1
|
Zhang Z, Yu M, Ma C, He L, He X, Yuan B, Zhang L, Zou C, Gao Y, Yang H. A Janus Smart Window for Temperature-Adaptive Radiative Cooling and Adjustable Solar Transmittance. NANO-MICRO LETTERS 2025; 17:233. [PMID: 40287558 PMCID: PMC12033136 DOI: 10.1007/s40820-025-01740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025]
Abstract
The advancement of sophisticated smart windows exhibiting superior thermoregulation capabilities in both solar spectrum and long-wave infrared range maintains a prominent objective for researchers in this field. In this study, a Janus window is proposed and prepared based on polymer-stabilized liquid-crystal films/thermochromic materials. It can achieve switchable front long-wave infrared emissivity (εFront) and solar modulation ability (ΔTsol) through dynamic flipping, making it suitable for different seasonal energy-saving requirements. Outdoor experiments show that under daytime illumination, the indoor temperature decreases by 8 °C, and the nighttime temperature drops by 5 °C. MATLAB simulation calculations indicate that the daytime cooling power is 93 W m-2, while the nighttime cooling power reaches 142 W m-2. Interestingly, by modifying the conductive layer, it can effectively shield electromagnetic radiation (within the X-band frequency range (8.2-12.4) GHz). Energy simulation reveals the substantial superiority of this device in energy savings compared with single-layer polymer-stabilized liquid crystal, poly(N-isopropyl acrylamide), and normal glass when applied in different climate zones. This research presents a compelling opportunity for the development of sophisticated smart windows characterized by exceptional thermoregulation capabilities.
Collapse
Affiliation(s)
- Zuowei Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology, Beijing, 100083, People's Republic of China
| | - Meina Yu
- Institute for Advanced Materials and Technology, University of Science and Technology, Beijing, 100083, People's Republic of China.
| | - Cong Ma
- School of Materials Science and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Longxiang He
- Institute for Advanced Materials and Technology, University of Science and Technology, Beijing, 100083, People's Republic of China
| | - Xian He
- Institute for Advanced Materials and Technology, University of Science and Technology, Beijing, 100083, People's Republic of China
| | - Baohua Yuan
- Institute for Advanced Materials and Technology, University of Science and Technology, Beijing, 100083, People's Republic of China
| | - Luoning Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology, Beijing, 100083, People's Republic of China
| | - Cheng Zou
- Institute for Advanced Materials and Technology, University of Science and Technology, Beijing, 100083, People's Republic of China.
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology, Beijing, 100083, People's Republic of China.
| | - Yanzi Gao
- Institute for Advanced Materials and Technology, University of Science and Technology, Beijing, 100083, People's Republic of China
| | - Huai Yang
- Institute for Advanced Materials and Technology, University of Science and Technology, Beijing, 100083, People's Republic of China.
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology, Beijing, 100083, People's Republic of China.
- School of Materials Science and Engineering, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
2
|
Chougle A, Rezk A, Afzal SUB, Mohammed AK, Shetty D, Nayfeh A. Evolving Role of Conjugated Polymers in Nanoelectronics and Photonics. NANO-MICRO LETTERS 2025; 17:230. [PMID: 40272616 PMCID: PMC12021782 DOI: 10.1007/s40820-025-01748-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/25/2025] [Indexed: 04/27/2025]
Abstract
Conjugated polymers (CPs) have emerged as an interesting class of materials in modern electronics and photonics, characterized by their unique delocalized π-electron systems that confer high flexibility, tunable electronic properties, and solution processability. These organic polymers present a compelling alternative to traditional inorganic semiconductors, offering the potential for a new generation of optoelectronic devices. This review explores the evolving role of CPs, exploring the molecular design strategies and innovative approaches that enhance their optoelectronic properties. We highlight notable progress toward developing faster, more efficient, and environmentally friendly devices by analyzing recent advancements in CP-based devices, including organic photovoltaics, field-effect transistors, and nonvolatile memories. The integration of CPs in flexible sustainable technologies underscores their potential to revolutionize future electronic and photonic systems. As ongoing research pushes the frontiers of molecular engineering and device architecture, CPs are poised to play an essential role in shaping next-generation technologies that prioritize performance, sustainability, and adaptability.
Collapse
Affiliation(s)
- Amaan Chougle
- Department of Electrical Engineering, Khalifa University, 127788, Abu Dhabi, UAE
| | - Ayman Rezk
- Department of Electrical Engineering, Khalifa University, 127788, Abu Dhabi, UAE
| | - Syed Usama Bin Afzal
- Department of Electrical Engineering, Khalifa University, 127788, Abu Dhabi, UAE
| | | | - Dinesh Shetty
- Department of Chemistry, Khalifa University, 127788, Abu Dhabi, UAE.
- Center for Catalysis and Separation (CeCaS), Khalifa University, 127788, Abu Dhabi, UAE.
| | - Ammar Nayfeh
- Department of Electrical Engineering, Khalifa University, 127788, Abu Dhabi, UAE.
- Research and Innovation Center for Graphene and 2D Materials (RIC-2D), Khalifa University, Abu Dhabi, UAE.
| |
Collapse
|
3
|
Zeng R, Han F, Zhong W, Zhang M, Tan S, Lin Y, Deng J, Zhou G, Kan L, Zhu L, Gao X, Zhu J, Zhao W, Xu S, Xue X, Hao B, Zhou Z, Wu X, Wang C, Fink Z, Tang Z, Jing H, Russell TP, Zhang Y, Liu F. Lowering Toxicity of Solvent in Organic Solar Cells Manufacturing for 20% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501812. [PMID: 40269599 DOI: 10.1002/adma.202501812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/26/2025] [Indexed: 04/25/2025]
Abstract
Thin film organic photovoltaics (OPVs) aim to harness solar energy environmentally friendly, highly efficient, and cost-effective means, thereby offering a sustainable solution for energy production and ecological preservation. Efforts are undertook to optimize engineering preparation technology for OPV devices and mini-modules, through the development of low-ecological-impact solvent processing method. A newly developed solvent engineering strategy employing environmentally benign o-xylene (OXY) with synergistic dual additives (DIM and DIB) achieved an optimal power conversion efficiency (PCE) of 20.0% (JSC of 26.6 mA cm-2, VOC of 0.935 V, FF of 80.3%) alongside exceptional stability metrics (82%-1500h). The mini-module processed with optimized TCE:OXY (1:3 v/v) solvent demonstrated scalable performance reaching 17.6% (18.4 cm2), representing the highest performance achieved in the development safe solvent based OPVs. Suitable microscale patterns contributed to a broader range of receiving angles, enabling more flexible installation geometries for building-integrated applications.
Collapse
Affiliation(s)
- Rui Zeng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fei Han
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenkai Zhong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Senke Tan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Lin
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University, Shanghai, 201620, China
| | - Jiawei Deng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guanqing Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lixuan Kan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xingyu Gao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinge Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wutong Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shengjie Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaonan Xue
- Shanghai OPV Solar New Energy Technology Co., Ltd, Shanghai, 201210, China
| | - Bonan Hao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zichun Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuefei Wu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Cheng Wang
- Advanced light source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Zachary Fink
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA, 01003, USA
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University, Shanghai, 201620, China
| | - Hao Jing
- Shanghai OPV Solar New Energy Technology Co., Ltd, Shanghai, 201210, China
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, Shandong, 256401, China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, Shandong, 256401, China
- Suzhou Laboratory, Suzhou, 215100, China
| |
Collapse
|
4
|
Wen L, Mao H, Ban M, Tan L, Zhang J, Qin Z, Zhang L, Chen Y. Constructing Controlled Vertical Gradient Morphology in Pseudo-Planar Heterojunction Organic Photovoltaics via Self-Assembled Interface Orthogonal Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503813. [PMID: 40223370 DOI: 10.1002/adma.202503813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/21/2025] [Indexed: 04/15/2025]
Abstract
Precisely regulating vertically distributed morphology by blade-coating process is crucial to realize high-performance large-scale pseudo-planar heterojunction organic photovoltaics (OPVs). However, the thermodynamic motion and random diffusion of donor/acceptor (D/A) generated from the differences in surface energy and concentration during sequentially blade-coating process will cause great challenges for obtaining ideal active layer morphology. Herein, this study have proposed a self-assembled interface orthogonal strategy by introducing low surface energy guest (N2200) to form protective layer on PM6 surface, which counteracts erosion from orthogonal solution of acceptor to enhance continuity of D/A phases, thus promoting directional carrier migration and effectively suppressing energetic disorder. Finally, N2200-modified device achieves the highest power conversion efficiency (PCE) of 19.86%, and large-area module (16.94 cm2) exhibits exceptional PCE (16.43%). This investigation presents innovative insights into morphology issue triggered by molecular motion and provides an effective method for air-printing large-scale OPVs with precisely controlled morphology based on non-halogenated solvent.
Collapse
Affiliation(s)
- Lin Wen
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Houdong Mao
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Mofei Ban
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Licheng Tan
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jiayou Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Zhao Qin
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Lifu Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
5
|
Ma R, Zou B, Hai Y, Luo Y, Luo Z, Wu J, Yan H, Li G. Triplet State Suppression for Energy Loss Reduction in 20% Nonhalogenated Solvent Processed Binary Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500861. [PMID: 40091429 PMCID: PMC12038535 DOI: 10.1002/adma.202500861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Indexed: 03/19/2025]
Abstract
Boosting power conversion efficiency (PCE) of organic solar cells (OSCs) has been restricted by its undesirably high energy loss, especially for those nonhalogenated solvent-processed ones. Here,a dichloro-methoxylated terminal group in an asymmetric small molecular acceptor design, which realizes a significantly reduced non-radiative energy loss (0.179 eV) compared to its symmetric counterpart (0.202 eV), is reported. Consequently, the device efficiency is improved by up to 20% for PM6:BTP-eC9-4ClO, without sacrificing the photon harvest or charge transport ability of the control system PM6:BTP-eC9. Further characterizations reveal the asymmetric acceptor BTP-eC9-4ClO's blend film demonstrates a suppressed triplet state formation, enabled by an enhanced electron delocalization. In addition, the asymmetric BTP-eC9-4ClO is found to be thermally stabler than BTP-eC9, and thus providing an improved device stability, whose T80 value reaches > 7800 h under 80 °C anneal in N2 via linear extrapolation. This work represents state-of-the-art device performance for nonhalogenated solvent-processed binary OSCs with certified results (19.45%).
Collapse
Affiliation(s)
- Ruijie Ma
- Department of Electrical and Electronic EngineeringResearch Institute for Smart Energy (RISE)Photonic Research Institute (PRI)The Hong Kong Polytechnic UniversityHong Kong999077China
| | - Bosen Zou
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water BayHong Kong999077China
| | - Yulong Hai
- The Hong Kong University of Science and Technology (Guangzhou)Function HubAdvanced Materials ThrustNansha Guangzhou511400China
| | - Yongmin Luo
- The Hong Kong University of Science and Technology (Guangzhou)Function HubAdvanced Materials ThrustNansha Guangzhou511400China
| | - Zhenghui Luo
- Guangdong Provincial Key Laboratory of New Energy Materials Service SafetyShenzhen Key Laboratory of New Information Display and Storage MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Jiaying Wu
- The Hong Kong University of Science and Technology (Guangzhou)Function HubAdvanced Materials ThrustNansha Guangzhou511400China
| | - He Yan
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water BayHong Kong999077China
| | - Gang Li
- Department of Electrical and Electronic EngineeringResearch Institute for Smart Energy (RISE)Photonic Research Institute (PRI)The Hong Kong Polytechnic UniversityHong Kong999077China
| |
Collapse
|
6
|
Lang Y, Zhang Y, Xia H, Liu K, Fu Y, Han L, Fong PWK, Li D, Zhang M, Wong W, Lu X, Yang T, He F, Yang Y, Li G. Kinetics Manipulation Enabled by Solubility Control Toward 19% Organic Solar Cells via Compatible Air Coating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2420096. [PMID: 39988866 PMCID: PMC11983249 DOI: 10.1002/adma.202420096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/06/2025] [Indexed: 02/25/2025]
Abstract
Blade coating is a promising tool for upscaling organic solar cells (OSCs). However, the performances of blade-coated OSCs still lag behind their spin-coated counterparts, limiting their competitive edge towards commercialization. One of the main reasons is that controlling the film aggregation kinetics and morphology becomes challenging during the transition from spin coating to blade coating, especially when using high boiling point solvents, which can result in excessive aggregation. Therefore, a deeper understanding and appraisal of film formation kinetics influenced by coating methods is crucial. In this work, it is demonstrated that ink solubility tuning by incorporating a twisted third component (BTP-4Cl) can induce rapid crystallization behavior and promote fine phase separation between the donor polymer (PM6) and the acceptor (BTP-eC9) in blade coating. As a result, a high power conversion efficiency (PCE) of 19.67% is obtained in OSCs (0.04 cm2), one of the state-of-the-art efficiencies among the reported blade-coated OSCs (19.76% for the spin-coated devices). In addition, it is found that the inhibited phase aggregation contributes to enhancing the light stability of the device. This strategy offered novel insights into the effectiveness of solubility-tuning approaches for achieving highly efficient and stable OSCs under open-air coating conditions.
Collapse
Affiliation(s)
- Yongwen Lang
- The Department of Electrical and Electronic EngineeringResearch Institute for Smart Energy (RISE)Guangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesThe Hong Kong Polytechnic UniversityHong Kong999077China
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Ying Zhang
- The Department of Electrical and Electronic EngineeringResearch Institute for Smart Energy (RISE)Guangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesThe Hong Kong Polytechnic UniversityHong Kong999077China
- Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesLA90095USA
| | - Hao Xia
- The Department of Electrical and Electronic EngineeringResearch Institute for Smart Energy (RISE)Guangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Kuan Liu
- The Department of Electrical and Electronic EngineeringResearch Institute for Smart Energy (RISE)Guangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Yuang Fu
- Department of PhysicsThe Chinese University of Hong KongNew TerritoriesHong Kong999077China
| | - Liang Han
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Patrick W. K. Fong
- The Department of Electrical and Electronic EngineeringResearch Institute for Smart Energy (RISE)Guangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Dongyang Li
- The Department of Electrical and Electronic EngineeringResearch Institute for Smart Energy (RISE)Guangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Miao Zhang
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hum KowloonHong Kong999077China
| | - Wai‐Yeung Wong
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hum KowloonHong Kong999077China
| | - Xinhui Lu
- Department of PhysicsThe Chinese University of Hong KongNew TerritoriesHong Kong999077China
| | - Tiangang Yang
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Feng He
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Yang Yang
- Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesLA90095USA
| | - Gang Li
- The Department of Electrical and Electronic EngineeringResearch Institute for Smart Energy (RISE)Guangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesThe Hong Kong Polytechnic UniversityHong Kong999077China
| |
Collapse
|
7
|
Li Z, Wang Q, Chen Q, Meng S, Bai Y, Xue L, Xue J, Zhang ZG. Dimeric Small Molecule Acceptors via Terminal-End Connections: Effect of Flexible Linker Length on Photovoltaic Performance. Macromol Rapid Commun 2025; 46:e2400628. [PMID: 39225656 DOI: 10.1002/marc.202400628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The dimerization of small molecule acceptors (SMAs) holds significant potential by combining the advantages of both SMAs and polymer acceptors in realizing high power conversion efficiency (PCE) and operational stability in organic solar cells (OSCs). However, advancements in the selection and innovation of dimeric linkers are still challenging in enhancing their performance. In this study, three new dimeric acceptors, namely DY-Ar-4, DY-Ar-5, and DY-Ar-6 are synthesized, by linking two Y-series SMA subunits via an "end-to-end" strategy using flexible spacers (octyl, decyl, and dodecyl, respectively). The influence of spacer lengths on device performance is systematically investigated. The results indicate that DY-Ar-5 exhibits more compact and ordered packing, leading to an optimal morphology. OSCs based on PM6: DY-Ar-5 achieves a maximum PCE of 15.76%, attributes to enhance and balance carrier mobility, and reduce carrier recombination. This dimerization strategy using suitable non-conjugated linking units provides a rational principle for designing high-performance non-fullerene acceptors.
Collapse
Affiliation(s)
- Zhengkai Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qingyuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shixin Meng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yang Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, Henan, 463000, P. R. China
| | - Lingwei Xue
- Yaoshan Laboratory, Pingdingshan University, Pingdingshan, Henan, 467000, P. R. China
| | - Jing Xue
- Petrochemical Research Institute of PetroChina Company Limited, Beijing, 102206, P. R. China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
8
|
Hu H, Jin Z, Ge J, Shen C, Xie L, Song W, Ye Q, Ding P, Li J, Han C, Yu X, Liu Q, Ge Z. 17.68% Efficiency Nonhalogenated Solvent-Processed Organic Solar Cell Modules Driven by Seed Crystal Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2420308. [PMID: 40012310 DOI: 10.1002/adma.202420308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Organic solar cells now surpass 20% efficiency in small-area devices, but the use of chloroform as a solvent poses industrial scalability challenges because of its limited ability of uniform film formation and toxicity. High-boiling, non-halogenated solvents are being studied as alternatives, but their low solubility and slow evaporation complicate crystallization process. Here, the study introduces a seed crystal strategy by incorporating oligo (ethylene glycol)-modified small-molecule donors to optimize the nucleation and crystallization. The asymmetric BDTF-CA2O molecule, which combines the strong crystallinity of rodanine group and the low nucleation barrier of oligo (ethylene glycol) chain, significantly promotes the crystallization of the polymer donor PM6. Moreover, BDTF-CA2O effectively suppresses excessive phase separation, and optimizes vertical distribution, resulting in enhanced exciton extraction, balanced carrier transport, and reduced recombination losses. Small-area toluene-processed devices achieve a power conversion efficiency of 19.67%. In the realm of large-area organic solar cell modules, this strategy leads to a record active area efficiency of 17.68% and aperture area efficiency of 16.80% (certified at 16.26%), which is the highest reported for organic solar cell modules >10 cm2 to date. These achievements highlight the potential of the seed crystal strategy for large-scale production of efficient, large-area organic solar cell modules.
Collapse
Affiliation(s)
- Haotian Hu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ze Jin
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinfeng Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Cheng Shen
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Xie
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Wei Song
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Qinrui Ye
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pengfei Ding
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chengcheng Han
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Xiaoqi Yu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Quan Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Wang J, Wang P, Chen T, Zhao W, Wang J, Lan B, Feng W, Liu H, Liu Y, Wan X, Long G, Kan B, Chen Y. Isomerism Effect of 3D Dimeric Acceptors for Non-Halogenated Solvent-Processed Organic Solar Cells with 20 % Efficiency. Angew Chem Int Ed Engl 2025; 64:e202423562. [PMID: 39723552 DOI: 10.1002/anie.202423562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
Organic photovoltaic materials that can be processed via non-halogenated solvents are crucial for the large-area manufacturing of organic solar cells (OSCs). However, the limited available of electron acceptors with adequate solubility and favorable molecular packing presents a challenge in achieving efficient non-halogenated solvent-processed OSCs. Herein, inspired by the three-dimensional dimeric acceptor CH8-4, we employed a molecular isomerization strategy to synthesize its isomers, CH8-4A and CH8-4B, by tuning the position of fluorine (F) atom in the central unit. The differing intramolecular fluorine-sulfur non-covalent interactions among these isomers led to differences in molecular pre-aggregation abilities (CH8-4B
Collapse
Affiliation(s)
- Jia Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Peiran Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tianqi Chen
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Wenkai Zhao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Jiaying Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Baofa Lan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Wanying Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hang Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongsheng Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiangjian Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Yongsheng Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Ren J, Wang J, Qiao J, Chen Z, Hao X, Zhang S, Hou J. Manipulating Aggregation Kinetics toward Efficient All-Printed Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418353. [PMID: 39906018 DOI: 10.1002/adma.202418353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/23/2025] [Indexed: 02/06/2025]
Abstract
The power conversion efficiencies (PCEs) of all-printed organic solar cells (OSCs) remain inferior to those of spin-coated devices, primarily due to morphological variations within the bulk heterojunction processed via diverse coating/printing techniques. Herein, cyclohexyl is introduced as outer side chains to formulate a non-fullerene acceptor, BTP-Cy, aimed at modulating the molecular aggregation in solution and subsequent film formation kinetics during printing. Investigations demonstrate that BTP-Cy molecule with cyclohexyl side chains exhibits enhanced intermolecular π-π stacking, optimal solution aggregation size, and favorable phase separation. Consequently, PB3:FTCC-Br:BTP-Cy-based OSCs achieve remarkable PCEs of 20.2% and 19.5% via spin-coating and blade-coating, respectively. Furthermore, a 23.6 cm2 module exhibits a remarkable efficiency of 16.7%. This study offers a fresh perspective on tailoring the film formation kinetics of photoactive materials during printing through molecular design, paving a novel path to enhance the efficiency of all-printed OSCs.
Collapse
Affiliation(s)
- Junzhen Ren
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqiu Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiawei Qiao
- School of Physics, Shandong University, Shandong, 250100, China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaotao Hao
- School of Physics, Shandong University, Shandong, 250100, China
| | - Shaoqing Zhang
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Li Z, Vagin S, Zhang J, Guo R, Sun K, Jiang X, Guan T, Schwartzkopf M, Rieger B, Ma CQ, Müller-Buschbaum P. Suppressed Degradation Process of PBDB-TF-T1:BTP-4F-12-Based Organic Solar Cells with Solid Additive Atums Green. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9475-9484. [PMID: 39883833 PMCID: PMC11826503 DOI: 10.1021/acsami.4c21699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Solid additives have garnered significant attention due to their numerous advantages over liquid additives. This study explores the potential of the green-fluorescent conjugated polymer denoted Atums Green as a solid additive in green-solvent-based PBDB-TF-T1:BTP-4F-12 solar cells. Even tiny amounts of Atums Green doping significantly improve the device performance. For the reference solar cell without any additive, we find that device degradation is not caused by chemical redox reactions but by changes in crystallinity and microstructure evolution during aging in air under illumination. Operando GIWAXS and GISAXS are used to investigate the structure evolution. We discover a four-stage degradation process for the reference cell. In general, the lattice spacing and crystallite coherence length decrease, while the domain sizes increase, which causes the loss of shirt-circuit current JSC and fill factor FF. Furthermore, a decomposition component is detected in GIWAXS and GISAXS, corresponding to the loss of the open-circuit voltage VOC. Atums Green doping effectively suppresses the evolution of crystallinity and domain sizes as well as the continuous decomposition, thereby enhancing the device stability under illumination in air. This finding reveals the kinetic degradation process of organic solar cells, establishes a correlation between the morphological properties and device performance, and further demonstrates the promising potential of Atums Green doping in organic solar cells.
Collapse
Affiliation(s)
- Zerui Li
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
- i-Lab
& Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of
Sciences (CAS), Ruoshui Road 398, SEID, SIP, Suzhou 215123, China
| | - Sergei Vagin
- Department
of Chemistry, WACKER Chair of Macromolecular Chemistry, TUM School
of Natural Sciences, Technical University
of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Jinsheng Zhang
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Renjun Guo
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Karlsruhe, Germany
| | - Kun Sun
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Xiongzhuo Jiang
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Tianfu Guan
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | | | - Bernhard Rieger
- Department
of Chemistry, WACKER Chair of Macromolecular Chemistry, TUM School
of Natural Sciences, Technical University
of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Chang-Qi Ma
- i-Lab
& Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of
Sciences (CAS), Ruoshui Road 398, SEID, SIP, Suzhou 215123, China
| | - Peter Müller-Buschbaum
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
12
|
Wang P, Feng F, Liu T, Wang X, Yan X, Du Z, Yang C, Li Y, Bao X. New Polymeric Acceptors Based on Benzo[1,2-b:4,5-b'] Difuran Moiety for Efficient All-Polymer Solar Cells. Macromol Rapid Commun 2025; 46:e2400787. [PMID: 39692538 DOI: 10.1002/marc.202400787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/05/2024] [Indexed: 12/19/2024]
Abstract
In order to realize high-performance bulk-heterojunction (BHJ) all-polymer solar cells, achieving appropriate aggregation and moderate miscibility of the polymer blends is one critical factor. Herein, this study designs and synthesizes two new polymer acceptors (PAs), namely PYF and PYF-Cl, containing benzo[1,2-b:4,5-b'] difuran (BDF) moiety with/without chlorine atoms on the thiophene side groups. Thanks to the preferred planar structure and high electronegativity of the BDF units, the resultant PAs generate strong intermolecular interactions and π-π stacking in both the neat and blend films. At the same time, the BDF moieties flanked with bulky 2D side groups increase intermolecular space and restrain the excessive entanglement of polymer chains for developed heterojunction miscibility attributes. Consequently, appropriate polymer crystallinity and moderate miscibility between PAs and polymer donor (PD) contribute to harmonious blending morphologies. Eventually, the PM6:PYF-based solar cells achieve an optimal efficiency of 11.82%. More encouragingly, the PYF serves as an efficient guest acceptor and realizes an improved efficiency of 17.05% in the PM6:PYIT:PYF ternary systems, which is much higher than that of the host system (15.87%). This study highlights the importance of BDF moiety in designing new PAs for high-performance all-polymer solar cells.
Collapse
Affiliation(s)
- Pengchao Wang
- School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Fan Feng
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Tong Liu
- School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xiaoning Wang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xintong Yan
- School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Zhengkun Du
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yonghai Li
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Xichang Bao
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| |
Collapse
|
13
|
Wang Y, Tang Y, Ouyang Y, Wu W, Patterson A, Alqahtani O, Melody T, Zhou K, Lu G, Min J, Zhang C, Yan H, Fan Q, Jiang L, Collins BA, Ma W. A Mixed-Pure Planar Heterojunction Structure of Active Layers for Efficient Sequential Blade-Coating Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407435. [PMID: 39511883 DOI: 10.1002/smll.202407435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/13/2024] [Indexed: 11/15/2024]
Abstract
Precise modulating the vertical structure of active layers to boost charge transfer is an effective way to achieve high power conversion efficiencies (PCEs) in organic solar cells (OSCs). Herein, efficient OSCs with a well-controlled vertical structure are realized by a rapid film-forming method combining low boiling point solvent and the sequential blade-coating (SBC) technology. The results of grazing incident wide-angle X-ray scattering measurement show that the vertical component distribution is varied by changing the processing solvent. Novel characterization technique such as tilt resonant soft X-ray scattering is used to test the vertical structure of the films, demonstrating the dichloromethane (DCM)-processed film is truly planar heterojunction. The devices with chloroform (CF) processed upper layer show an increased mixed phase region compared to these devices with toluene (TL) or -DCM-, which is beneficial for improving charge generation and achieving a superior PCE of 17.36%. Despite significant morphological varies, the DCM-processed devices perform slightly lower PCE of 16.66%, which is the highest value in truly planar heterojunction devices, demonstrating higher morphological tolerance. This work proposes a solvent-regulating method to optimize the vertical structure of active layers through SBC technology, and provides a practical guidance for the optimization of the active-layer microstructure.
Collapse
Affiliation(s)
- Yilin Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yabing Tang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanni Ouyang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Weiwei Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Acacia Patterson
- Department of Physics and Astronomy, Washington State University, Pullman, WA, 99164, USA
| | - Obaid Alqahtani
- Department of Physics and Astronomy, Washington State University, Pullman, WA, 99164, USA
- Department of Physics, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Kingdom of Saudi Arabia
| | - Tanner Melody
- Department of Physics and Astronomy, Washington State University, Pullman, WA, 99164, USA
| | - Ke Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Han Yan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Long Jiang
- State Key Laboratory of Oil and Gas Equipment, CNPC Tubular Goods Research Institute, Xi'an, Shaanxi, 710077, China
| | - Brian A Collins
- Department of Physics and Astronomy, Washington State University, Pullman, WA, 99164, USA
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
14
|
Wang K, Gao J, Wang H, Guo Q, Zhang J, Guo X, Zhang M. Enhanced Fill Factor and Efficiency of Ternary Organic Solar Cells by a New Asymmetric Non-Fullerene Small Molecule Acceptor. CHEMSUSCHEM 2024; 17:e202400691. [PMID: 38805339 DOI: 10.1002/cssc.202400691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Asymmetric non-fullerene small molecules acceptor (as-NF-SMAs) exhibit greater vitality in photovoltaic materials compared to their symmetric counterparts due to their larger dipole moments and stronger intermolecular interactions, which facilitate exciton dissociation and charge transmission in organic solar cells (OSCs). Here, we introduced a new as-NF-SMAs, named IDT-TNIC, as the third component in ternary organic solar cells (TOSCs). The asymmetric IDT-TNIC used indacenodithiophene (IDT) as the central core, alkylthio-thiophene as a unilateral π-bridge and extended end groups as electron-withdrawing. Due to the non-covalent conformational lock (NCL) established between O⋅⋅⋅S and S⋅⋅⋅S, the IDT-TNIC molecule preserves its coplanar structure effectively. Furthermore, IDT-TNIC exhibits complementary absorption and excellent compatibility with donor and acceptor materials, as well as optimized ladder energy level arrangement, resulting in a higher and more balanced μh/μe value, more homogeneous and suitable phase separation morphology in TOSCs. Thus, the PCE of the TOSCs reached 17 % when the weight ratio of PM6 : Y6 : IDT-TNIC was 1 : 1.1 : 0.1, and it is noteworthy that when the device area was increased to 1 cm2, the PCE could still be maintained at over 14 %. Detailed studies and analysis indicate that IDT-TNIC has great potential as a third component in OSCs and for large-scale printing in the future.
Collapse
Affiliation(s)
- Kun Wang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 451191, China
| | - Jingshun Gao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 451191, China
| | - Huiyan Wang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 451191, China
| | - Qing Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xia Guo
- National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Maojie Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
15
|
Liao C, Xu X, Yang T, Qiu W, Duan Y, Li R, Yu L, Peng Q. Tetrahydrofuran Processable Organic Solar Cells with 19.45% Efficiency Realized by Introducing High Molecular Dipole Unit Into the Terpolymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411071. [PMID: 39400367 DOI: 10.1002/adma.202411071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/22/2024] [Indexed: 10/15/2024]
Abstract
Developing organic solar cells (OSCs) processable with halogen-free, non-aromatic solvents is crucial for practical applications, yet challenging due to the limited solubility of most photoactive materials. This study introduces high-performance terpolymers processable in tetrahydrofuran (THF) by incorporating dithienophthalimide (DPI) into the PM6 backbone. DPI extends the absorption band, lowers HOMO levels, and improves THF solubility and film crystallinity through its large dipole moment effect. Optimal PBD-10:L8-BO devices processed with THF achieved a competitive power conversion efficiency (PCE) of 18.79%, approaching chloroform-processed devices (19.04%). By introducing PBTz-F as a second donor, ternary OSCs reached an impressive 19.45% PCE when processed with THF. This improvement stems from enhanced photon generation, improved morphology, better charge transport, longer exciton lifetimes, efficient charge dissociation and collection, and suppressed recombination. These PCEs of 18.79% and 19.45% for binary and ternary blend OSCs, respectively, represent the highest reported efficiencies for OSCs processed with halogen-free, non-aromatic solvents. This work demonstrates significant progress in eco-friendly OSC fabrication, paving the way for more sustainable and commercially viable organic photovoltaic technologies.
Collapse
Affiliation(s)
- Chentong Liao
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Xiaopeng Xu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Tongyan Yang
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wuke Qiu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yuwei Duan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Lab, Suffolk, Upton, NY, 11973, USA
| | - Liyang Yu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qiang Peng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
16
|
Song X, Mei L, Zhou X, Li H, Xu H, Liu X, Gao S, Xu S, Yang Y, Zhu W, Wang J, Zhang XH, Chen XK. Frenkel and Charge-Transfer Excitonic Couplings Strengthened by Thiophene-Type Solvent Enables Binary Organic Solar Cells with 19.8 % Efficiency. Angew Chem Int Ed Engl 2024; 63:e202411512. [PMID: 38988004 DOI: 10.1002/anie.202411512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
Overcoming the trade-off between short-circuited current (Jsc) and open-circuited voltage (Voc) is important to achieving high-efficiency organic solar cells (OSCs). Previous works modulated the energy gap between Frenkel local exciton (LE) and charge-transfer (CT) exciton, which served as the driving force of exciton splitting. Differently, our current work focuses on the modulation of LE-CT excitonic coupling (tLE-CT) via a simple but effective strategy that the 2-chlorothiophene (2Cl-Th) solvent utilizes in the treatment of OSC active-layer films. The results of our experimental measurements and theoretical simulations demonstrated that 2Cl-Th solvent initiates tighter intermolecular interactions with non-fullerene acceptor in comparison with that of traditional chlorobenzene solvent, thus suppressing the acceptor's over-aggregation and retarding the acceptor crystallization with reduced trap. Critically, the resulting shorter distances between donor and acceptor molecules in the 2Cl-Th treated blend efficiently strengthen tLE-CT, which not only promotes exciton splitting but also reduces non-radiative recombination. The champion efficiencies of 19.8 % (small-area) with superior operational reliability (T80: 586 hours) and 17.0 % (large-area) were yielded in 2Cl-Th treated cells. This work provided a new insight into modulating the exciton dynamics to overcome the trade-off between Jsc and Voc, which can productively promote the development of the OSC field.
Collapse
Affiliation(s)
- Xin Song
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Le Mei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
- Department of Chemistry, City University of Hong Kong Kowloon, Hong Kong, 999077, P.R. China
| | - Xinjie Zhou
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Hongxiang Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P.R. China
| | - Hao Xu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Xingting Liu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Shenzheng Gao
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Shanlei Xu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Yahui Yang
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Jianpu Wang
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Xian-Kai Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| |
Collapse
|
17
|
Wu W, Zou B, Ma R, Yao J, Li C, Luo Z, Xie B, Qammar M, Dela Peña TA, Li M, Wu J, Yang C, Fan Q, Ma W, Li G, Yan H. A Difluoro-Methoxylated Ending-Group Asymmetric Small Molecule Acceptor Lead Efficient Binary Organic Photovoltaic Blend. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402793. [PMID: 38757420 DOI: 10.1002/smll.202402793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/28/2024] [Indexed: 05/18/2024]
Abstract
Developing a new end group for synthesizing asymmetric small molecule acceptors (SMAs) is crucial for achieving high-performance organic photovoltaics (OPVs). Herein, an asymmetric small molecule acceptor, BTP-BO-4FO, featuring a new difluoro-methoxylated end-group is reported. Compared to its symmetric counterpart L8-BO, BTP-BO-4FO exhibits an upshifted energy level, larger dipole moment, and more sequential crystallinity. By adopting two representative and widely available solvent additives (1-chloronaphthalene (CN) and 1,8-diiodooctane (DIO)), the device based on PM6:BTP-BO-4FO (CN) photovoltaic blend demonstrates a power conversion efficiency (PCE) of 18.62% with an excellent open-circuit voltage (VOC) of 0.933 V, which surpasses the optimal result of L8-BO. The PCE of 18.62% realizes the best efficiencies for binary OPVs based on SMAs with asymmetric end groups. A series of investigations reveal that optimized PM6:BTP-BO-4FO film demonstrates similar molecular packing motif and fibrillar phase distribution as PM6:L8-BO (DIO) does, resulting in comparable recombination dynamics, thus, similar fill factor. Besides, it is found PM6:BTP-BO-4FO possesses more efficient charge generation, which yields better VOC-JSC balance. This study provides a new ending group that enables a cutting-edge efficiency in asymmetric SMA-based OPVs, enriching the material library and shed light on further design ideas.
Collapse
Affiliation(s)
- Weiwei Wu
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Bosen Zou
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Jia Yao
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Chunliang Li
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Zhenghui Luo
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Bomin Xie
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Memoona Qammar
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay Rd, Kowloon, Hong Kong, 999077, P. R. China
| | - Top Archie Dela Peña
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, P. R. China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Jiaying Wu
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, P. R. China
| | - Chuluo Yang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - He Yan
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| |
Collapse
|
18
|
Zhang Y, Huang T, Weng N, Chen Y, Wang D, Zhang Z, Liao Q, Zhang J. Efficient Ternary Organic Solar Cells with Suppressed Nonradiative Recombination and Fine-Tuned Morphology via IT-4F as Guest Acceptor. CHEMSUSCHEM 2024; 17:e202301741. [PMID: 38511510 DOI: 10.1002/cssc.202301741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
The large open circuit voltage (VOC) loss is currently one of the main obstacles to achieving efficient organic solar cells (OSCs). In this study, the ternary OSCs comprising PM6:BTP-eC9:IT-4F demonstrate a superior efficiency of 18.2 %. Notably, the utilization of the medium bandgap acceptor IT-4F as the third component results in an exceptionally low nonradiative recombination energy loss of 0.28 V. The desirable energy level cascade is formed among PM6, BTP-eC9, and IT-4F due to the low-lying HOMO and LUMO energy levels of IT-4F. More importantly, the VOC of PM6:BTP-eC9:IT-4F OSCs can reach as high as 0.86 V, which is higher than both binary OSCs without sacrificing JSC and FF. Besides, this strategy proved that IT-4F can not only broaden the absorption range but also work as a morphology modifier in PM6:BTP-eC9:IT-4F OSCs, and there also exists efficient energy transfer between BTP-eC9 and IT-4F. This result provides a promising way to suppress the nonradiative recombination energy loss and realize higher VOC than the two binary OSCs in ternary OSCs to obtain high power conversion efficiencies.
Collapse
Affiliation(s)
- Yang Zhang
- School of Materials Science and Engineering, School of Optoelectronic Engineering, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Tianhuan Huang
- School of Materials Science and Engineering, School of Optoelectronic Engineering, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Nan Weng
- School of Materials Science and Engineering, School of Optoelectronic Engineering, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Yiwen Chen
- School of Materials Science and Engineering, School of Optoelectronic Engineering, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Dongjie Wang
- School of Materials Science and Engineering, School of Optoelectronic Engineering, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Zheling Zhang
- School of Materials Science and Engineering, School of Optoelectronic Engineering, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Qiaogan Liao
- School of Materials Science and Engineering, School of Optoelectronic Engineering, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Jian Zhang
- School of Materials Science and Engineering, School of Optoelectronic Engineering, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| |
Collapse
|
19
|
Lei H, Yu F, Chen C, Li Y, Hu D, Chen Y, Tian G, Liu L, Yang K, Xiao Z. Electron Transporting Polymeric Materials with Partial Quaternization for High-Performance Organic Solar Cells. Macromol Rapid Commun 2024:e2400479. [PMID: 39122476 DOI: 10.1002/marc.202400479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Efficient cathode interfacial layers (CILs) have become a crucial component of organic solar cells (OSCs). Charge extraction barriers, interfacial trap states, and significant transport resistance may be induced due to the unfavorable cathode interlayer, limiting the device performance. In this study, poly(4-vinylpyridine) is used as the CIL for OSCs, and a new type of CIL named P4VP-I is synthesized through the quaternization strategy. Compared to P4VP, P4VP-I CIL exhibits enhanced conductivity and optimized work function. OSCs employing the P4VP-I ETL demonstrate prolonged carrier lifetime, suppressed charge recombination, and achieve higher power conversion efficiencies (PCE) than the commonly used ETLs such as PFN-Br and Phen-NaDPO.
Collapse
Affiliation(s)
- Hongliang Lei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengyi Yu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yulu Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dingqin Hu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yao Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Gengsui Tian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ke Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| |
Collapse
|
20
|
Shao Y, Gao Y, Sun R, Yang X, Zhang M, Liu S, Min J. A High-Performance Organic Photovoltaic System with Versatile Solution Processability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406329. [PMID: 39003623 DOI: 10.1002/adma.202406329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Indexed: 07/15/2024]
Abstract
Recently developed organic photovoltaic (OPV) materials have simultaneously closed the gaps in efficiency, stability, and cost for single-junction devices. Nonetheless, the developed OPV materials still pose big challenges in meeting the requirements for practical applications, especially regarding the prevalent issues of solution processability. Herein, a highly efficient polymer donor, named DP3, incorporating an electron-rich benzo[1,2-b:4,5-b']dithiophene unit as well as two similar and simple acceptor units is presented. Its primary objective is to enhance the interchain and/or intrachain interactions and ultimately fine-tune bulk-heterojunction microstructure. The DP3:L8-BO system demonstrates the highest power conversion efficiency (PCE) of 19.12%. This system also exhibits high-performance devices with over 18% efficiencies for five batches with various molecular weights (23.6-80.8 KDa), six different blend thicknesses (95-308 nm), differenced coating speeds (3.0-29.1 m min-1), with promising PCEs of 18.65% and 15.53% for toluene-processed small-area (0.029 cm2) cells and large-area (15.40 cm2) modules, thereby demonstrating versatile solution processability of the designed DP3:L8-BO system that is a strong candidate for commercial applications.
Collapse
Affiliation(s)
- Yiming Shao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yuan Gao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Xinrong Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Meimei Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Shanshan Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
21
|
Zhang C, Wang H, Sun X, Zhong X, Wei Y, Xu R, Wang K, Hu H, Xiao M. An Indacenodithienothiophene-Based Wide Bandgap Small Molecule Guest for Efficient and Stable Ternary Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400826. [PMID: 38634190 DOI: 10.1002/smll.202400826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Indexed: 04/19/2024]
Abstract
The strategic and logical development of the third component (guest materials) plays a pivotal and intricate role in improving the efficiency and stability of ternary organic solar cells (OSCs). In this study, a novel guest material with a wide bandgap, named IDTR, is designed, synthesized, and incorporated as the third component. IDTR exhibits complementary absorption characteristics and cascade band alignment with the PM6:Y6 binary system. Morphological analysis reveals that the introduction of IDTR results in strong crystallinity, good miscibility, and proper vertical phase distribution, thereby realizing heightened and balanced charge transport behavior. Remarkably, the novel ternary OSCs have exhibited a significant enhancement in photovoltaic performance. Consequently, open-circuit voltage (VOC), short-circuit current (JSC), and fill factor (FF) have all witnessed substantial improvements with a remarkable power conversion efficiency (PCE) of 18.94% when L8-BO replaced Y6. Beyond the pronounced improvement in photovoltaic performance, superior device stability with a T80 approaching 400 h is successfully achieved. This achievement is attributed to the synergistic interplay of IDTR, providing robust support for the overall enhancement of performance. These findings offer crucial guidance and reference for the design and development of efficient and stable OSCs.
Collapse
Affiliation(s)
- Chenyang Zhang
- College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao, Shangdong, 266000, P. R. China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen, 518055, P. R. China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Han Wang
- School of Management, Xián Polytechnic University, Xián, 710048, P. R. China
| | - Xiaokang Sun
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen, 518055, P. R. China
| | - Xiuzun Zhong
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Yulin Wei
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Ruida Xu
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Kai Wang
- College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao, Shangdong, 266000, P. R. China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Hanlin Hu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen, 518055, P. R. China
| | - Mingjia Xiao
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, P. R. China
| |
Collapse
|
22
|
Gao J, Bai H, Li P, Zhou Y, Su W, Liu C, Li X, Wu Y, Hu B, Liang Z, Bi Z, Li X, Yan L, Du H, Lu G, Gao C, Wang K, Liu Y, Ma W, Fan Q. Halogenated Dibenzo[f,h]quinoxaline Units Constructed 2D-Conjugated Guest Acceptors for 19% Efficiency Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403334. [PMID: 38884140 PMCID: PMC11336942 DOI: 10.1002/advs.202403334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Halogenation of Y-series small-molecule acceptors (Y-SMAs) is identified as an effective strategy to optimize photoelectric properties for achieving improved power-conversion-efficiencies (PCEs) in binary organic solar cells (OSCs). However, the effect of different halogenation in the 2D-structured large π-fused core of guest Y-SMAs on ternary OSCs has not yet been systematically studied. Herein, four 2D-conjugated Y-SMAs (X-QTP-4F, including halogen-free H-QTP-4F, chlorinated Cl-QTP-4F, brominated Br-QTP-4F, and iodinated I-QTP-4F) by attaching different halogens into 2D-conjugation extended dibenzo[f,h]quinoxaline core are developed. Among these X-QTP-4F, Cl-QTP-4F has a higher absorption coefficient, optimized molecular crystallinity and packing, suitable cascade energy levels, and complementary absorption with PM6:L8-BO host. Moreover, among ternary PM6:L8-BO:X-QTP-4F blends, PM6:L8-BO:Cl-QTP-4F obtains a more uniform and size-suitable fibrillary network morphology, improved molecular crystallinity and packing, as well as optimized vertical phase distribution, thus boosting charge generation, transport, extraction, and suppressing energy loss of OSCs. Consequently, the PM6:L8-BO:Cl-QTP-4F-based OSCs achieve a 19.0% efficiency, which is among the state-of-the-art OSCs based on 2D-conjugated Y-SMAs and superior to these devices based on PM6:L8-BO host (17.70%) and with guests of H-QTP-4F (18.23%), Br-QTP-4F (18.39%), and I-QTP-4F (17.62%). The work indicates that halogenation in 2D-structured dibenzo[f,h]quinoxaline core of Y-SMAs guests is a promising strategy to gain efficient ternary OSCs.
Collapse
Affiliation(s)
- Jingshun Gao
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
- School of Materials and Chemical EngineeringZhongyuan University of TechnologyZhengzhou451191China
| | - Hairui Bai
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Ping Li
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Yibo Zhou
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
- School of Materials Science and EngineeringXi'an University of Science and TechnologyXi'an710054China
| | - Wenyan Su
- School of Materials Science and EngineeringXi'an University of Science and TechnologyXi'an710054China
| | - Chang Liu
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Xiaoxiao Li
- Laboratory of Advanced Optoelectronic MaterialsSuzhou Key Laboratory of Novel Semiconductor‐Optoelectronics Materials and DevicesCollege of Chemistry Chemical Engineering and Materials ScienceSoochow UniversitySuzhouJiangsu215123China
| | - Yue Wu
- Laboratory of Advanced Optoelectronic MaterialsSuzhou Key Laboratory of Novel Semiconductor‐Optoelectronics Materials and DevicesCollege of Chemistry Chemical Engineering and Materials ScienceSoochow UniversitySuzhouJiangsu215123China
| | - Bin Hu
- Frontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'an710054China
| | - Zezhou Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & ShaanxiKey Lab of Photonic Technique for InformationSchool of Electronics Science & EngineeringFaculty of Electronic and Information EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Xiong Li
- Department of PhysicsBeijing Technology and Business UniversityBeijing100048China
| | - Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & ShaanxiKey Lab of Photonic Technique for InformationSchool of Electronics Science & EngineeringFaculty of Electronic and Information EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Huiling Du
- School of Materials Science and EngineeringXi'an University of Science and TechnologyXi'an710054China
| | - Guanghao Lu
- Frontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'an710054China
| | - Chao Gao
- Key Laboratory of Liquid Crystal and Organic Photovoltaic MaterialsState Key Laboratory of Fluorine & Nitrogen ChemicalsXi'an Modern Chemistry Research InstituteXi'an710065China
| | - Kun Wang
- School of Materials and Chemical EngineeringZhongyuan University of TechnologyZhengzhou451191China
| | - Yuhang Liu
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
23
|
Zhou Q, Yan C, Li H, Zhu Z, Gao Y, Xiong J, Tang H, Zhu C, Yu H, Lopez SPG, Wang J, Qin M, Li J, Luo L, Liu X, Qin J, Lu S, Meng L, Laquai F, Li Y, Cheng P. Polymer Fiber Rigid Network with High Glass Transition Temperature Reinforces Stability of Organic Photovoltaics. NANO-MICRO LETTERS 2024; 16:224. [PMID: 38888701 PMCID: PMC11189398 DOI: 10.1007/s40820-024-01442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
Organic photovoltaics (OPVs) need to overcome limitations such as insufficient thermal stability to be commercialized. The reported approaches to improve stability either rely on the development of new materials or on tailoring the donor/acceptor morphology, however, exhibiting limited applicability. Therefore, it is timely to develop an easy method to enhance thermal stability without having to develop new donor/acceptor materials or donor-acceptor compatibilizers, or by introducing another third component. Herein, a unique approach is presented, based on constructing a polymer fiber rigid network with a high glass transition temperature (Tg) to impede the movement of acceptor and donor molecules, to immobilize the active layer morphology, and thereby to improve thermal stability. A high-Tg one-dimensional aramid nanofiber (ANF) is utilized for network construction. Inverted OPVs with ANF network yield superior thermal stability compared to the ANF-free counterpart. The ANF network-incorporated active layer demonstrates significantly more stable morphology than the ANF-free counterpart, thereby leaving fundamental processes such as charge separation, transport, and collection, determining the device efficiency, largely unaltered. This strategy is also successfully applied to other photovoltaic systems. The strategy of incorporating a polymer fiber rigid network with high Tg offers a distinct perspective addressing the challenge of thermal instability with simplicity and universality.
Collapse
Affiliation(s)
- Qiao Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Cenqi Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zhendong Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yujie Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jie Xiong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Hua Tang
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Can Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Hailin Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Sandra P Gonzalez Lopez
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Jiayu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Longbo Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jiaqiang Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Shirong Lu
- Department of Material Science and Technology, Taizhou University, Taizhou, 318000, People's Republic of China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Frédéric Laquai
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Pei Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
24
|
Sun W, Wang L, Fu Y, Guo C, Zhou J, Chen C, Liu C, Gan Z, Yan K, Li W. Brominated Quaternary Ammonium Salt-Assisted Hybrid Electron Transport Layer for High-Performance Conventional Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38656920 DOI: 10.1021/acsami.4c02150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Interlayer engineering is crucial for achieving efficient and stable organic solar cells (OSCs). Herein, by introducing a commercialized brominated quaternary ammonium salt, hexamethonium bromide (HB), into a perylene diimide (PDI)-structured electron transport layer (ETL), a PDINN:HB hybrid ETL with enhanced charge collection ability and environmental/operational stability is realized. Molecular dynamics simulations and Kelvin probe force microscopy indicate that strong polar bromine and amine groups can form extra interfacial dipoles in the hybrid interlayer, while X-ray photoelectron spectroscopy and electron paramagnetic resonance suggest the hybrid ETL can interact with the Ag cathode, thereby regulating the energy level arrangement at the interface. As for the results, the PDINN:HB hybrid ETL enables improved power conversion efficiency (PCE) from 17.8 to 18.4% and 18.8 to 19.4% in PM6:C5-16 bulk heterojunction- and PM6/L8-BO pseudobulk heterojunction-based OSCs, respectively. The versatility of this method is further verified by introducing a range of brominated quaternary ammonium salts into PDINN, in which a superior PCE and stability are all obtained compared to the reference device.
Collapse
Affiliation(s)
- Wei Sun
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Liang Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yiwei Fu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chuanhang Guo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chen Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chenhao Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zirui Gan
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Kui Yan
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China
| | - Wei Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
25
|
Yi F, Xiao M, Meng Y, Bai H, Su W, Gao W, Yao ZF, Qi G, Liang Z, Jin C, Tang L, Zhang R, Yan L, Liu Y, Zhu W, Ma W, Fan Q. Non-Fully Conjugated Dimerized Giant Acceptors with Different Alkyl-Linked Sites for Stable and 19.13 % Efficiency Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202319295. [PMID: 38335036 DOI: 10.1002/anie.202319295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
Achieving both high power conversion efficiency (PCE) and device stability is a major challenge for the practical development of organic solar cells (OSCs). Herein, three non-fully conjugated dimerized giant acceptors (named 2Y-sites, including wing-site-linked 2Y-wing, core-site-linked 2Y-core, and end-site-linked 2Y-end) are developed. They share the similar monomer precursors but have different alkyl-linked sites, offering the fine-tuned molecular absorption, packing, glass transition temperature, and carrier mobility. Among their binary active layers, D18/2Y-wing has better miscibility, leading to optimized morphology and more efficient charge transfer compared to D18/2Y-core and D18/2Y-end. Therefore, the D18/2Y-wing-based OSCs achieve a superior PCE of 17.73 %, attributed to enhanced photocurrent and fill factor. Furthermore, the D18/2Y-wing-based OSCs exhibit a balance of high PCE and improved stability, distinguishing them within the 2Y-sites. Building on the success of 2Y-wing in binary systems, we extend its application to ternary OSCs by pairing it with the near-infrared absorbing D18/BS3TSe-4F host. Thanks to the complementary absorption within 300-970 nm and further optimized morphology, ternary OSCs obtain a higher PCE of 19.13 %, setting a new efficiency benchmark for the dimer-derived OSCs. This approach of alkyl-linked site engineering for constructing dimerized giant acceptors presents a promising pathway to improve both PCE and stability of OSCs.
Collapse
Affiliation(s)
- Fan Yi
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, 411105
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Manjun Xiao
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, 411105
| | - Yongdie Meng
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, 411105
| | - Hairui Bai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenyan Su
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Wei Gao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ze-Fan Yao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | | | - Zezhou Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi, Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Conggui Jin
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, 411105
| | - Lingxiao Tang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Rui Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi, Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuhang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weiguo Zhu
- Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
26
|
Zou B, Wu W, Dela Peña TA, Ma R, Luo Y, Hai Y, Xie X, Li M, Luo Z, Wu J, Yang C, Li G, Yan H. Step-by-Step Modulation of Crystalline Features and Exciton Kinetics for 19.2% Efficiency Ortho-Xylene Processed Organic Solar Cells. NANO-MICRO LETTERS 2023; 16:30. [PMID: 37995001 PMCID: PMC10667184 DOI: 10.1007/s40820-023-01241-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/06/2023] [Indexed: 11/24/2023]
Abstract
With plenty of popular and effective ternary organic solar cells (OSCs) construction strategies proposed and applied, its power conversion efficiencies (PCEs) have come to a new level of over 19% in single-junction devices. However, previous studies are heavily based in chloroform (CF) leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component. Herein, we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy, named BTP-BO-3FO with enlarged bandgap, brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9, processed by CF and ortho-xylene (o-XY). With detailed analyses supported by a series of experiments, the best PCE of 19.24% for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif, which furthermore nourishes a favorable charge generation and recombination behavior. Likewise, over 19% PCE can be achieved by replacing spin-coating with blade coating for active layer deposition. This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance, hence, will be instructive to other ternary OSC works in the future.
Collapse
Affiliation(s)
- Bosen Zou
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China
| | - Weiwei Wu
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China
| | - Top Archie Dela Peña
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China
- The Hong Kong University of Science and Technology, Function Hub, Advanced Materials Thrust, NanshaGuangzhou, 511400, People's Republic of China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Ruijie Ma
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, People's Republic of China.
| | - Yongmin Luo
- The Hong Kong University of Science and Technology, Function Hub, Advanced Materials Thrust, NanshaGuangzhou, 511400, People's Republic of China
| | - Yulong Hai
- The Hong Kong University of Science and Technology, Function Hub, Advanced Materials Thrust, NanshaGuangzhou, 511400, People's Republic of China
| | - Xiyun Xie
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, People's Republic of China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Zhenghui Luo
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Jiaying Wu
- The Hong Kong University of Science and Technology, Function Hub, Advanced Materials Thrust, NanshaGuangzhou, 511400, People's Republic of China.
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Gang Li
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China
| | - He Yan
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China.
| |
Collapse
|