1
|
Rospond B, Krakowska A, Piotrowska J, Pomierny B, Krzyżanowska W, Szewczyk B, Szafrański P, Dorożynski P, Paczosa-Bator B. Multidimensional analysis of selected bioelements in rat's brain subjected to stroke procedure and treatment with H 2S donor AP-39. J Trace Elem Med Biol 2025; 88:127628. [PMID: 40073679 DOI: 10.1016/j.jtemb.2025.127628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/14/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND A stroke is characterized by a sudden disruption in blood flow to the brain. According to WHO statistics, stroke is the second most common cause of death. Its pathophysiology involves complex mechanisms: oxidative stress, inflammation, cytotoxicity and neuronal cell death. Middle cerebral artery occlusion (MCAO) in rats is commonly used to study the pathophysiology of stroke, as well as the efficacy of therapeutic strategies e.g. application of H2S donors. OBJECTIVES The aim of this study was to determine the concentrations of minerals (Mg, Na, K), and trace elements (Fe, Cu, and Zn) in rats brain undergoing stroke procedure in the dorsal striatum (ischemic core) and prefrontal cortex (penumbra). We also investigate the application of AP-39 on the levels of above-mentioned minerals and trace elements. METHODS Using the MCAO rat model, the impact of stroke and treatment with 100 nmol/kg b.m. i.v. of AP-39 was examined on minerals and trace elements levels, determined by F-AAS and F-AES methods. Results were analyzed using multidimensional statistical analysis (chemometric techniques). RESULTS Iron, magnesium, and zinc are the most important bioelements whose concentration changes in both investigated structures were associated with stroke symptoms. The concentrations of zinc and copper showed opposing trend. The application of AP-39 mainly affected the potassium level. In the stroke structure (DS) dosage of AP-39 decreased the potassium level and in non-stroke structure AP-39 increased potassium levels. CONCLUSION Stroke and AP-39 treatment significantly altered bioelement concentrations. The bioelements most susceptible to changes under MCAO procedures were zinc, iron and magnesium.
Collapse
Affiliation(s)
- Bartłomiej Rospond
- Department Analytical Chemistry and Pharmaceutical Analytics, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9 St., Kraków 30-688, Poland.
| | - Agata Krakowska
- Department Analytical Chemistry and Pharmaceutical Analytics, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9 St., Kraków 30-688, Poland; Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. A. Mickiewicza, Kraków 30-059, Poland.
| | - Joanna Piotrowska
- Department Analytical Chemistry and Pharmaceutical Analytics, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9 St., Kraków 30-688, Poland
| | - Bartosz Pomierny
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., Kraków 30-688, Poland
| | - Weronika Krzyżanowska
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., Kraków 30-688, Poland
| | - Bernadeta Szewczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, Smętna 12 St., Kraków 31-343, Poland
| | - Przemysław Szafrański
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9 St., Kraków 30-688, Poland
| | - Przemysław Dorożynski
- Department Analytical Chemistry and Pharmaceutical Analytics, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9 St., Kraków 30-688, Poland
| | - Beata Paczosa-Bator
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. A. Mickiewicza, Kraków 30-059, Poland
| |
Collapse
|
2
|
Fontes A, Jauch AT, Sailer J, Engler J, Azul AM, Zischka H. Metabolic Derangement of Essential Transition Metals and Potential Antioxidant Therapies. Int J Mol Sci 2024; 25:7880. [PMID: 39063122 PMCID: PMC11277342 DOI: 10.3390/ijms25147880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Essential transition metals have key roles in oxygen transport, neurotransmitter synthesis, nucleic acid repair, cellular structure maintenance and stability, oxidative phosphorylation, and metabolism. The balance between metal deficiency and excess is typically ensured by several extracellular and intracellular mechanisms involved in uptake, distribution, and excretion. However, provoked by either intrinsic or extrinsic factors, excess iron, zinc, copper, or manganese can lead to cellular damage upon chronic or acute exposure, frequently attributed to oxidative stress. Intracellularly, mitochondria are the organelles that require the tightest control concerning reactive oxygen species production, which inevitably leaves them to be one of the most vulnerable targets of metal toxicity. Current therapies to counteract metal overload are focused on chelators, which often cause secondary effects decreasing patients' quality of life. New therapeutic options based on synthetic or natural antioxidants have proven positive effects against metal intoxication. In this review, we briefly address the cellular metabolism of transition metals, consequences of their overload, and current therapies, followed by their potential role in inducing oxidative stress and remedies thereof.
Collapse
Affiliation(s)
- Adriana Fontes
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany;
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Adrian T. Jauch
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Judith Sailer
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Jonas Engler
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Anabela Marisa Azul
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany;
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| |
Collapse
|
3
|
Das A, Sankaralingam M. Are Zn(II) pincer complexes efficient apoptosis inducers? a deep insight into their activity against A549 lung cancer cells. Dalton Trans 2023; 52:14465-14476. [PMID: 37772631 DOI: 10.1039/d3dt02419a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
To expand the array of chemotherapeutic drugs, earth-abundant metal complexes are found to be the future direction. In this regard, new zinc(II) complexes 1-3 of 8-aminoquinoline-based pincer ligands were synthesized, characterized and tested for their anticancer activity. The IC50 values of these complexes were estimated by an MTT assay to be 16.35-17.95 μM and 33.35-40 μM against A549 lung and MCF-7 breast cancer cells respectively. Among them, 3 was slightly better than the other complexes and, thus, subjected to detailed studies. Moreover, the ligand corresponding to 3 was less active against both the cell lines than the complex. Further, 3 showed no toxicity against normal fibroblast cell line L929, which instantly elevated the drug characteristic of our complex. An AO-EB staining assay revealed that 3 can induce apoptosis in A549, and it was quantified by flow cytometry as 22.77%. Moreover, the depolarization of the mitochondrial membrane potential determined by JC-1 staining indicated excess ROS production sites in the mitochondria, which was confirmed by carboxy-H2DCFDA staining. Interestingly, the present complexes show better activity than that of the standard drug cisplatin against A549 cells. Overall, the studies provided promising results that can be extended for clinical applications.
Collapse
Affiliation(s)
- Athulya Das
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode-673601, Kerala, India.
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode-673601, Kerala, India.
| |
Collapse
|
4
|
Xia Y, Tsim KWK, Wang WX. How fish cells responded to zinc challenges: Insights from bioimaging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162538. [PMID: 36898541 DOI: 10.1016/j.scitotenv.2023.162538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/11/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Zinc ion (Zn) is an essential nutrition element and it is important to understand its regulation and distribution among different cellular organelles. Here, subcellular trafficking of Zn in rabbitfish fin cells was investigated through bioimaging, and the results showed that the toxicity and bioaccumulation of Zn were both dose- and time-dependent. Cytotoxicity of Zn only occurred when the Zn concentration reached 200-250 μM after 3 h of exposure when the cellular quota of Zn:P reached a threshold level around 0.7. Remarkably, the cells were able to maintain homeostasis at a low Zn exposure concentration or within the first 4-h exposure. Zn homeostasis was mainly regulated by the lysosomes which stored Zn within the short exposure period, during which the number and size of lysosomes as well as the lysozyme activity increased in response to incoming Zn. However, with increasing Zn concentration beyond a threshold concentration (> 200 μM) and an exposure time > 3 h, homeostasis was disrupted, leading to an Zn spillover to cytoplasm and other cellular organelles. At the same time, cell viability decreased due to the Zn damage on mitochondria which caused morphological changes (smaller and rounder dots) and over production of reactive oxygen species, indicating the dysfunction of mitochondria. By further purifying the cellular organelles, cell viability was found to be consistent with the mitochondrial Zn amount. This study suggested that the amount of mitochondrial Zn was an excellent predictor of Zn toxicity on fish cells.
Collapse
Affiliation(s)
- Yiteng Xia
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Karl W K Tsim
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
5
|
Yao R, Li R, Huang Y. Zinc homeostasis in Schizosaccharomyces pombe. Arch Microbiol 2023; 205:126. [PMID: 36943461 DOI: 10.1007/s00203-023-03473-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
Most metal ions such as iron, calcium, zinc, or copper are essential for all eukaryotes. Organisms must maintain homeostasis of these metal ions because excess or deficiency of metal ions could cause damage to organisms. The steady state of many metal ions such as iron and copper has been well studied in detail. However, how to regulate zinc homeostasis in Schizosaccharomyces pombe is still confusing. In this review, we provide an overview of the molecular mechanisms that how S. pombe is able to maintain the balance of zinc levels in the changes of environment. In response to high levels of zinc, the transcription factor Loz1 represses the expression of several genes involved in the acquisition of zinc. Meanwhile, the CDF family proteins transport excess zinc to the secretory pathway. When zinc levels are limited, Loz1 was inactivated and could not inhibit the expression of zinc acquisition genes, and zinc stored in the secretory pathway is released for use by the cells. Besides, other factors that regulate zinc homeostasis are also discussed.
Collapse
Affiliation(s)
- Rui Yao
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuanuan Rd, Nanjing, 210023, China
| | - Rongrong Li
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuanuan Rd, Nanjing, 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuanuan Rd, Nanjing, 210023, China.
| |
Collapse
|
6
|
Yi D, Zhao H, Zhao J, Li L. Modular Engineering of DNAzyme-Based Sensors for Spatioselective Imaging of Metal Ions in Mitochondria. J Am Chem Soc 2023; 145:1678-1685. [PMID: 36573341 DOI: 10.1021/jacs.2c11081] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
DNAzyme-based sensors remain at the forefront of metal-ion imaging efforts, but most lack the subcellular precision necessary to their applications in specific organelles. Here, we seek to overcome this limitation by presenting a DNAzyme-based biosensor technology for spatiotemporally controlled imaging of metal ions in mitochondria. A DNA nanodevice was constructed by integrating an optically activatable DNAzyme sensor and an upconversion nanoparticle with an organelle-targeting signal. We exemplify that this approach allows for mitochondria-specific imaging of Zn2+ in living cells in a near-infrared light-controlled manner. Based on this, the system is used for the monitoring of mitochondrial Zn2+ during drug treatment in a cellular model of ischemia insult. Furthermore, the DNA nanodevice is employed to assess dynamic Zn2+ change and pharmacological interventions in an injury cell model of Zn2+ toxicity. This method paves the way for engineering of DNAzyme sensors to investigate the pathophysiological roles of metal ions at the subcellular level.
Collapse
Affiliation(s)
- Deyu Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hengzhi Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Abdolmaleki S, Aliabadi A, Ghadermazi M. Two La(III) complexes containing pyridine-2,6-dicarboxylate as in vitro potent cytotoxic agents toward human lymphocyte cells. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Ferroptosis as a mechanism of non-ferrous metal toxicity. Arch Toxicol 2022; 96:2391-2417. [PMID: 35727353 DOI: 10.1007/s00204-022-03317-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Ferroptosis is a recently discovered form of regulated cell death, implicated in multiple pathologies. Given that the toxicity elicited by some metals is linked to alterations in iron metabolism and induction of oxidative stress and lipid peroxidation, ferroptosis might be involved in such toxicity. Although direct evidence is insufficient, certain pioneering studies have demonstrated a crosstalk between metal toxicity and ferroptosis. Specifically, the mechanisms underlying metal-induced ferroptosis include induction of ferritinophagy, increased DMT-1 and TfR cellular iron uptake, mitochondrial dysfunction and mitochondrial reactive oxygen species (mitoROS) generation, inhibition of Xc-system and glutathione peroxidase 4 (GPX4) activity, altogether resulting in oxidative stress and lipid peroxidation. In addition, there is direct evidence of the role of ferroptosis in the toxicity of arsenic, cadmium, zinc, manganese, copper, and aluminum exposure. In contrast, findings on the impact of cobalt and nickel on ferroptosis are scant and nearly lacking altogether for mercury and especially lead. Other gaps in the field include limited studies on the role of metal speciation in ferroptosis and the critical cellular targets. Although further detailed studies are required, it seems reasonable to propose even at this early stage that ferroptosis may play a significant role in metal toxicity, and its modulation may be considered as a potential therapeutic tool for the amelioration of metal toxicity.
Collapse
|
9
|
Peng-Winkler Y, Büttgenbach A, Rink L, Weßels I. Zinc supplementation prior to heat shock enhances HSP70 synthesis through HSF1 phosphorylation at serine 326 in human peripheral mononuclear cells. Food Funct 2022; 13:9143-9152. [DOI: 10.1039/d2fo01406h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zinc supplementation prior to heat shock increases HSP70 (Heat shock protein 70) expression, which has cytoprotective effects in tissue cells during inflammation. Effects of zinc deficiency in this regard are...
Collapse
|
10
|
Chen Q, Liu W, Sun X, Liu KJ, Pan R. Endogenous reactive oxygen species and nitric oxide have opposite roles in regulating HIF-1alpha expression in hypoxic astrocytes. BIOPHYSICS REPORTS 2021; 7:239-249. [PMID: 37287488 PMCID: PMC10244794 DOI: 10.52601/bpr.2021.200016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/29/2021] [Indexed: 11/05/2022] Open
Abstract
Ischemic stroke results in cerebral tissue hypoxia and increased expression of hypoxia-inducible factor (HIF), which is critically implicated in ischemic brain injury. Understanding the mechanisms of HIF-1alpha regulation in the ischemic brain has been an important research focus. The generation of both nitric oxide (NO) and reactive oxygen species (ROS) is increased under hypoxic/ischemic conditions and each of them has been independently shown to regulate HIF-1alpha expression. In this study, we investigated the cross-effects of NO and ROS on the expression of HIF-1alpha in hypoxic astrocytes. Exposure of astrocytes to 2 h-hypoxia remarkably increased HIF-1alpha protein levels, which was accompanied by increased NO and ROS production. Decreasing ROS with NAC, NADPH oxidase inhibitor DPI, or SOD mimetic MnTMPyP decreased hypoxia-induced HIF-1alpha protein accumulation and increased NO level in hypoxic astrocytes. The NO synthase (NOS) inhibitor L-NAME inhibited ROS generation, which led to a reduction in hypoxia-induced HIF-1alpha protein expression. Although NOS inhibitor or ROS scavengers alone reduced HIF-1alpha protein levels, the reduction was reversed when NOS inhibitor and ROS scavenger present together. The NO scavenger PTIO increased hypoxia-induced HIF-1alpha protein expression and ROS production, while HIF-1alpha protein level was decreased in the presence of NO scavenger and ROS scavenger together. These results suggest that ROS, NO, and their interaction critically contribute to the regulation of hypoxia-induced HIF-1alpha protein accumulation under hypoxic condition. Furthermore, our results indicate that hypoxia-induced NO generation may represent an endogenous mechanism for balancing ROS-mediated hypoxic stress, as reflected by inhibiting hypoxia-induced HIF-1alpha protein accumulation.
Collapse
Affiliation(s)
- Qingquan Chen
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Wenlan Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Xi Sun
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Rong Pan
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
11
|
The Multifaceted Roles of Zinc in Neuronal Mitochondrial Dysfunction. Biomedicines 2021; 9:biomedicines9050489. [PMID: 33946782 PMCID: PMC8145363 DOI: 10.3390/biomedicines9050489] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022] Open
Abstract
Zinc is a highly abundant cation in the brain, essential for cellular functions, including transcription, enzymatic activity, and cell signaling. However, zinc can also trigger injurious cascades in neurons, contributing to the pathology of neurodegenerative diseases. Mitochondria, critical for meeting the high energy demands of the central nervous system (CNS), are a principal target of the deleterious actions of zinc. An increasing body of work suggests that intracellular zinc can, under certain circumstances, contribute to neuronal damage by inhibiting mitochondrial energy processes, including dissipation of the mitochondrial membrane potential (MMP), leading to ATP depletion. Additional consequences of zinc-mediated mitochondrial damage include reactive oxygen species (ROS) generation, mitochondrial permeability transition, and excitotoxic calcium deregulation. Zinc can also induce mitochondrial fission, resulting in mitochondrial fragmentation, as well as inhibition of mitochondrial motility. Here, we review the known mechanisms responsible for the deleterious actions of zinc on the organelle, within the context of neuronal injury associated with neurodegenerative processes. Elucidating the critical contributions of zinc-induced mitochondrial defects to neurotoxicity and neurodegeneration may provide insight into novel therapeutic targets in the clinical setting.
Collapse
|
12
|
Orellana Rivas RM, Marins TN, Weng X, Monteiro APA, Guo J, Gao J, Chen YC, Woldemeskel MW, Bernard JK, Tomlinson DJ, DeFrain JM, Tao S. Effects of evaporative cooling and dietary zinc source on heat shock responses and mammary gland development in lactating dairy cows during summer. J Dairy Sci 2021; 104:5021-5033. [PMID: 33516558 DOI: 10.3168/jds.2020-19146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022]
Abstract
The objective of this study was to examine the effects of evaporative cooling and dietary supplemental Zn source on heat shock responses and mammary gland development of lactating dairy cows during summer. Seventy-two multiparous lactating Holstein cows were randomly assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement. Cows were either cooled (CL) or not cooled (NC) and fed diets supplemented with 75 mg of Zn/kg of dry matter (DM) from Zn hydroxychloride (IOZ) or 35 mg of Zn/kg of DM from Zn hydroxychloride plus 40 mg of Zn/kg of DM from Zn-Met complex (ZMC). The 168-d trial included a 12-wk baseline phase when all cows were cooled and fed respective dietary treatments, and a subsequent 12-wk environmental challenge phase when NC cows were deprived of evaporative cooling. Plasma was collected from a subset of cows (n = 24) at 1, 3, 5, 12, 26, 41, 54, 68, 81 d of the environmental challenge to measure heat shock protein (HSP) 70 concentration. Mammary biopsies were collected from another subset of cows (n = 30) at enrollment (baseline samples) and at d 7 and 56 of the environmental challenge to analyze gene expression related to heat shock response, apoptosis and anti-oxidative enzymes, and to examine apoptosis and cell proliferation using immunohistochemistry. Supplemental Zn source did not affect milk yield but NC cows produced less milk than CL cows. Supplemental Zn source had no effect on mammary gene expression of HSP27, 70, and 90 or plasma concentrations of HSP70. The NC cows had greater mammary gene expression of HSP than CL cows. Circulating HSP70 of NC cows gradually increased and was higher at 81 d of environmental challenge compared with CL cows. Relative to IOZ, ZMC cows tended to have lower total mammary cell proliferation but greater mammary apoptosis. There was a tendency of greater TNFRSF1A mRNA expression for ZMC compared with IOZ cows, which may suggest upregulated extrinsic apoptosis. At d 7 of environmental challenge, NC cows had numerically higher mammary apoptosis than CL cows although not statistically significant. The NC cows tended to have greater mRNA expression of CAT and SOD3 regardless of time, and had greater mRNA expression of GPX1 at d 56 and FAS at d 7 of the environmental challenge than CL cows. Relative to CL cows, mammary cell proliferation rate was higher for NC cows at d 56 of the environmental challenge. In conclusion, dietary source of supplemental Zn has substantial effect on mammary cell turnover in lactating dairy cows, and prolonged exposure to heat stress increases mammary cell proliferation.
Collapse
Affiliation(s)
- R M Orellana Rivas
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793
| | - T N Marins
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793
| | - X Weng
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793
| | - A P A Monteiro
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793
| | - J Guo
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793
| | - J Gao
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793
| | - Y-C Chen
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793
| | - M W Woldemeskel
- Department of Veterinary Pathology, Veterinary Diagnostic and Investigational Laboratory, University of Georgia, Tifton 31793
| | - J K Bernard
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793
| | | | | | - S Tao
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793.
| |
Collapse
|