1
|
Wang W, Wu J, Ma C, Qi J, Bao K, Zhai L, Repaka DVM, Han X, Ma C, Wu Z, Wang L, Gong F, Liu Y, Chen Y, He Q. Confined Synthesis of 2D Molybdenum Diphosphide Nanosheets via Gas-Solid Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408782. [PMID: 39665374 DOI: 10.1002/smll.202408782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Indexed: 12/13/2024]
Abstract
Molybdenum diphosphide (MoP2), a topological semimetal, possesses distinctive properties and applications in catalysis, energy storage, and condensed matter physics. However, synthesizing high-purity MoP2 is complex and often results in undesired stoichiometric by-products. Additionally, the intrinsic orthorhombic crystal structure makes it difficult to synthesize MoP2 in a 2D morphology, which is desirable for device and energy applications. Here, the robust synthesis of MoP2 with a well-defined 2D morphology is achieved using the confined gas-solid phosphorization of a MoS2 precursor on substrates. The use of 2D precursors and the surface confinement provided by the substrate maintain the 2D morphology and result in a thickness-dependent stoichiometry of the phosphorization products. The chemical composition and crystal structure of MoP2 nanosheets are comprehensively characterized. At room temperature, MoP2 nanosheets exhibit metallic transport with high conductivity over 5500 S cm-1. Furthermore, MoP2 nanosheets demonstrate excellent electrocatalytic activity and durability for hydrogen evolution in both neutral and acid mediums. Notably, MoP2 nanosheets possess better durability than amorphous Pt film and commercial Pt/C, positioning MoP2 as a promising catalyst for hydrogen evolution in neutral mediums. This work advances the synthetic chemistry of 2D MoP2 and provides 2D semimetals with a novel member for future explorations in diverse fields.
Collapse
Affiliation(s)
- Wenbin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Jingkun Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
| | - Junlei Qi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Kai Bao
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - D V Maheswar Repaka
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), Singapore, 138632, Singapore
| | - Xiao Han
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Cong Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Zongxiao Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Lingzhi Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Feng Gong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Yingxia Liu
- Department of Systems Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
2
|
Gao H, Zhou D, Ping L, Wang Z, Hung NT, Cao J, Geiwitz M, Natale G, Lin YC, Burch KS, Saito R, Terrones M, Ling X. Downscaling of Non-Van der Waals Semimetallic W 5N 6 with Resistivity Preservation. ACS NANO 2025; 19:3362-3371. [PMID: 39817314 DOI: 10.1021/acsnano.4c12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The bulk phase of transition metal nitrides (TMNs) has long been a subject of extensive investigation due to their utility as coating materials, electrocatalysts, and diffusion barriers, attributed to their high conductivity and refractory properties. Downscaling TMNs into two-dimensional (2D) forms would provide valuable members to the existing 2D materials repertoire, with potential enhancements across various applications. Moreover, calculations have anticipated the emergence of uncommon physical phenomena in TMNs at the 2D limit. In this study, we use the atomic substitution approach to synthesize 2D W5N6 with tunable thicknesses from tens of nanometers down to 2.9 nm. The obtained flakes exhibit high crystallinity and smooth surfaces. Electrical measurements on 15 samples show an average electrical conductivity of 161.1 S/cm, which persists while thickness decreases from 45.6 to 2.9 nm. The observed weak gate-tuning effect suggests the semimetallic nature of the synthesized 2D W5N6. Further investigation of the conversion mechanism elucidates the crucial role of chalcogen vacancies in the precursor for initiating the reaction and strain in propagating the conversion. Our work introduces a desired semimetallic crystal to the 2D material library with mechanistic insights for future design of the synthesis.
Collapse
Affiliation(s)
- Hongze Gao
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, United States
| | - Da Zhou
- Department of Physics, The Pennsylvania State University, 104 Davey Laboratory, University Park, Pennsylvania 16802, United States
| | - Lu Ping
- Division of Materials Science and Engineering, Boston University, 15 St Mary's St., Boston, Massachusetts 02215, United States
| | - Zifan Wang
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, United States
| | - Nguyen Tuan Hung
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Jun Cao
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, United States
| | - Michael Geiwitz
- Department of Physics, Boston College, 140 Commonwealth Ave., Chestnut Hill, Massachusetts 02467, United States
| | - Gabriel Natale
- Department of Physics, Boston College, 140 Commonwealth Ave., Chestnut Hill, Massachusetts 02467, United States
| | - Yuxuan Cosmi Lin
- Department of Materials Science and Engineering, Texas A&M University, 575 Ross St., College Station, Texas 77843, United States
| | - Kenneth Stephen Burch
- Department of Physics, Boston College, 140 Commonwealth Ave., Chestnut Hill, Massachusetts 02467, United States
| | - Riichiro Saito
- Department of Physics, Tohoku University, Sendai 980-8578, Japan
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, 104 Davey Laboratory, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, 77 Pollock Rd., State College, Pennsylvania 16801, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, 116 Deike Building, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, Pollock Rd, University Park, Pennsylvania 16802, United States
| | - Xi Ling
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, United States
- Division of Materials Science and Engineering, Boston University, 15 St Mary's St., Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Zhang S, Liu H, Zhang F, Zheng X, Zhang X, Zhang B, Zhang T, Ao Z, Zhang X, Lan X, Yang X, Zhong M, Li J, Li B, Ma H, Duan X, He J, Zhang Z. Controllable Synthesis of WSe 2-WS 2 Lateral Heterostructures via Atomic Substitution. ACS NANO 2024; 18:30321-30331. [PMID: 39436689 DOI: 10.1021/acsnano.4c06597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The atomic substitution in two-dimensional (2D) materials is propitious to achieving compositionally engineered semiconductor heterostructures. However, elucidating the mechanism and developing methods to synthesize 2D heterostructures with atomic-scale precision are crucial. Here, we demonstrate the synthesis of monolayer WSe2-WS2 heterostructures with a relatively sharp interface from monolayer WSe2 using a chalcogen atom-exchange synthesis route at high temperatures for short periods. The substitution was initiated at the edges of monolayer WSe2 and the lateral diffuse along the heterointerface, and the reaction can be controlled by the precise reaction time and temperature. The lateral heterostructure and substitution process are studied by Raman and photoluminescence (PL) spectroscopies, electron microscopy, and device characterization, revealing a possible mechanism of strain-induced transformation. Our findings demonstrate a highly controllable synthesis of 2D layered materials through atom substitutional chemistry and provide a simple route to control the atomic structure.
Collapse
Affiliation(s)
- Shunhui Zhang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, Hunan, China
| | - Hang Liu
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Fen Zhang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, Hunan, China
| | - Xiaoming Zheng
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiangzhe Zhang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Baihui Zhang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, Hunan, China
| | - Tian Zhang
- School of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Zhikang Ao
- School of Flexible Electronics (Future Technologies), Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xuyang Zhang
- School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Xiang Lan
- School of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiangdong Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, China
| | - Mianzeng Zhong
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, Hunan, China
| | - Jia Li
- Hunan Key Laboratory of Two-Dimensional Materials and State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Huifang Ma
- School of Flexible Electronics (Future Technologies), Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xidong Duan
- Hunan Key Laboratory of Two-Dimensional Materials and State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jun He
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, Hunan, China
| | - Zhengwei Zhang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
4
|
Lv L, Dong W, Li D, Liang Q, Wang P, Zhao C, Luo Z, Zhang C, Huang X, Zheng S, Cui Y, Zhou J, Gao Y. Synthesis of Ultrathin FeS Nanosheets via Chemical Vapor Deposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402182. [PMID: 39161191 DOI: 10.1002/smll.202402182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Fe-based 2D materials exhibit rich chemical compositions and structures, which may imply many unique physical properties and promising applications. However, achieving controllable preparation of ultrathin non-layered FeS crystal on SiO2/Si substrate remains a challenge. Herein, the influence of temperature and molecular sieves is reported on the synthesis of ultrathin FeS nanosheets with a thickness as low as 2.3 nm by molecular sieves-assisted chemical vapor deposition (CVD). The grown FeS nanosheets exhibit a non-layered hexagonal NiAs structure and belong to the P63/mmc space group. The inverted symmetry broken structure is confirmed by the angle-resolved second harmonic generation (SHG) test. In particular, the 2D FeS nanosheets exhibit exceptional metallic behavior, with conductivity up to 1.63 × 106 S m-1 at 300 K for an 8 nm thick sample, which is higher than that of reported 2D metallic materials. This work provides a significant contribution to the synthesis and characterization of 2D non-layered Fe-based materials.
Collapse
Affiliation(s)
- Lu Lv
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Weikang Dong
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Dian Li
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Qingrong Liang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Ping Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Chunyu Zhao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Zhaokai Luo
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Chengyu Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiangwei Huang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Shoujun Zheng
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Yuanyuan Cui
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Jiadong Zhou
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Yanfeng Gao
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, China
| |
Collapse
|
5
|
Gao H, Wang Z, Cao J, Lin YC, Ling X. Advancing Nanoelectronics Applications: Progress in Non-van der Waals 2D Materials. ACS NANO 2024; 18:16343-16358. [PMID: 38899467 DOI: 10.1021/acsnano.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Extending the inventory of two-dimensional (2D) materials remains highly desirable, given their excellent properties and wide applications. Current studies on 2D materials mainly focus on the van der Waals (vdW) materials since the discovery of graphene, where properties of atomically thin layers have been found to be distinct from their bulk counterparts. Beyond vdW materials, there are abundant non-vdW materials that can also be thinned down to 2D forms, which are still in their early stage of exploration. In this review, we focus on the downscaling of non-vdW materials into 2D forms to enrich the 2D materials family. This underexplored group of 2D materials could show potential promise in many areas such as electronics, optics, and magnetics, as has happened in the vdW 2D materials. Hereby, we will focus our discussion on their electronic properties and applications of them. We aim to motivate and inspire fellow researchers in the 2D materials community to contribute to the development of 2D materials beyond the widely studied vdW layered materials for electronic device applications. We also give our insights into the challenges and opportunities to guide researchers who are desirous of working in this promising research area.
Collapse
Affiliation(s)
- Hongze Gao
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Zifan Wang
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Jun Cao
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Yuxuan Cosmi Lin
- Department of Materials Science and Engineering, Texas A&M University 575 Ross Street, College Station, Texas 77843, United States
| | - Xi Ling
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Division of Materials Science and Engineering, Boston University 15 St Mary's Street, Boston, Massachusetts 02215, United States
| |
Collapse
|
6
|
Feng Y, Khalid M, Xiao H, Hu P. Two-dimensional material assisted-growth strategy: new insights and opportunities. NANOTECHNOLOGY 2024; 35:322001. [PMID: 38688246 DOI: 10.1088/1361-6528/ad4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
The exploration and synthesis of novel materials are integral to scientific and technological progress. Since the prediction and synthesis of two-dimensional (2D) materials, it is expected to play an important role in the application of industrialization and the information age, resulting from its excellent physical and chemical properties. Currently, researchers have effectively utilized a range of material synthesis techniques, including mechanical exfoliation, redox reactions, chemical vapor deposition, and chemical vapor transport, to fabricate two-dimensional materials. However, despite their rapid development, the widespread industrial application of 2D materials faces challenges due to demanding synthesis requirements and high costs. To address these challenges, assisted growth techniques such as salt-assisted, gas-assisted, organic-assisted, and template-assisted growth have emerged as promising approaches. Herein, this study gives a summary of important developments in recent years in the assisted growth synthesis of 2D materials. Additionally, it highlights the current difficulties and possible benefits of the assisted-growth approach for 2D materials. It also highlights novel avenues of development and presents opportunities for new lines of investigation.
Collapse
Affiliation(s)
- Yuming Feng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Mansoor Khalid
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Haiying Xiao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - PingAn Hu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
- Key Lab of Microsystem and Microstructure of Ministry of Education, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|
7
|
Zhang K, Zhang T, You J, Zheng X, Zhao M, Zhang L, Kong J, Luo Z, Huang S. Low-Temperature Vapor-Phase Growth of 2D Metal Chalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307587. [PMID: 38084456 DOI: 10.1002/smll.202307587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/07/2023] [Indexed: 05/12/2024]
Abstract
2D metal chalcogenides (MCs) have garnered significant attention from both scientific and industrial communities due to their potential in developing next-generation functional devices. Vapor-phase deposition methods have proven highly effective in fabricating high-quality 2D MCs. Nevertheless, the conventionally high thermal budgets required for synthesizing 2D MCs pose limitations, particularly in the integration of multiple components and in specialized applications (such as flexible electronics). To overcome these challenges, it is desirable to reduce the thermal energy requirements, thus facilitating the growth of various 2D MCs at lower temperatures. Numerous endeavors have been undertaken to develop low-temperature vapor-phase growth techniques for 2D MCs, and this review aims to provide an overview of the latest advances in low-temperature vapor-phase growth of 2D MCs. Initially, the review highlights the latest progress in achieving high-quality 2D MCs through various low-temperature vapor-phase techniques, including chemical vapor deposition (CVD), metal-organic CVD, plasma-enhanced CVD, atomic layer deposition (ALD), etc. The strengths and current limitations of these methods are also evaluated. Subsequently, the review consolidates the diverse applications of 2D MCs grown at low temperatures, covering fields such as electronics, optoelectronics, flexible devices, and catalysis. Finally, current challenges and future research directions are briefly discussed, considering the most recent progress in the field.
Collapse
Affiliation(s)
- Kenan Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, 999077, China
| | - Tianyi Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiawen You
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, 999077, China
| | - Xudong Zheng
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mei Zhao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Lijie Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jing Kong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, 999077, China
- Hong Kong University of Science and Technology-Shenzhen Research Institute, Nanshan, Shenzhen, 518057, China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
8
|
Wang X, Chen A, Wu X, Zhang J, Dong J, Zhang L. Synthesis and Modulation of Low-Dimensional Transition Metal Chalcogenide Materials via Atomic Substitution. NANO-MICRO LETTERS 2024; 16:163. [PMID: 38546814 PMCID: PMC10978568 DOI: 10.1007/s40820-024-01378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/17/2024] [Indexed: 04/01/2024]
Abstract
In recent years, low-dimensional transition metal chalcogenide (TMC) materials have garnered growing research attention due to their superior electronic, optical, and catalytic properties compared to their bulk counterparts. The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications. In this context, the atomic substitution method has emerged as a favorable approach. It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely, crystal structures, and inherent properties of the resulting materials. In this review, we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional, one-dimensional and two-dimensional TMC materials. The effects of substituting elements, substitution ratios, and substitution positions on the structures and morphologies of resulting material are discussed. The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided, emphasizing the role of atomic substitution in achieving these advancements. Finally, challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
Collapse
Affiliation(s)
- Xuan Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Akang Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - XinLei Wu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jiatao Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
| | - Leining Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
9
|
Tang J, Ge F, Chen J, Zhou D, Zhan G, Liu J, Yuan J, Shi X, Zhao P, Fan X, Su Y, Liu Z, He J, Tang J, Zha C, Zhang L, Song X, Wang L. A Droplet Method for Synthesis of Multiclass Ultrathin Metal Halides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301573. [PMID: 37365697 DOI: 10.1002/smll.202301573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/28/2023] [Indexed: 06/28/2023]
Abstract
2D metal halides have attracted increasing research attention in recent years; however, it is still challenging to synthesize them via liquid-phase methods. Here it is demonstrated that a droplet method is simple and efficient for the synthesis of multiclass 2D metal halides, including trivalent (BiI3 , SbI3 ), divalent (SnI2 , GeI2 ), and monovalent (CuI) ones. In particular, 2D SbI3 is first experimentally achieved, of which the thinnest thickness is ≈6 nm. The nucleation and growth of these metal halide nanosheets are mainly determined by the supersaturation of precursor solutions that are dynamically varying during the solution evaporation. After solution drying, the nanosheets can fall on the surface of many different substrates, which further enables the feasible fabrication of related heterostructures and devices. With SbI3 /WSe2 being a good demonstration, the photoluminescence intensity and photo responsivity of WSe2 is obviously enhanced after interfacing with SbI3 . The work opens a new pathway for 2D metal halides toward widespread investigation and applications.
Collapse
Affiliation(s)
- Jin Tang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Feixiang Ge
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jinlian Chen
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jing Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiaxiao Yuan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xinyu Shi
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Peiyi Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xinlin Fan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Yu Su
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Zicong Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiahao He
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiaqi Tang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chenyang Zha
- Institute of Applied Physics and Materials Engineering (IAPME), Zhuhai UM Science & Technology Research Institute (ZUMRI), University of Macau, Taipa, Macau SAR, 999078, China
| | - Linghai Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xuefen Song
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| |
Collapse
|
10
|
Gao J, Zhang W, Yan X, Zhang X, Wang S, Yang G. Metallic CrP 2 monolayer: potential applications in energy storage and conversion. Phys Chem Chem Phys 2023; 25:24705-24711. [PMID: 37668165 DOI: 10.1039/d3cp02917d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Phosphorus-rich compounds have emerged as a promising class of energy storage and conversion materials due to their interesting structures and electrochemical properties. Herein, we propose that a metallic CrP2 monolayer, isomorphic to 1H-phase MoS2, is a good prospect as an anode for K-ion batteries and a catalyst for hydrogen evolution through first-principles calculations. The CrP2 monolayer demonstrates not only a desirable high K storage capacity (940 mA h g-1) but also a low K-ion diffusion barrier (0.10 eV) and average open circuit voltage (0.40 V). On the other hand, its Gibbs free energy (0.02 eV)/active site density is superior/comparable to that of commercial Pt, resulting from the contribution of the lone pair electrons of the P atom. Its high structural stability and intrinsic metallicity can ensure high safety and performance during the cyclic process. These interesting properties make the CrP2 monolayer a promising multifunctional material for energy storage and conversion devices.
Collapse
Affiliation(s)
- Jiayu Gao
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Wenyuan Zhang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Xu Yan
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Xiaohua Zhang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Sheng Wang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Guochun Yang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
11
|
Yuan J, Zhang X, Zhou D, Ge F, Zhong J, Zhao S, Ou Z, Zhan G, Zhang X, Li C, Tang J, Bai Q, Zhang J, Zhu C, Wang T, Ruan L, Zhu C, Song X, Huang W, Wang L. Excessive Iodine Enabled Ultrathin Inorganic Perovskite Growth at the Liquid-Air Interface. Angew Chem Int Ed Engl 2023; 62:e202218546. [PMID: 36853171 DOI: 10.1002/anie.202218546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
The liquid-air interface offers a platform for the in-plane growth of free-standing materials. However, it is rarely used for inorganic perovskites and ultrathin non-layered perovskites. Herein the liquid-air interfacial synthesis of inorganic perovskite nanosheets (Cs3 Bi2 I9 , Cs3 Sb2 I9 ) is achieved simply by drop-casting the precursor solution with only the addition of iodine. The products are inaccessible without iodine addition. The thickness and lateral size of these nanosheets can be adjusted through the iodine concentration. The high volatility of the iodine spontaneously drives precursors that normally stay in the liquid to the liquid-air interface. The iodine also repairs in situ iodine vacancies during perovskite growth, giving enhanced optical and optoelectronic properties. The liquid-air interfacial growth of ultrathin perovskites provides multi-degree-of-freedom for constructing perovskite-based heterostructures and devices at atomic scale.
Collapse
Affiliation(s)
- Jiaxiao Yuan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xiaomin Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Feixiang Ge
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jingxian Zhong
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Sihan Zhao
- School of Physical and Mathematical Sciences, Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Zhenwei Ou
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xu Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Congzhou Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jin Tang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Qi Bai
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Junran Zhang
- School of Physical and Mathematical Sciences, Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Ti Wang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Longfei Ruan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Xuefen Song
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Key Laboratory of Flexible Electronics (KLOFE), Shaanxi Institute of Flexible Electronics (SIFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| |
Collapse
|
12
|
Wang W, Qi J, Zhai L, Ma C, Ke C, Zhai W, Wu Z, Bao K, Yao Y, Li S, Chen B, Repaka DVM, Zhang X, Ye R, Lai Z, Luo G, Chen Y, He Q. Preparation of 2D Molybdenum Phosphide via Surface-Confined Atomic Substitution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203220. [PMID: 35902244 DOI: 10.1002/adma.202203220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The emerging nonlayered 2D materials (NL2DMs) are sparking immense interest due to their fascinating physicochemical properties and enhanced performance in many applications. NL2DMs are particularly favored in catalytic applications owing to the extremely large surface area and low-coordinated surface atoms. However, the synthesis of NL2DMs is complex because their crystals are held together by strong isotropic covalent bonds. Here, nonlayered molybdenum phosphide (MoP) with well-defined 2D morphology is synthesized from layered molybdenum dichalcogenides via surface-confined atomic substitution. During the synthesis, the molybdenum dichalcogenide nanosheet functions as the host matrix where each layer of Mo maintains their hexagonal arrangement and forms isotropic covalent bonds with P that substitutes S, resulting in the conversion from layered van der Waals material to a covalently bonded NL2DM. The MoP nanosheets converted from few-layer MoS2 are single crystalline, while those converted from monolayers are amorphous. The converted MoP demonstrates metallic charge transport and desirable performance in the electrocatalytic hydrogen evolution reaction (HER). More importantly, in contrast to MoS2 , which shows edge-dominated HER performance, the edge and basal plane of MoP deliver similar HER performance, which is correlated with theoretical calculations. This work provides a new synthetic strategy for high-quality nonlayered materials with well-defined 2D morphology for future exploration.
Collapse
Affiliation(s)
- Wenbin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Junlei Qi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chengxuan Ke
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zongxiao Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Kai Bao
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - D V Maheswar Repaka
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), Singapore, 138632, Singapore
| | - Xiao Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ruquan Ye
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Guangfu Luo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
13
|
Lu F, Wang H, Zeng M, Fu L. Infinite possibilities of ultrathin III-V semiconductors: Starting from synthesis. iScience 2022; 25:103835. [PMID: 35243223 PMCID: PMC8857587 DOI: 10.1016/j.isci.2022.103835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ultrathin III-V semiconductors have been receiving tremendous research interest over the past few years. Owing to their exotic structures, excellent physical and chemical properties, ultrathin III-V semiconductors are widely applied in the field of electronics, optoelectronics, and solar energy. However, the strong chemical bonds in layers are the bottleneck of the two-dimensionalization preparation process, which hinders the further development of ultrathin III-V semiconductors. Some effective methods to synthesize ultrathin III-V semiconductors have been reported recently. In this perspective, we briefly introduce the structures and properties of ultrathin III-V semiconductors firstly. Then, we comprehensively summarize the synthetic strategies of ultrathin III-V semiconductors, mainly focusing on space confinement, atomic substitution, adhesion energy regulation, and epitaxial growth. Finally, we summarize the current challenges and propose the development directions of ultrathin III-V semiconductors in the future.
Collapse
Affiliation(s)
- Fangyun Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Huiliu Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
14
|
Wang R, Xie KJ, Fu Q, Wu M, Pan GF, Lou DW, Liang FS. Transformation of Thioacids into Carboxylic Acids via a Visible-Light-Promoted Atomic Substitution Process. Org Lett 2022; 24:2020-2024. [PMID: 35263540 DOI: 10.1021/acs.orglett.2c00481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A visible-light-promoted atomic substitution reaction for transforming thiocacids into carboxylic acids with dimethyl sulfoxide (DMSO) as the oxygen source has been developed, affording various alkyl and aryl carboxylic acids in over 90% yields. The atomic substitution process proceeds smoothly through the photochemical reactivity of the formed hydrogen-bonding adduct between thioacids and DMSO. A DMSO-involved proton-coupled electron transfer (PCET) and the simultaneous generation of thiyl and hydroxyl radicals are proposed to be key steps for realizing the transformation.
Collapse
Affiliation(s)
- Rui Wang
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Kai-Jun Xie
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Qiang Fu
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Min Wu
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Gao-Feng Pan
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Da-Wei Lou
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Fu-Shun Liang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|