1
|
Xiao J, Li J, Yang S, Liu M, Xue S, Liu X, Yu M, Li L, Wang J, Wen B, Yang G, Ding S. Synergistic Microstructure-driven Polarization and Conductive Loss in 3D Chrysanthemum-like MoC@NiCo LDH Composite for Ultra-high Microwave Absorption Performance. Inorg Chem 2025; 64:4698-4711. [PMID: 39996586 DOI: 10.1021/acs.inorgchem.5c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The development of efficient electromagnetic wave (EMW) absorbing materials relies on rational microstructures and loss mechanisms. This study innovatively proposes a design strategy based on micronano structural regulation─heterogeneous interface construction─synergistic loss optimization and fabricates a MoC@NiCo layered double hydroxide (LDH) composite material with a 3D chrysanthemum-like morphology. The petal-like microstructure enhances the multiple reflection and scattering effects of the incident EMWs, while heterogeneous interfaces further stimulate interface polarization. Meanwhile, density functional theory (DFT) guides the regulation of polarization and conduction loss synergy for efficient EMW energy attenuation. Experimental results show that the composite material, with a thickness of only 2.4 mm, has a minimum reflection loss (RLmin) of -57.9 dB, and an maximum effective absorption bandwidth (EABmax) covering 5.4 GHz, encompassing the entire C, X, and Ku frequency bands. Radar cross-sectional (RCS) testing further verifies the potential of the material to effectively attenuate EMWs in practical applications. This study provides theoretical basis and method guidance for the efficient design of absorbing materials through the synergistic regulation of polarization loss and conductivity loss and lays a theoretical foundation for the further design of EMW absorbing materials that meet more stringent practical application requirements.
Collapse
Affiliation(s)
- Jiyuan Xiao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiatian Li
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuai Yang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mengjie Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Song Xue
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaofeng Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Miao Yu
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Lili Li
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Alpha ESS Company Limited, Nantong 226300, China
| | - Jisheng Wang
- Shandong Ande Machinery Technology Company Limited, Liaocheng, 252000, China
| | - Bo Wen
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guorui Yang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Ma Y, Wang S, Wu ZS. Photolithographic Microfabrication of Microbatteries for On-Chip Energy Storage. NANO-MICRO LETTERS 2025; 17:105. [PMID: 39775337 PMCID: PMC11711423 DOI: 10.1007/s40820-024-01625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Microbatteries (MBs) are crucial to power miniaturized devices for the Internet of Things. In the evolutionary journey of MBs, fabrication technology emerges as the cornerstone, guiding the intricacies of their configuration designs, ensuring precision, and facilitating scalability for mass production. Photolithography stands out as an ideal technology, leveraging its unparalleled resolution, exceptional design flexibility, and entrenched position within the mature semiconductor industry. However, comprehensive reviews on its application in MB development remain scarce. This review aims to bridge that gap by thoroughly assessing the recent status and promising prospects of photolithographic microfabrication for MBs. Firstly, we delve into the fundamental principles and step-by-step procedures of photolithography, offering a nuanced understanding of its operational mechanisms and the criteria for photoresist selection. Subsequently, we highlighted the specific roles of photolithography in the fabrication of MBs, including its utilization as a template for creating miniaturized micropatterns, a protective layer during the etching process, a mold for soft lithography, a constituent of MB active component, and a sacrificial layer in the construction of micro-Swiss-roll structure. Finally, the review concludes with a summary of the key challenges and future perspectives of MBs fabricated by photolithography, providing comprehensive insights and sparking research inspiration in this field.
Collapse
Affiliation(s)
- Yuan Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Sen Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
- School of Transportation Engineering, Dalian Jiaotong University, Dalian, 116028, People's Republic of China.
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| |
Collapse
|
3
|
Zheng W, Cui Z, Liu C, Yuan L, Li S, Lin L, Meng T, Yang L, Tong Y, Shu D. Tailoring hierarchical MnO 2 nanostructures on self-supporting cathodes for high-mass-loading zinc-ion batteries. Chem Sci 2024; 15:20303-20314. [PMID: 39568922 PMCID: PMC11575624 DOI: 10.1039/d4sc06182a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024] Open
Abstract
Aqueous zinc-ion batteries (AZIBs) with MnO2 cathodes have promising application prospects; however, their performance is hindered by their low efficiency and insufficient life. By leveraging the nanomicellar properties of cetyltrimethylammonium bromide (CTAB), a hierarchical δ-MnO2 with 2D/3D structure was directionally grown on a modified carbon cloth (CC) collector for realizing high-mass-loading AZIBs. Experimental results reveal the synergistic effects of micro/nano hierarchically structured MnO2-CC heterointerfaces in accelerating the electron migration and transfer rate of Zn2+/H+. Functioning as a conductive skeleton and flexible substrate, CC efficiently improves the reaction kinetics and buffers the interfacial stress resulting from the structural evolution of MnO2 during the long-term electrode reaction. This phenomenon is investigated using advanced characterisation techniques, including X-ray absorption fine structure spectroscopy, Kelvin probe force microscopy, and theoretical simulations. The fabricated electrode exhibits superior electrochemical properties, such as high capacity (409.6 mA h g-1 at 0.1 A g-1) and reliable cycling performance (with 86.6% capacity retention after 2000 cycles at 1.0 A g-1). Even at a high mass loading of 6.0 mg cm-2, the battery retains 81.8% of its original capacity after 1300 cycles. The proposed interface engineering strategy provides valuable insights into realising high-loading and long-life AZIBs.
Collapse
Affiliation(s)
- Weijie Zheng
- School of Chemistry, South China Normal University Guangzhou 510006 People's Republic of China
| | - Zhibiao Cui
- School of Chemistry, South China Normal University Guangzhou 510006 People's Republic of China
| | - Cong Liu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University Guangzhou 510275 People's Republic of China
| | - Libei Yuan
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong Wollongong NSW 2522 Australia
| | - Shengsong Li
- School of Chemistry, South China Normal University Guangzhou 510006 People's Republic of China
| | - Lilin Lin
- School of Chemistry, South China Normal University Guangzhou 510006 People's Republic of China
| | - Tao Meng
- School of Chemistry, South China Normal University Guangzhou 510006 People's Republic of China
| | - Liangui Yang
- School of Chemistry, South China Normal University Guangzhou 510006 People's Republic of China
| | - Yexiang Tong
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University Guangzhou 510275 People's Republic of China
| | - Dong Shu
- School of Chemistry, South China Normal University Guangzhou 510006 People's Republic of China
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, South China Normal University Guangzhou 510006 People's Republic of China
| |
Collapse
|
4
|
Dong J, Hou J, Peng Y, Zhang Y, Liu H, Long J, Park S, Liu T, Huang Y. Breathable and Stretchable Epidermal Electronics for Health Management: Recent Advances and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409071. [PMID: 39420650 DOI: 10.1002/adma.202409071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/07/2024] [Indexed: 10/19/2024]
Abstract
Advanced epidermal electronic devices, capable of real-time monitoring of physical, physiological, and biochemical signals and administering appropriate therapeutics, are revolutionizing personalized healthcare technology. However, conventional portable electronic devices are predominantly constructed from impermeable and rigid materials, which thus leads to the mechanical and biochemical disparities between the devices and human tissues, resulting in skin irritation, tissue damage, compromised signal-to-noise ratio (SNR), and limited operational lifespans. To address these limitations, a new generation of wearable on-skin electronics built on stretchable and porous substrates has emerged. These substrates offer significant advantages including breathability, conformability, biocompatibility, and mechanical robustness, thus providing solutions for the aforementioned challenges. However, given their diverse nature and varying application scenarios, the careful selection and engineering of suitable substrates is paramount when developing high-performance on-skin electronics tailored to specific applications. This comprehensive review begins with an overview of various stretchable porous substrates, specifically focusing on their fundamental design principles, fabrication processes, and practical applications. Subsequently, a concise comparison of various methods is offered to fabricate epidermal electronics by applying these porous substrates. Following these, the latest advancements and applications of these electronics are highlighted. Finally, the current challenges are summarized and potential future directions in this dynamic field are explored.
Collapse
Affiliation(s)
- Jiancheng Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiayu Hou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yidong Peng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuxi Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Haoran Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jiayan Long
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yunpeng Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
5
|
Zou X, Zhao X, Pang B, Ma H, Zeng K, Zhi S, Guo H. Interstitial Oxygen Acts as Electronic Buffer Stabilizing High-Entropy Alloys for Trifunctional Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412954. [PMID: 39436092 DOI: 10.1002/adma.202412954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Indexed: 10/23/2024]
Abstract
Understanding the effect of elements' oxygen affinity is essential for comprehending high-entropy alloys' (HEAs) complete properties. However, the origin of HEAs' oxygen-containing structure and stability remains poorly understood, primarily due to their diverse components, hindering synthesis and analysis. Herein, the O-doping HEAs (HEA-O) have demonstrated outstanding performance and stability in electrolyzed water and Zinc-air batteries which can be reassembled after being stable for more than 1600 h when the zinc consumption is over. The experiment and DFT simulation demonstrate that Cr with strong oxygen affinity can introduce more oxygen into the system of HEAs. Consequently, interstitial oxygens act as electronic buffers making the binding energy of other metal elements move to a higher level. Additionally, O-doping lowers the d-band center promoting electrochemical activity and increasing vacancy formation energies of metal active sites leading to super stability. The study provides significant insights into the design and comprehension of interstitial oxygen-doped HEAs.
Collapse
Affiliation(s)
- Xiaoxiao Zou
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan University, Kunming, 650091, P. R. China
| | - Xinyu Zhao
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan University, Kunming, 650091, P. R. China
| | - Bohuai Pang
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan University, Kunming, 650091, P. R. China
| | - Hang Ma
- R & D Center, Yunnan Yuntianhua Co., Ltd, Kunming, 650228, P. R. China
| | - Kun Zeng
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan University, Kunming, 650091, P. R. China
| | - Songsong Zhi
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, Henan, 453007, P. R. China
| | - Hong Guo
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
6
|
Jesudass SC, Surendran S, Lim Y, Jo M, Janani G, Choi H, Kwon G, Jin K, Park H, Kim TH, Sim U. Realizing the Electrode Engineering Significance Through Porous Organic Framework Materials for High-Capacity Aqueous Zn-Alkaline Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406539. [PMID: 39506391 DOI: 10.1002/smll.202406539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Indexed: 11/08/2024]
Abstract
Energy storage technologies are eminently developed to address renewable energy utilization efficiently. Porous framework materials possess high surface area and pore volume, allowing for efficient ion transportation and storage. Their unique structure facilitates fast electron transfer, leading to improved battery kinetics. Porous organic framework materials like metal-organic (MOF) and covalent organic (COF) frameworks have immense potential in enhancing the charge/discharge performances of aqueous Zn-alkaline batteries. Organic frameworks and their derivatives can be modified feasibly to exhibit significant chemical stability, enabling them to tolerate the harsh battery environment. Zn-alkaline batteries can achieve enhanced energy density, longer lifespan, and improved rechargeability by incorporating MOFs and COFs, such as electrodes, separators, or electrolyte additives, into the battery architecture. The present review highlights the significant electrode design strategies based on porous framework materials for aqueous Zn-alkaline batteries, such as Zn-Ni, Zn-Mn, Zn-air, and Zn-N2/NO3 batteries. Besides, the discussion on the issues faced by the Zn anode and the essential anode design strategies to solve the issues are also included.
Collapse
Affiliation(s)
- Sebastian Cyril Jesudass
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Subramani Surendran
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Yoongu Lim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Minjun Jo
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Gnanaprakasam Janani
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Heechae Choi
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Gibum Kwon
- Department of Mechanical Engineering, University of Kansas, Lawrence, 66045, USA
| | - Kyoungsuk Jin
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunjung Park
- Department of Materials Science and Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Tae-Hoon Kim
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Uk Sim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
- Research Institute, NEEL Sciences, INC., Naju, Jeollanamdo, 58326, Republic of Korea
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| |
Collapse
|
7
|
Lv X, Yang A, Wang M, Nie K, Deng J, Sun X. Flash Joule Heating Synthesis of Layer-Stacked Vanadium Oxide/Graphene Hybrids within Seconds for High-Performance Aqueous Zinc-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52290-52298. [PMID: 39292995 DOI: 10.1021/acsami.4c10376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Vanadium oxides have been regarded as highly promising cathodes for aqueous zinc-ion batteries (ZIBs). However, obtaining high-performance vanadium oxide-based cathodes suitable for industrial application remains a significant challenge due to the need for cost-effective, straightforward, and efficient preparation methods. Herein, we present a facile and rapid synthesis of a composite cathode, consisting of layer-stacked VO2/V2O5 and graphene-like carbon nanosheets, in just 2.5 s by treating the commercial V2O5 powder via a flash Joule heating strategy. When employed as the cathode for ZIBs, the resulting composite delivers a comparable rate capacity of 459 mA h g-1 at 0.2 A g-1 and remarkable cycle stabilities of 355.5 mA h g-1 after 2500 cycles at 1.0 A g-1 and 169.5 mA h g-1 after 10,000 cycles at 10 A g-1, respectively. Further electrochemical analysis reveals that the impressive performance is attributed to the accelerated charge transfer and the alleviated structure degradation, facilitated by the abundant sites and a built-in electric field of the layer-stacked VO2/V2O5 heterostructure, as well as the excellent conductivity of graphene-like carbon nanosheets. This work introduces a unique approach for ultrafast and low-cost fabrication of high-performance vanadium oxide-based composite cathodes toward efficient ZIBs.
Collapse
Affiliation(s)
- Xiaoxin Lv
- Automotive Engineering Research Institute, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Aomen Yang
- Automotive Engineering Research Institute, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Menglian Wang
- Automotive Engineering Research Institute, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiujun Deng
- Automotive Engineering Research Institute, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xuhui Sun
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Jia M, Jin C, Yu J, Li S. Boosting Zn 2+ Storage Kinetics by K-Doping of Sodium Vanadate for Zinc-Ion Batteries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4703. [PMID: 39410274 PMCID: PMC11478306 DOI: 10.3390/ma17194703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Na5V12O32 is an attractive cathode candidate for aqueous zinc-ion batteries (AZIBs) by virtue of its low-cost and high specific capacity (>300 mAh g-1). However, its intrinsically inferior electronic conductivity and structural instability result in an unfavorable rate performance and cyclability. Herein, K-doped Na5V12O32 (KNVO) was developed to promote its ionic/electronic migration, and thus enhance the Zn2+ storage capability. The as-produced KNVO displays a superior capacity of 353.5 mAh g-1 at 0.1 A g-1 and an excellent retentive capacity of 231.8 mAh g-1 after 1000 cycles at 5 A g-1. Even under a high mass of 5.3 mg cm-2, the KNVO cathode can still maintain a capacity of 220.5 mAh g-1 at 0.1 A g-1 and outstanding cyclability without apparent capacity decay after 2000 cycles. In addition, the Zn2+ storage kinetics of the KNVO cathode is investigated through multiple analyses.
Collapse
Affiliation(s)
| | | | | | - Shaohui Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.J.)
| |
Collapse
|
9
|
Pei MJ, Shuai YK, Gao X, Chen JC, Liu Y, Yan W, Zhang J. Ni and Co Active Site Transition and Competition in Fluorine-Doped NiCo(OH) 2 LDH Electrocatalysts for Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400139. [PMID: 38497843 DOI: 10.1002/smll.202400139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/25/2024] [Indexed: 03/19/2024]
Abstract
The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the active center competitive mechanism between Ni and Co. The doped F-atoms can directly impact the valence state of metal atoms or exert an indirect influence through the dehydrogenation, thereby modulating the active center. As the F-atoms are progressively aggregate, the eg orbitals of Ni and Co transition from e2 g to e1 g, and subsequently to e0 g. The corresponding valence state elevates from +2 to +3, and then to +4, signifying an initial increase followed by a subsequent decrease in the electrocatalytic performance. Furthermore, a series of F-NiCo LDH catalysts are synthesized to verify the eg orbital occupancy analysis, and the catalytic OER overpotentials are 303, 243, 240, and 246 mV at the current density of 10 mA cm-2, respectively, which coincides well with the theoretical prediction. This investigation not only provides novel mechanistic insights into the transition and competition of Ni and Co in F-NiCo LDH catalysts but also establishes a foundation for the design of high-performance catalysts.
Collapse
Affiliation(s)
- Mao-Jun Pei
- Institute for New Energy Materials and Engineering, College of Materials Science & Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yan-Kang Shuai
- Institute for New Energy Materials and Engineering, College of Materials Science & Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xiang Gao
- Institute for New Energy Materials and Engineering, College of Materials Science & Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jia-Cheng Chen
- Institute for New Energy Materials and Engineering, College of Materials Science & Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yao Liu
- Institute for New Energy Materials and Engineering, College of Materials Science & Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wei Yan
- Institute for New Energy Materials and Engineering, College of Materials Science & Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jiujun Zhang
- Institute for New Energy Materials and Engineering, College of Materials Science & Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
10
|
Wu Z, Hu X, Cai C, Wang Y, Li X, Wen J, Li B, Gong H. Controlled three-dimensional leaf-like NiCoO 2@NiCo layered double hydroxide heterostructures for oxygen evolution electrocatalysts in rechargeable Zn-air batteries. J Colloid Interface Sci 2024; 657:75-82. [PMID: 38035421 DOI: 10.1016/j.jcis.2023.11.157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Rechargeable zinc-air batteries (ZABs) have garnered attention as a viable choice for large-scale energy storage due to their advantageous characteristics, such as high energy density and cost-effectiveness. Strategies aimed at improving the kinetics of the oxygen evolution reaction (OER) through advanced electrocatalytic materials or structural designs can significantly enhance the efficiency and longevity of ZABs. In this study, we introduce a three-dimensional (3D) leaf-vein system heterojunction architecture. In this structure, NiCoO2 nanowire arrays form the central vein, surrounded by an outer leaf composed of NiCo layered double hydroxide (LDH) nanosheets. All these components are integrated onto a substrate made of Ni foam. Notably, when tested in an alkaline environment, the NiCoO2@NiCo LDH exhibited an overpotential of 272 mV at a current density of 10 mA cm-2, and extended durability evaluations over 12 h underscored its robustness at 99.76 %. The rechargeable ZABs achieved a peak power density of 149 mW cm-2. Furthermore, the NiCoO2@NiCo LDH demonstrated stability by maintaining high round-trip efficiencies throughout more than 680 cycles (equivalent to 340 h) under galvanostatic charge-discharge cycling at 5 mA cm-2. The leaf-vein system heterojunction significantly increased the active sites of the catalysts, facilitating charge transport, improving electronic conductivity, and enhancing overall stability.
Collapse
Affiliation(s)
- Zhenkun Wu
- School of Science, Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing University of Technology, Chongqing 400054, China
| | - Xiaolin Hu
- School of Science, Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing University of Technology, Chongqing 400054, China.
| | - Chengbin Cai
- School of Science, Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing University of Technology, Chongqing 400054, China
| | - Yuru Wang
- School of Science, Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing University of Technology, Chongqing 400054, China
| | - Xiang Li
- School of Science, Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing University of Technology, Chongqing 400054, China
| | - Jie Wen
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Bangxing Li
- School of Science, Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing University of Technology, Chongqing 400054, China
| | - Hengxiang Gong
- School of Science, Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
11
|
Qiu J, Duan Y, Li S, Zhao H, Ma W, Shi W, Lei Y. Insights into Nano- and Micro-Structured Scaffolds for Advanced Electrochemical Energy Storage. NANO-MICRO LETTERS 2024; 16:130. [PMID: 38393483 PMCID: PMC10891041 DOI: 10.1007/s40820-024-01341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/30/2023] [Indexed: 02/25/2024]
Abstract
Adopting a nano- and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy storage devices at all technology readiness levels. Due to various challenging issues, especially limited stability, nano- and micro-structured (NMS) electrodes undergo fast electrochemical performance degradation. The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement, even though it only occupies complementary and facilitating components for the main mechanism. However, extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies. This review will aim at highlighting these NMS scaffold design strategies, summarizing their corresponding strengths and challenges, and thereby outlining the potential solutions to resolve these challenges, design principles, and key perspectives for future research in this field. Therefore, this review will be one of the earliest reviews from this viewpoint.
Collapse
Affiliation(s)
- Jiajia Qiu
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
- Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China
| | - Yu Duan
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Shaoyuan Li
- Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China
| | - Huaping Zhao
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Wenhui Ma
- Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China.
- School of Science and Technology, Pu'er University, Pu'er, 665000, People's Republic of China.
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany.
| |
Collapse
|
12
|
Yang X, Wang X, Xiang Y, Ma L, Huang W. Asymmetric Electrolytes Design for Aqueous Multivalent Metal Ion Batteries. NANO-MICRO LETTERS 2023; 16:51. [PMID: 38099969 PMCID: PMC10724106 DOI: 10.1007/s40820-023-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/19/2023] [Indexed: 12/18/2023]
Abstract
With the rapid development of portable electronics and electric road vehicles, high-energy-density batteries have been becoming front-burner issues. Traditionally, homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode, which are essential for high-voltage batteries. Meanwhile, homogeneous electrolyte is difficult to achieve bi- or multi-functions to meet different requirements of electrodes. In comparison, the asymmetric electrolyte with bi- or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte. Consequently, the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan. In this review, we comprehensively divide asymmetric electrolytes into three categories: decoupled liquid-state electrolytes, bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes. The design principles, reaction mechanism and mutual compatibility are also studied, respectively. Finally, we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density, and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics.
Collapse
Affiliation(s)
- Xiaochen Yang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Xinyu Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yue Xiang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Longtao Ma
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, People's Republic of China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
13
|
Nan J, Sun Y, Yang F, Zhang Y, Li Y, Wang Z, Wang C, Wang D, Chu F, Wang C, Zhu T, Jiang J. Coupling of Adhesion and Anti-Freezing Properties in Hydrogel Electrolytes for Low-Temperature Aqueous-Based Hybrid Capacitors. NANO-MICRO LETTERS 2023; 16:22. [PMID: 37982913 PMCID: PMC10661583 DOI: 10.1007/s40820-023-01229-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/24/2023] [Indexed: 11/21/2023]
Abstract
Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety, mechanical and thermal stability and easy-to-direct stacking. Hydrogel electrolytes are appealing solid-state electrolytes because of eco-friendliness, high conductivity and intrinsic flexibility. However, the electrolyte/electrode interfacial contact and anti-freezing properties of current hydrogel electrolytes are still challenging for practical applications of zinc-ion capacitors. Here, we report a class of hydrogel electrolytes that couple high interfacial adhesion and anti-freezing performance. The synergy of tough hydrogel matrix and chemical anchorage enables a well-adhered interface between hydrogel electrolyte and electrode. Meanwhile, the cooperative solvation of ZnCl2 and LiCl hybrid salts renders the hydrogel electrolyte high ionic conductivity and mechanical elasticity simultaneously at low temperatures. More significantly, the Zn||carbon nanotubes hybrid capacitor based on this hydrogel electrolyte exhibits low-temperature capacitive performance, delivering high-energy density of 39 Wh kg-1 at -60 °C with capacity retention of 98.7% over 10,000 cycles. With the benefits of the well-adhered electrolyte/electrode interface and the anti-freezing hydrogel electrolyte, the Zn/Li hybrid capacitor is able to accommodate dynamic deformations and function well under 1000 tension cycles even at -60 °C. This work provides a powerful strategy for enabling stable operation of low-temperature zinc-ion capacitors.
Collapse
Affiliation(s)
- Jingya Nan
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Yue Sun
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Fusheng Yang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Yijing Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Yuxi Li
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Zihao Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Chuchu Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Dingkun Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, Jiangsu, People's Republic of China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Chunpeng Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, Jiangsu, People's Republic of China.
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China.
| | - Tianyu Zhu
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA.
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, Jiangsu, People's Republic of China.
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China.
| |
Collapse
|
14
|
Alghamdi NS, Rana M, Peng X, Huang Y, Lee J, Hou J, Gentle IR, Wang L, Luo B. Zinc-Bromine Rechargeable Batteries: From Device Configuration, Electrochemistry, Material to Performance Evaluation. NANO-MICRO LETTERS 2023; 15:209. [PMID: 37650939 PMCID: PMC10471567 DOI: 10.1007/s40820-023-01174-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023]
Abstract
Zinc-bromine rechargeable batteries (ZBRBs) are one of the most powerful candidates for next-generation energy storage due to their potentially lower material cost, deep discharge capability, non-flammable electrolytes, relatively long lifetime and good reversibility. However, many opportunities remain to improve the efficiency and stability of these batteries for long-life operation. Here, we discuss the device configurations, working mechanisms and performance evaluation of ZBRBs. Both non-flow (static) and flow-type cells are highlighted in detail in this review. The fundamental electrochemical aspects, including the key challenges and promising solutions, are discussed, with particular attention paid to zinc and bromine half-cells, as their performance plays a critical role in determining the electrochemical performance of the battery system. The following sections examine the key performance metrics of ZBRBs and assessment methods using various ex situ and in situ/operando techniques. The review concludes with insights into future developments and prospects for high-performance ZBRBs.
Collapse
Affiliation(s)
- Norah S Alghamdi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11564, Riyadh, Saudi Arabia
| | - Masud Rana
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xiyue Peng
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yongxin Huang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jaeho Lee
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ian R Gentle
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lianzhou Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bin Luo
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|