycles at 0.4 A g-1. In particular, through density functional theory calculation and experimental comparison, the role of oxygen vacancies in accelerating the reaction kinetics of H+ has been verified. This study provides insights into the application of manganese dioxide materials in aqueous AAIBs.
Collapse
Affiliation(s)
- Hanqing Gu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Xiaohu Yang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Song Chen
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Wenming Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Zhanyu Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| |
Collapse
|
22
|
Yang X, Wang X, Xiang Y, Ma L, Huang W. Asymmetric Electrolytes Design for Aqueous Multivalent Metal Ion Batteries. NANO-MICRO LETTERS 2023; 16:51. [PMID: 38099969 PMCID: PMC10724106 DOI: 10.1007/s40820-023-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/19/2023] [Indexed: 12/18/2023]
Abstract
With the rapid development of portable electronics and electric road vehicles, high-energy-density batteries have been becoming front-burner issues. Traditionally, homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode, which are essential for high-voltage batteries. Meanwhile, homogeneous electrolyte is difficult to achieve bi- or multi-functions to meet different requirements of electrodes. In comparison, the asymmetric electrolyte with bi- or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte. Consequently, the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan. In this review, we comprehensively divide asymmetric electrolytes into three categories: decoupled liquid-state electrolytes, bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes. The design principles, reaction mechanism and mutual compatibility are also studied, respectively. Finally, we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density, and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics.
Collapse
Affiliation(s)
- Xiaochen Yang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Xinyu Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yue Xiang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Longtao Ma
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, People's Republic of China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
23
|
Kim JS, Heo SW, Lee SY, Lim JM, Choi S, Kim SW, Mane VJ, Kim C, Park H, Noh YT, Choi S, van der Laan T, Ostrikov KK, Park SJ, Doo SG, Han Seo D. Utilization of 2D materials in aqueous zinc ion batteries for safe energy storage devices. NANOSCALE 2023; 15:17270-17312. [PMID: 37869772 DOI: 10.1039/d3nr03468b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Aqueous rechargeable battery has been an intense topic of research recently due to the significant safety issues of conventional Li-ion batteries (LIBs). Amongst the various candidates of aqueous batteries, aqueous zinc ion batteries (AZIBs) hold great promise as a next generation safe energy storage device due to its low cost, abundance in nature, low toxicity, environmental friendliness, low redox potential, and high theoretical capacity. Yet, the promise has not been realized due to their limitations, such as lower capacity compared to traditional LIB, dendrite growth, detrimental degradation of electrode materials structure as ions intercalate/de-intercalate, and gas evolution/corrosion at the electrodes, which remains a significant challenge. To address the challenges, various 2D materials with different physiochemical characteristics have been utilized. This review explores fundamental physiochemical characteristics of widely used 2D materials in AZIBs, including graphene, MoS2, MXenes, 2D metal organic framework, 2D covalent organic framework, and 2D transition metal oxides, and how their characteristics have been utilized or modified to address the challenges in AZIBs. The review also provides insights and perspectives on how 2D materials can help to realize the full potential of AZIBs for next-generation safe and reliable energy storage devices.
Collapse
Affiliation(s)
- Jun Sub Kim
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
| | - Seong-Wook Heo
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
| | - So Young Lee
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
| | - Jae Muk Lim
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
| | - Seonwoo Choi
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
| | - Sun-Woo Kim
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
- The School of Advanced Materials Science and Engineering, SungKyunKwan University, Seobu-ro, Jangan-gu, Suwon-si 2066, Gyeonggi-do, Korea
| | - Vikas J Mane
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
| | - Changheon Kim
- Green Energy Institute, Mokpo-Si, Jeollanam-do 58656, Republic of Korea.
- AI & Energy Research Center, Korea Photonics Technology Institute, South Korea
| | - Hyungmin Park
- Korea Conformity Laboratories, Gwangju-Jeonnam Center, Yeosu, 59631, Republic of Korea
| | - Young Tai Noh
- Korea Conformity Laboratories, Gwangju-Jeonnam Center, Yeosu, 59631, Republic of Korea
| | - Sinho Choi
- Ulsan Advanced Energy Technology R&D Center, Korea Institute of Energy Research (KIER), Ulsan 44776, Republic of Korea
| | | | - Kostya Ken Ostrikov
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Seong-Ju Park
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
| | - Seok Gwang Doo
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
| | - Dong Han Seo
- Energy Materials & Devices, Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju-si (58217), Jeollanam-do, Republic of Korea.
| |
Collapse
|
24
|
Liu Y, Wang K, Yang X, Liu J, Liu XX, Sun X. Enhancing Two-Electron Reaction Contribution in MnO 2 Cathode Material by Structural Engineering for Stable Cycling in Aqueous Zn Batteries. ACS NANO 2023; 17:14792-14799. [PMID: 37459215 DOI: 10.1021/acsnano.3c02965] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
MnO2 is a promising cathode for aqueous Zn batteries. However, the cycling stability is seriously hindered by active material dissolution, and the pre-addition of Mn2+ salts in electrolytes is widely required. Herein, we propose a structural engineering strategy for MnO2 to enhance the capacity contribution from the reversible two-electron transfer reaction of MnO2/Mn2+ and realize stable cycling in Mn2+-free electrolytes. By compositing with MoO3, MnO2 exhibits weakened Mn-O bonds, more oxygen vacancies, spontaneous generation of structural water, and thus a lowered energy barrier for Mn release during discharge. Meanwhile, the composite material presents stronger electrostatic attractions for dissolved Mn2+, which ensures highly reversible re-deposition during charge. As a result, the mass ratios between materials undergoing reversible two-electron and one-electron transfer reactions increase from 0.85 in MnO2 to 1.68 in the MnO2/MoO3 composite material. In the ZnSO4 electrolyte, the MnO2/MoO3 cathode achieves 92.6% capacity retention after 300 cycles at 0.1 A g-1 (>1900 h), superior to 62.7% for MnO2. MnO2/MoO3 also retains 80.1% capacity after 16 000 cycles at 1 A g-1 (>3200 h). This work presents an effective path to realize stable cycling of MnO2 in Zn batteries.
Collapse
Affiliation(s)
- Yaozhi Liu
- Department of Chemistry, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, China
| | - Kuo Wang
- Department of Chemistry, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, China
| | - Xianpeng Yang
- Department of Chemistry, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, China
| | - Jie Liu
- School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, China
- National-Local Joint Engineering Research Center of High-Efficient Exploitation Technology for Refractory Iron Ore Resources, Shenyang, 110819, China
| | - Xiao-Xia Liu
- Department of Chemistry, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Xiaoqi Sun
- Department of Chemistry, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, China
| |
Collapse
|
25
|
Huang N, Sun Y, Liu S, Wang X, Zhang J, Guo L, Bi J, Sun X. Microwave-Assisted Rational Designed CNT-Mn 3 O 4 /CoWO 4 Hybrid Nanocomposites for High Performance Battery-Supercapacitor Hybrid Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300696. [PMID: 37165607 DOI: 10.1002/smll.202300696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/21/2023] [Indexed: 05/12/2023]
Abstract
Extensive research interest in hybrid battery-supercapacitor (BSH) devices have led to the development of cathode materials with excellent comprehensive electrochemical properties. In this work, carbon nanotube (CNT)-Mn3 O4 /CoWO4 triple-segment hybrid electrode is synthesized by using a two-step microwave-assisted hydrothermal route. Systematic physical characterization revealed that, with the assistance of microwave, granular Mn3 O4 and spheroid-like CoWO4 with preferred orientation, and oxygen vacancies are stacked or arranged on CNTs skeletons to construct a rational designed hybrid nanocomposite with abundant heterointerfaces and interfacial chemical bonds. Electrochemical evaluations show that the synergistic cooperation in CNT-Mn3 O4 /CoWO4 resulted in an ultra-high specific capacity (1907.5 C g-1 /529.8 mA h g-1 at 1 A g-1 ), a wide operating voltage window (1.15 V), the satisfactory rate capability (capacity maintained at 1016.5 C g-1 /282.3 mA h g-1 at 15 A g-1 ), and excellent cycling stability (117.2% initial capacity retention after 13000 cycles at 15 A g-1 ). In addition, the assembled CNT-Mn3 O4 /CoWO4 //N doped porous carbon (NC) BSH device delivered a stable working voltage of 2.05 V and superior energy density of 67.5 Wh kg-1 at power density of 1025 W kg-1 , as well as excellent stability (92.2% capacity retained at 5 A g-1 for 12600 cycles). This work provides a new and feasible tactic to develop high-performance transition metal oxide-based cathodes for advanced BSH devices.
Collapse
Affiliation(s)
- Naibao Huang
- College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yin Sun
- College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Sen Liu
- College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xinyu Wang
- College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Junjie Zhang
- College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Likui Guo
- College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Jiapeng Bi
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiannian Sun
- College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China
| |
Collapse
|
26
|
Liu L, Ding S, Yao L, Liu M, Li S, Zhao Q, Qin R, Pan F. In situ BaSO 4 coating enabled activation-free and ultra-stable δ-MnO 2 for aqueous Zn-ion batteries. Chem Commun (Camb) 2023; 59:6227-6230. [PMID: 37129636 DOI: 10.1039/d3cc01086d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In situ BaSO4 coating, generated in the first discharging of Ba2+ pre-intercalated δ-MnO2, shortens the activation process by inducing fast proton intercalation and stabilizes the MnO2 crystal by suppressing Mn dissolution. The cathode delivers a decent electrochemical performance of 210 mA h g-1 at 1C with a 98% retention after 200 cycles.
Collapse
Affiliation(s)
- Lele Liu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China.
| | - Shouxiang Ding
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China.
| | - Lu Yao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China.
| | - Mingqiang Liu
- Electrochemical Innovation Lab, University College London, London WC1E 7JE, UK
| | - Shunning Li
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China.
| | - Qinghe Zhao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China.
| | - Runzhi Qin
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China.
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China.
| |
Collapse
|
27
|
Lee J, Lee H, Bak C, Hong Y, Joung D, Ko JB, Lee YM, Kim C. Enhancing Hydrophilicity of Thick Electrodes for High Energy Density Aqueous Batteries. NANO-MICRO LETTERS 2023; 15:97. [PMID: 37038025 PMCID: PMC10086092 DOI: 10.1007/s40820-023-01072-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Thick electrodes can substantially enhance the overall energy density of batteries. However, insufficient wettability of aqueous electrolytes toward electrodes with conventional hydrophobic binders severely limits utilization of active materials with increasing the thickness of electrodes for aqueous batteries, resulting in battery performance deterioration with a reduced capacity. Here, we demonstrate that controlling the hydrophilicity of the thicker electrodes is critical to enhancing the overall energy density of batteries. Hydrophilic binders are synthesized via a simple sulfonation process of conventional polyvinylidene fluoride binders, considering physicochemical properties such as mechanical properties and adhesion. The introduction of abundant sulfonate groups of binders (i) allows fast and sufficient electrolyte wetting, and (ii) improves ionic conduction in thick electrodes, enabling a significant increase in reversible capacities under various current densities. Further, the sulfonated binder effectively inhibits the dissolution of cathode materials in reactive aqueous electrolytes. Overall, our findings significantly enhance the energy density and contribute to the development of practical zinc-ion batteries.
Collapse
Affiliation(s)
- Jungeun Lee
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), 102 Jejudaehak-Ro, Jeju-Si, Jeju-do, 63243, Republic of Korea
| | - Hyeonsoo Lee
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), 102 Jejudaehak-Ro, Jeju-Si, Jeju-do, 63243, Republic of Korea
| | - Cheol Bak
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Youngsun Hong
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), 102 Jejudaehak-Ro, Jeju-Si, Jeju-do, 63243, Republic of Korea
| | - Daeha Joung
- Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Jeong Beom Ko
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), 102 Jejudaehak-Ro, Jeju-Si, Jeju-do, 63243, Republic of Korea
| | - Yong Min Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Chanhoon Kim
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), 102 Jejudaehak-Ro, Jeju-Si, Jeju-do, 63243, Republic of Korea.
| |
Collapse
|
28
|
Wang K, Wang J, Chen P, Qin M, Yang C, Zhang W, Zhang Z, Zhen Y, Fu F, Xu B. Structural Transformation by Crystal Engineering Endows Aqueous Zinc-Ion Batteries with Ultra-long Cyclability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300585. [PMID: 37029580 DOI: 10.1002/smll.202300585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Manganese oxide is a promising cathode material for aqueous zinc batteries. However, its weak structural stability, low electrical conductivity, and sluggish reaction kinetics lead to rapid capacity fading. Herein, a crystal engineering strategy is proposed to construct a novel MnO2 cathode material. Both experimental results and theoretical calculations demonstrate that Al-doping plays a crucial role in phase transition and doping-superlattice structure construction, which stabilizes the structure of MnO2 cathode materials, improves conductivity, and accelerates ion diffusion dynamics. As a result, 1.98% Al-doping MnO2 (AlMO) cathode shows an incredible 15 000 cycle stability with a low capacity decay rate of 0.0014% per cycle at 4 A g-1 . Additionally, it provides superior specific capacity of 311.2 mAh g-1 at 0.1 A g-1 and excellent rate performance (145.2 mAh g-1 at 5.0 A g-1 ). To illustrate the potential of 1.98%AlMO to be applied in actual practice, flexible energy storage devices are fabricated and measured. These discoveries provide a new insight for structural transformation via crystal engineering, as well as a new avenue for the rational design of electrode material in other battery systems.
Collapse
Affiliation(s)
- Kangning Wang
- School of Chemistry & Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, P. R. China
| | - Jianwei Wang
- School of Chemistry & Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, P. R. China
| | - Peiming Chen
- School of Chemistry & Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, P. R. China
| | - Mengran Qin
- School of Chemistry & Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, P. R. China
| | - Chunming Yang
- School of Chemistry & Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, P. R. China
| | - Wenlin Zhang
- School of Chemistry & Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, P. R. China
| | - Zhuangzhuang Zhang
- School of Chemistry & Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, P. R. China
| | - Yanzhong Zhen
- School of Chemistry & Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, P. R. China
| | - Feng Fu
- School of Chemistry & Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, P. R. China
| | - Bin Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
29
|
Zhao Q, Pan Z, Liu B, Bao C, Liu X, Sun J, Xie S, Wang Q, Wang J, Gao Y. Electrochromic-Induced Rechargeable Aqueous Batteries: An Integrated Multifunctional System for Cross-Domain Applications. NANO-MICRO LETTERS 2023; 15:87. [PMID: 37029252 PMCID: PMC10082149 DOI: 10.1007/s40820-023-01056-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/26/2023] [Indexed: 06/19/2023]
Abstract
Multifunctional electrochromic-induced rechargeable aqueous batteries (MERABs) integrate electrochromism and aqueous ion batteries into one platform, which is able to deliver the conversion and storage of photo-thermal-electrochemical sources. Aqueous ion batteries compensate for the drawbacks of slow kinetic reactions and unsatisfied storage capacities of electrochromic devices. On the other hand, electrochromic technology can enable dynamically regulation of solar light and heat radiation. However, MERABs still face several technical issues, including a trade-off between electrochromic and electrochemical performance, low conversion efficiency and poor service life. In this connection, novel device configuration and electrode materials, and an optimized compatibility need to be considered for multidisciplinary applications. In this review, the unique advantages, key challenges and advanced applications are elucidated in a timely and comprehensive manner. Firstly, the prerequisites for effective integration of the working mechanism and device configuration, as well as the choice of electrode materials are examined. Secondly, the latest advances in the applications of MERABs are discussed, including wearable, self-powered, integrated systems and multisystem conversion. Finally, perspectives on the current challenges and future development are outlined, highlighting the giant leap required from laboratory prototypes to large-scale production and eventual commercialization.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Materials Science and Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Zhenghui Pan
- Department of Materials Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Binbin Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Changyuan Bao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Ximeng Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Jianguo Sun
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore.
| | - Shaorong Xie
- Department of Computer Engineering and Science, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Qing Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore.
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401120, People's Republic of China.
- Institute of Materials Research and Engineering, A*Star, Singapore, 138634, Singapore.
| | - Yanfeng Gao
- Department of Materials Science and Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, People's Republic of China.
| |
Collapse
|
30
|
Chen R, Zhang W, Huang Q, Guan C, Zong W, Dai Y, Du Z, Zhang Z, Li J, Guo F, Gao X, Dong H, Zhu J, Wang X, He G. Trace Amounts of Triple-Functional Additives Enable Reversible Aqueous Zinc-Ion Batteries from a Comprehensive Perspective. NANO-MICRO LETTERS 2023; 15:81. [PMID: 37002511 PMCID: PMC10066055 DOI: 10.1007/s40820-023-01050-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
Although their cost-effectiveness and intrinsic safety, aqueous zinc-ion batteries suffer from notorious side reactions including hydrogen evolution reaction, Zn corrosion and passivation, and Zn dendrite formation on the anode. Despite numerous strategies to alleviate these side reactions have been demonstrated, they can only provide limited performance improvement from a single aspect. Herein, a triple-functional additive with trace amounts, ammonium hydroxide, was demonstrated to comprehensively protect zinc anodes. The results show that the shift of electrolyte pH from 4.1 to 5.2 lowers the HER potential and encourages the in situ formation of a uniform ZHS-based solid electrolyte interphase on Zn anodes. Moreover, cationic NH4+ can preferentially adsorb on the Zn anode surface to shield the "tip effect" and homogenize the electric field. Benefitting from this comprehensive protection, dendrite-free Zn deposition and highly reversible Zn plating/stripping behaviors were realized. Besides, improved electrochemical performances can also be achieved in Zn//MnO2 full cells by taking the advantages of this triple-functional additive. This work provides a new strategy for stabilizing Zn anodes from a comprehensive perspective.
Collapse
Affiliation(s)
- Ruwei Chen
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Wei Zhang
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Quanbo Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Chaohong Guan
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wei Zong
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Yuhang Dai
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Zijuan Du
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Zhenyu Zhang
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Jianwei Li
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Fei Guo
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Xuan Gao
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Haobo Dong
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Jiexin Zhu
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| | - Guanjie He
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
| |
Collapse
|
31
|
Ding Y, Xue W, Chen K, Yang C, Feng Q, Zheng D, Xu W, Wang F, Lu X. Sodium Ion Pre-Intercalation of δ-MnO 2 Nanosheets for High Energy Density Aqueous Zinc-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061075. [PMID: 36985969 PMCID: PMC10057495 DOI: 10.3390/nano13061075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 05/27/2023]
Abstract
With the merits of low cost, environmental friendliness and rich resources, manganese dioxide is considered to be a promising cathode material for aqueous zinc-ion batteries (AZIBs). However, its low ion diffusion and structural instability greatly limit its practical application. Hence, we developed an ion pre-intercalation strategy based on a simple water bath method to grow in situ δ-MnO2 nanosheets on flexible carbon cloth substrate (MnO2), while pre-intercalated Na+ in the interlayer of δ-MnO2 nanosheets (Na-MnO2), which effectively enlarges the layer spacing and enhances the conductivity of Na-MnO2. The prepared Na-MnO2//Zn battery obtained a fairly high capacity of 251 mAh g-1 at a current density of 2 A g-1, a satisfactory cycle life (62.5% of its initial capacity after 500 cycles) and favorable rate capability (96 mAh g-1 at 8 A g-1). Furthermore, this study revealed that the pre-intercalation engineering of alkaline cations is an effective method to boost the properties of δ-MnO2 zinc storage and provides new insights into the construction of high energy density flexible electrodes.
Collapse
Affiliation(s)
- Yuanhao Ding
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Weiwei Xue
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Kaihao Chen
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Chenghua Yang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Qi Feng
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Dezhou Zheng
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Wei Xu
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Fuxin Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Xihong Lu
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
32
|
Efficient Electrochemical Performance of MnO2 Nanowires interknitted Vanadium Oxide Intercalated Nanoporous Carbon Network as Cathode for Aqueous Zinc Ion Battery. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
33
|
Yang J, Yao G, Li Z, Zhang Y, Wei L, Niu H, Chen Q, Zheng F. Highly Flexible K-Intercalated MnO 2 /Carbon Membrane for High-Performance Aqueous Zinc-Ion Battery Cathode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205544. [PMID: 36377466 DOI: 10.1002/smll.202205544] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The layered MnO2 is intensively investigated as one of the most promising cathode materials for aqueous zinc-ion batteries (AZIBs), but its commercialization is severely impeded by the challenging issues of the inferior intrinsic electronic conductivity and undesirable structural stability during the charge-discharge cycles. Herein, the lab-prepared flexible carbon membrane with highly electrical conductivity is first used as the matrix to generate ultrathin δ-MnO2 with an enlarged interlayer spacing induced by the K+ -intercalation to potentially alleviate the structural damage caused by H+ /Zn2+ co-intercalation, resulting in a high reversible capacity of 190 mAh g-1 at 3 A g-1 over 1000 cycles. The in situ/ex-situ characterizations and electrochemical analysis confirm that the enlarged interlayer spacing can provide free space for the reversible deintercalation/intercalation of H+ /Zn2+ in the structure of δ-MnO2 , and H+ /Zn2+ co-intercalation mechanism contributes to the enhanced charge storage in the layered K+ -intercalated δ-MnO2 . This work provides a plausible way to construct a flexible carbon membrane-based cathode for high-performance AZIBs.
Collapse
Affiliation(s)
- Jie Yang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Ge Yao
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Zhiqiang Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yuhang Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Lingzhi Wei
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Helin Niu
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Qianwang Chen
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Fangcai Zheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| |
Collapse
|
34
|
Wang Z, Wang Y, Lin Y, Bian G, Liu HY, Li X, Yin J, Zhu J. Manipulating Oxygen Vacancies by K + Doping and Controlling Mn 2+ Deposition to Boost Energy Storage in β-MnO 2. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47725-47736. [PMID: 36251265 DOI: 10.1021/acsami.2c13030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aqueous zinc-ion batteries (ZIBs) have gained wide attention for their low cost, high safety, and environmental friendliness in recent years. β-MnO2, a potential cathode material for ZIBs, has been restricted by its small channels for efficient charge storage. Herein, β-MnO2 nanorods with oxygen vacancies are fabricated by a K+-doping strategy to improve the performance of ZIBs. The assembled batteries exhibit a capacity of 468 mAh g-1, a power density of 2605 W kg-1, and an energy density of 179 Wh kg-1, which outperforms most reported ZIBs. Such a performance is owing to the synergistic combination of the oxygen vacancies in β-MnO2 and concurrent deposition of ε-MnO2 from Mn2+ in the electrolyte. Furthermore, superior cycling stability with negligible capacity decay in these batteries is demonstrated over 1000 cycles at a high current of 2 A g-1. This study reveals the importance of oxygen vacancies and Mn2+ deposition effect in understanding the mechanism of charge storage in MnO2-based ZIBs.
Collapse
Affiliation(s)
- Zhao Wang
- School of Materials Science and Engineering, Nankai University, Tianjin300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin300350, P. R. China
| | - Yurou Wang
- School of Materials Science and Engineering, Nankai University, Tianjin300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin300350, P. R. China
| | - Yuxuan Lin
- School of Materials Science and Engineering, Nankai University, Tianjin300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin300350, P. R. China
| | - Gang Bian
- School of Materials Science and Engineering, Nankai University, Tianjin300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin300350, P. R. China
| | - Hai-Yang Liu
- School of Materials Science and Engineering, Nankai University, Tianjin300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin300350, P. R. China
| | - Xiang Li
- School of Materials Science and Engineering, Nankai University, Tianjin300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin300350, P. R. China
| | - Jun Yin
- School of Materials Science and Engineering, Nankai University, Tianjin300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin300350, P. R. China
| | - Jian Zhu
- School of Materials Science and Engineering, Nankai University, Tianjin300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin300350, P. R. China
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin300350, P. R. China
- Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin300350, P. R. China
| |
Collapse
|
35
|
Efficient Epoxidation of Styrene within Pickering Emulsion-Based Compartmentalized Microreactors. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Guo Y, Zhao Z, Zhang J, Liu Y, Hu B, Zhang Y, Ge Y, Lu H. High-performance zinc-ion battery cathode enabled by deficient manganese monoxide/graphene heterostructures. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Sun T, Zheng S, Nian Q, Tao Z. Hydrogen Bond Shielding Effect for High-Performance Aqueous Zinc Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107115. [PMID: 35098639 DOI: 10.1002/smll.202107115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Manganese oxides are highly desirable for the cathode of rechargeable aqueous zinc ion batteries (AZIBs) owing to their low cost and high abundance. However, the terrible structure stability of manganese oxide limits its practical application. Here, it is demonstrated that the hydrogen-bond shielding effect can improve the electrochemical performance of manganese oxide. Briefly, (NH4 )0.125 MnO2 (NHMO) is prepared by introducing NH4 + into the tunnel structure of α-MnO2 . The robust hydrogen bonds between N-H and host O atoms can stabilize the lattice structure of α-MnO2 and suppress the dissolution of Mn element. More importantly, it can also accelerate ions mobility kinetics by weakening the electrostatic interaction of host O atoms. Thus, the fabricated Zn||NHMO battery possesses impressive cycling life (99.5% of capacity retention over 10 000 cycles) and rate capability (109 mA h g-1 of discharge capacity at 6000 mA g-1 ). Comprehensive analyses reveal the essences of interfacial charge and bulk ions transfer. This finding opens new opportunities for the development of high-performance AZIBs.
Collapse
Affiliation(s)
- Tianjiang Sun
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Shibing Zheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qingshun Nian
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and, Engineering, University of Science and Technology of China Hefei, Anhui, 230026, China
| | - Zhanliang Tao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
38
|
Yang J, Yin B, Sun Y, Pan H, Sun W, Jia B, Zhang S, Ma T. Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives. NANO-MICRO LETTERS 2022; 14:42. [PMID: 34981202 PMCID: PMC8724388 DOI: 10.1007/s40820-021-00782-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/24/2021] [Indexed: 05/20/2023]
Abstract
The rapid advance of mild aqueous zinc-ion batteries (ZIBs) is driving the development of the energy storage system market. But the thorny issues of Zn anodes, mainly including dendrite growth, hydrogen evolution, and corrosion, severely reduce the performance of ZIBs. To commercialize ZIBs, researchers must overcome formidable challenges. Research about mild aqueous ZIBs is still developing. Various technical and scientific obstacles to designing Zn anodes with high stripping efficiency and long cycling life have not been resolved. Moreover, the performance of Zn anodes is a complex scientific issue determined by various parameters, most of which are often ignored, failing to achieve the maximum performance of the cell. This review proposes a comprehensive overview of existing Zn anode issues and the corresponding strategies, frontiers, and development trends to deeply comprehend the essence and inner connection of degradation mechanism and performance. First, the formation mechanism of dendrite growth, hydrogen evolution, corrosion, and their influence on the anode are analyzed. Furthermore, various strategies for constructing stable Zn anodes are summarized and discussed in detail from multiple perspectives. These strategies are mainly divided into interface modification, structural anode, alloying anode, intercalation anode, liquid electrolyte, non-liquid electrolyte, separator design, and other strategies. Finally, research directions and prospects are put forward for Zn anodes. This contribution highlights the latest developments and provides new insights into the advanced Zn anode for future research.
Collapse
Affiliation(s)
- Jinzhang Yang
- Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, Institute of Clean Energy Chemistry, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Bosi Yin
- Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, Institute of Clean Energy Chemistry, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Ying Sun
- Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, Institute of Clean Energy Chemistry, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, People's Republic of China
- State Key Laboratory of Clean Energy Utilization, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wenping Sun
- State Key Laboratory of Clean Energy Utilization, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Siwen Zhang
- Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, Institute of Clean Energy Chemistry, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China.
| | - Tianyi Ma
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
39
|
Wang Y, wang S, Yang L, Zhao F, Li H. A facile method for pre-insertion of cations and structural water in preparing durable zinc storage vanadate cathodes. CrystEngComm 2022. [DOI: 10.1039/d2ce00609j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For improving the overall energy storage performance of aqueous zinc-ion battery (ZIB) systems, it is important to identify new cathode materials with superior characteristics. Along these lines, in this work,...
Collapse
|