1
|
Walter-Manucharyan M, Martin M, Pfützner J, Markert F, Rödel G, Deussen A, Hermann A, Storch A. Mitochondrial DNA replication is essential for neurogenesis but not gliogenesis in fetal neural stem cells. Dev Growth Differ 2024; 66:398-413. [PMID: 39436959 DOI: 10.1111/dgd.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Mitochondria are unique organelles that have their own genome (mtDNA) and perform various pivotal functions within a cell. Recently, evidence has highlighted the role of mitochondria in the process of stem cell differentiation, including differentiation of neural stem cells (NSCs). Here we studied the importance of mtDNA function in the early differentiation process of NSCs in two cell culture models: the CGR8-NS cell line that was derived from embryonic stem cells by a lineage selection technique, and primary NSCs that were isolated from embryonic day 14 mouse fetal forebrain. We detected a dramatic increase in mtDNA content upon NSC differentiation to adapt their mtDNA levels to their differentiated state, which was not accompanied by changes in mitochondrial transcription factor A expression. As chemical mtDNA depletion by ethidium bromide failed to generate living ρ° cell lines from both NSC types, we used inhibition of mtDNA polymerase-γ by 2'-3'-dideoxycytidine to reduce mtDNA replication and subsequently cellular mtDNA content. Inhibition of mtDNA replication upon NSC differentiation reduced neurogenesis but not gliogenesis. The mtDNA depletion did not change energy production/consumption or cellular reactive oxygen species (ROS) content in the NSC model used. In conclusion, mtDNA replication is essential for neurogenesis but not gliogenesis in fetal NSCs through as yet unknown mechanisms, which, however, are largely independent of energy/ROS metabolism.
Collapse
Affiliation(s)
- Meri Walter-Manucharyan
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Melanie Martin
- Department of Physiology, Technische Universität Dresden, Dresden, Germany
| | - Julia Pfützner
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Franz Markert
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Gerhard Rödel
- Institute of Genetics, Technische Universität Dresden, Dresden, Germany
| | - Andreas Deussen
- Department of Physiology, Technische Universität Dresden, Dresden, Germany
| | - Andreas Hermann
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden, Germany
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University of Rostock, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Alexander Storch
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Department of Neurology, University of Rostock, Rostock, Germany
- Center for Regenerative Therapies Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| |
Collapse
|
2
|
Ouyang Y, Zhang Y, Guo X, Li J, Ao Q, Guo S, Zhang M, Sun J. An analysis of neurovascular disease markers in the hippocampus of Tupaia chinensis at different growth stages. Front Neurol 2023; 13:1083182. [PMID: 36733450 PMCID: PMC9888410 DOI: 10.3389/fneur.2022.1083182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction It is considered that Tupaia chinensis can replace laboratory primates in the study of nervous system diseases. To date, however, protein expression in the brain of Tupaia chinensis has not been fully understood. Method Three age groups of T. chinensis-15 days, 3 months and 1.5 years-were selected to study their hippocampal protein expression profiles. Results A significant difference was observed between the 15-day group and the other two age groups, where as there were no significant differences between the 3-month and 1.5-year age groups. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that differentially expressed proteins could be enriched in several pathways related to neurovascular diseases, such as metabolic pathways for Alzheimer's disease (AD), Huntington's disease, Parkinson's disease, and other diseases. The KEGG enrichment also showed that relevant protein involved in oxidative phosphorylation in the hippocampus of T. chinensis for 15days were downregulated, and ribosomal proteins (RPs) were upregulated, compared to those in the hippocampus of the other two age groups. Discussion It was suggested that when the hippocampus of T. chinensis developed from day 15 to 3 months, the expression of oxidatively phosphorylated proteins and RPs would vary over time. Meanwhile, the hippocamppal protein expression profile of T. chinensis after 3 months had become stable. Moreover, the study underlines that, during the early development of the hippocampus of T. chinensis, energy demand increases while protein synthesis decreases. The mitochondria of T. chinensis changes with age, and the oxidative phosphorylation metabolic pathway of mitochondria is closely related to neurovascular diseases, such as stroke and cerebral ischemia.
Collapse
Affiliation(s)
- Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Ying Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, China,Health and Regimen School, Guangxi Vocational and Technical College, School of Food and Biotechnology, Nanning, China
| | - Xiaoping Guo
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Jiafu Li
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Qingqing Ao
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Songchao Guo
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Mingyuan Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, China,Mingyuan Zhang ✉
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, China,*Correspondence: Junming Sun ✉
| |
Collapse
|
3
|
Lushchak VI, Duszenko M, Gospodaryov DV, Garaschuk O. Oxidative Stress and Energy Metabolism in the Brain: Midlife as a Turning Point. Antioxidants (Basel) 2021; 10:1715. [PMID: 34829586 PMCID: PMC8614699 DOI: 10.3390/antiox10111715] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
Neural tissue is one of the main oxygen consumers in the mammalian body, and a plentitude of metabolic as well as signaling processes within the brain is accompanied by the generation of reactive oxygen (ROS) and nitrogen (RNS) species. Besides the important signaling roles, both ROS and RNS can damage/modify the self-derived cellular components thus promoting neuroinflammation and oxidative stress. While previously, the latter processes were thought to progress linearly with age, newer data point to midlife as a critical turning point. Here, we describe (i) the main pathways leading to ROS/RNS generation within the brain, (ii) the main defense systems for their neutralization and (iii) summarize the recent literature about considerable changes in the energy/ROS homeostasis as well as activation state of the brain's immune system at midlife. Finally, we discuss the role of calorie restriction as a readily available and cost-efficient antiaging and antioxidant lifestyle intervention.
Collapse
Affiliation(s)
- Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine; (V.I.L.); (D.V.G.)
- Department of Medical Biochemistry, I. Horbachevsky Ternopil National Medical University, 46002 Ternopil, Ukraine
- Research and Development University, 13a Shota Rustaveli Str., 76018 Ivano-Frankivsk, Ukraine
| | - Michael Duszenko
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074 Tübingen, Germany;
| | - Dmytro V. Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine; (V.I.L.); (D.V.G.)
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074 Tübingen, Germany;
| |
Collapse
|
4
|
Zinc causes the death of hypoxic astrocytes by inducing ROS production through mitochondria dysfunction. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-019-00098-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Abstract
Cerebral ischemia triggers a cascade of events that contribute to ischemic brain damages. Zinc release and accumulation has been shown to lead to brain cell death following cerebral ischemia. However, the mechanism underlying remains to be elucidated. Our recently published work showed that suppression of mitochondrial-derived reactive oxygen species (ROS) production significantly reduced ischemic stroke related brain damage within 6 h. Herein, we investigated the relationship between zinc accumulation and mitochondrial-derived ROS production in astrocytes after 3-h hypoxia. We found that inhibition of mitochondrial-derived ROS significantly decreased total amount of ROS generation and cell death in primary astrocytes during hypoxia when zinc was overload. In contrast, the inhibition of NADPH oxidase-derived ROS had less of an effect. Our results also showed that zinc and mitochondria were colocalized in hypoxic astrocytes. Moreover, extracellular zinc addition caused zinc accumulation in the mitochondria and decreased mitochondrial membrane potential, leading to mitochondria dysfunction. These findings provide a novel mechanism that zinc accumulation contributes to hypoxia-induced astrocytes death by disrupting mitochondria function, following cerebral ischemia.
Collapse
|
5
|
Van Laar VS, Otero PA, Hastings TG, Berman SB. Potential Role of Mic60/Mitofilin in Parkinson's Disease. Front Neurosci 2019; 12:898. [PMID: 30740041 PMCID: PMC6357844 DOI: 10.3389/fnins.2018.00898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
There are currently no treatments that hinder or halt the inexorable progression of Parkinson's disease (PD). While the etiology of PD remains elusive, evidence suggests that early dysfunction of mitochondrial respiration and homeostasis play a major role in PD pathogenesis. The mitochondrial structural protein Mic60, also known as mitofilin, is critical for maintaining mitochondrial architecture and function. Loss of Mic60 is associated with detrimental effects on mitochondrial homeostasis. Growing evidence now implicates Mic60 in the pathogenesis of PD. In this review, we discuss the data supporting a role of Mic60 and mitochondrial dysfunction in PD. We will also consider the potential of Mic60 as a therapeutic target for treating neurological disorders.
Collapse
Affiliation(s)
- Victor S Van Laar
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - P Anthony Otero
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States.,Division of Neuropathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Cellular and Molecular Pathology (CMP) Program, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Teresa G Hastings
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah B Berman
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Wang J, Lin X, Su L, Yin J, Shu T, Zhang X. Chemical etching of pH-sensitive aggregation-induced emission-active gold nanoclusters for ultra-sensitive detection of cysteine. NANOSCALE 2018; 11:294-300. [PMID: 30534733 DOI: 10.1039/c8nr08526a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study reports the utilization of thiol-induced chemical etching of aggregation-induced emission (AIE)-active Au nanoclusters (NCs) for the facile, sensitive, and selective detection of cysteine. The AIE-active Au NCs were formed in an acidic solution containing excess Au(i)-thiolate complexes. At an acidic pH (2.0), the emission of these Au NCs was enhanced by cysteine at a concentratioin below 1 mM. However, the emission was quenched by cysteine at a high concentration, e.g., 500 mM, via the thiol-induced etching of gold, although the process occurred very slowly. Interestingly, in the absence of cysteine, increasing the solution pH enhanced the emission, while the presence of cysteine remarkably accelerated the etching-induced quenching process. The complete quenching of the emission by excess cysteine at pH 2.0 and the enhancement of the emission by the increasing pH in the absence of cysteine indicated that aurophilicity might not be involved in the AIE of the Au NCs prepared using glutathione (GSH) both as the reducing and protecting reagent. On the other hand, the etching process involved the penetration of cysteine molecules through the Au(i)-thiolate complexes, which could assemble or disassemble around the embedded Au NCs in response to the solution pH to get access to the innermost Au(0) cores. Therefore, a facile, sensitive, and selective method for the detection of cysteine was established. This method exhibited an extremely wide linear range as wide as nine orders of magnitude above the cysteine concentration, including two linear regions of the relative emission intensity of the Au NCs versus the logarithm of cysteine concentration, from 10 pM to 150 μM (correlation coefficient, 0.99851) and from 150 μM to 2 mM (correlation coefficient, 0.99866). An ultra-low limit of detection of 6.3 pM (S/N = 3) was also achieved. The developed method showed superior selectivity for cysteine relative to the 19 other natural amino acids and GSH. The method was applied for the analysis of human serum samples spiked with cysteine with satisfactory results. This study demonstrates the potential of the thiol-induced chemical etching approach as a powerful tool for studying luminescent metal NCs.
Collapse
Affiliation(s)
- Jianxing Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | | | | | | | | | | |
Collapse
|
7
|
Feng Y, Madungwe NB, Bopassa JC. Mitochondrial inner membrane protein, Mic60/mitofilin in mammalian organ protection. J Cell Physiol 2018; 234:3383-3393. [PMID: 30259514 DOI: 10.1002/jcp.27314] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
The identification of the mitochondrial contact site and cristae organizing system (MICOS) in the inner mitochondrial membrane shed light on the intricate components necessary for mitochondria to form their signature cristae in which many protein complexes including the electron transport chain are localized. Mic60/mitofilin has been described as the core component for the assembly and maintenance of MICOS, thus controlling cristae morphology, protein transport, mitochondrial DNA transcription, as well as connecting the inner and outer mitochondrial membranes. Although Mic60 homologs are present in many species, mammalian Mic60 is only recently gaining attention as a critical player in several organ systems and diseases with mitochondrial-defect origins. In this review, we summarize what is currently known about the ever-expanding role of Mic60 in mammals, and highlight some new studies pushing the field of mitochondrial cristae organization towards potentially new and exciting therapies targeting this protein.
Collapse
Affiliation(s)
- Yansheng Feng
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, Texas.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - Ngonidzashe B Madungwe
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, Texas.,Department of Biomedical Engineering, University of Texas at San Antonio, Texas
| | - Jean C Bopassa
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, Texas
| |
Collapse
|