1
|
Hou Y, Liu J, Tian Y, Wang G, Zhang X, Han J, Li B. Pyridine-oriented transannular C-H functionalization of arenes. Chem Commun (Camb) 2025; 61:1132-1135. [PMID: 39690966 DOI: 10.1039/d4cc05717a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
We present a pyridine-oriented transannular Friedel-Crafts alkylation reaction. This reaction, despite being thermodynamically unfavorable, successfully yields a series of pyridine-containing fused seven- or eight-membered rings. The resulting products not only have a similar skeleton to some marketed pharmaceuticals, but also can be further transferred into synthetically promising pleiadienes.
Collapse
Affiliation(s)
- Yanchun Hou
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China.
| | - Jianwei Liu
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China.
| | - Yi Tian
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China.
| | - Guangshen Wang
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China.
| | - Xingcan Zhang
- Sichuan Food Fermentation Industry Research & Design Institute Co., Ltd, Chengdu, Sichuan 610000, China
| | - Jingpeng Han
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404000, China.
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China.
| |
Collapse
|
2
|
Su X, Li G, He L, Chen S, Yang X, Wang G, Li S. Nickel-catalyzed, silyl-directed, ortho-borylation of arenes via an unusual Ni(II)/Ni(IV) catalytic cycle. Nat Commun 2024; 15:7549. [PMID: 39214987 PMCID: PMC11364840 DOI: 10.1038/s41467-024-51997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Nickel-catalyzed C-H bond functionalization reactions provide an impressive alternative to those with noble metal catalysts due to their unique reactivity and low cost. However, the regioselective C(sp2)-H borylation reaction of arenes accomplished by nickel catalyst remains limited. We herein disclose a silyl-directed ortho C(sp2)-H borylation of substituted arenes with a Ni(cod)2/PMe3/KHMDS catalyst system. Using readily available starting materials, this protocol provides easy access to ortho-borylated benzylic hydrosilanes bearing flexible substitution patterns. These products can serve as versatile building blocks for the synthesis of sila or sila/borine heterocycles under mild conditions. Control experiments and DFT calculations suggest that a catalytic amount of base prompts the formation of Ni(II)-Bpin-ate complex, likely related to the C(sp2)-H bond activation. This borylation reaction might follow an unusual Ni(II)/Ni(IV) catalytic cycle.
Collapse
Affiliation(s)
- Xiaoshi Su
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Guoao Li
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Linke He
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shengda Chen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaoliang Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Shuhua Li
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| |
Collapse
|
3
|
Wang L, Wu H, Zhao Y, Li B, Wang B. Nickel-Catalyzed Lactamization Reaction of 2-Arylanilines with CO 2. Org Lett 2024; 26:3940-3944. [PMID: 38686851 DOI: 10.1021/acs.orglett.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Transition-metal-catalyzed lactamization and lactonization of C-H bonds with CO2 assisted by the chelation of amino or hydroxyl groups have been developed but limited to the use of precious metal catalysts such as palladium and rhodium. In this work, we report the nonprecious metal nickel-catalyzed lactamization reaction of 2-arylanilines with CO2 under redox-neutral conditions via C-H bond activation. The reaction displayed excellent functional group tolerance, providing various phenanthridinones with moderate to high yields.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hanxuan Wu
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yucheng Zhao
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
4
|
Tyerman S, Robertson CM, Murphy JA. Radical coupling of aryl halides to arenes facilitated by Ni(COD)(DQ) and other nickel sources. Org Biomol Chem 2024; 22:1023-1026. [PMID: 38189557 DOI: 10.1039/d3ob01745a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The air-stable complex Ni(COD)(DQ) (COD = 1,5-cyclooctadiene, DQ = duroquinone) promotes the coupling of aryl halides to arenes in the presence of KOtBu. This complex has recently been shown to perform coupling reactions based on organonickel intermediates, but in this case the coupling reactions proceed via aryl radicals as shown by our newly developed assay for aryl radicals. Coupling with this nickel source is more efficient than with Ni(COD)2, Ni(PPh3)4 and Ni(acac)2, all of which we also show to operate through aryl radical pathways.
Collapse
Affiliation(s)
- Seb Tyerman
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| | - Craig M Robertson
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - John A Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| |
Collapse
|
5
|
Maayuri R, Gandeepan P. Manganese-catalyzed hydroarylation of multiple bonds. Org Biomol Chem 2023; 21:441-464. [PMID: 36541044 DOI: 10.1039/d2ob01674e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transition metal-catalyzed C-H activation has become a promising strategy in organic synthesis due to its improved atom-, step- and resource economy. Considering the Earth's abundance, economic benefits, and low toxicity, 3d metal catalysts for C-H activation have received a significant focus. In particular, organometallic manganese-catalyzed C-H activation has proven to be versatile and suitable for a wide range of transformations such as C-H addition to π-components, arylation, alkylation, alkynylation, amination, and many more. Among them, manganese-catalyzed C-H addition to C-C and C-heteroatom multiple bonds exhibited unique and promising reactivity to construct a wide range of complex organic molecules. In this review, we highlight the developments in the field of manganese-catalyzed hydroarylation of multiple bonds via C-H activation with a range of applications until August 2022.
Collapse
Affiliation(s)
- Rajaram Maayuri
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu-Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh 517619, India.
| | - Parthasarathy Gandeepan
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu-Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh 517619, India.
| |
Collapse
|
6
|
Yadav SK, Jeganmohan M. Cobalt(III)-Catalyzed Regioselective [4 + 2]-Annulation of N-Chlorobenzamides with Substituted Alkenes. J Org Chem 2022; 87:13073-13088. [PMID: 36163013 DOI: 10.1021/acs.joc.2c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Co(III)-catalyzed redox-neutral [4 + 2] annulation of N-chlorobenzamides/acrylamides with substituted alkenes at ambient temperature is demonstrated. Using this protocol, pharmaceutically important 3,4-dihydroisoquinolinone derivatives were synthesized in good yields. Intriguingly, the synthetically useful functional group of allylic coupling partners such as sulfonyl, carbonate, acetate, phosphate, amide, nitrile, and silane were retained in the final cyclized product. The present annulation reaction was compatible with various substituted benzamides and allylic coupling partners. To support the proposed reaction mechanism, competition experiments, deuterium labeling studies, and kinetic isotope effect studies were performed.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
7
|
Wang Y, Zhang F, Chen H, Li Y, Li J, Ye M. Enantioselective Nickel‐Catalyzed C(sp
3
)−H Activation of Formamides. Angew Chem Int Ed Engl 2022; 61:e202209625. [DOI: 10.1002/anie.202209625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yin‐Xia Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Haihe Laboratory of Sustainable Chemical Transformations Nankai University Tianjin 300071 China
- Luoyang Institute of Science and Technology Luoyang, Henan Province 471023 China
| | - Feng‐Ping Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Haihe Laboratory of Sustainable Chemical Transformations Nankai University Tianjin 300071 China
| | - Hao Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Haihe Laboratory of Sustainable Chemical Transformations Nankai University Tianjin 300071 China
| | - Yue Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Haihe Laboratory of Sustainable Chemical Transformations Nankai University Tianjin 300071 China
| | - Jiang‐Fei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Haihe Laboratory of Sustainable Chemical Transformations Nankai University Tianjin 300071 China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Haihe Laboratory of Sustainable Chemical Transformations Nankai University Tianjin 300071 China
| |
Collapse
|
8
|
Wang YX, Zhang FP, Chen H, Li Y, Li JF, Ye M. Enantioselective Nickel‐Catalyzed C(sp3)−H Activation of Formamides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yin-Xia Wang
- Luoyang Institute of Science and Technology chemistry CHINA
| | | | - Hao Chen
- Nankai University chemistry CHINA
| | - Yue Li
- Nankai University chemistry CHINA
| | | | - Mengchun Ye
- nankai university chemistry 94 Weijin Rd, Lihua Bldg 310 300071 Tianjin CHINA
| |
Collapse
|
9
|
Gillbard SM, Lam HW. Nickel-Catalyzed Arylative Cyclizations of Alkyne- and Allene-Tethered Electrophiles using Arylboron Reagents. Chemistry 2022; 28:e202104230. [PMID: 34986277 PMCID: PMC9302687 DOI: 10.1002/chem.202104230] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/14/2022]
Abstract
The use of arylboron reagents in metal‐catalyzed domino addition–cyclization reactions is a well‐established strategy for the preparation of diverse, highly functionalized carbo‐ and heterocyclic products. Although rhodium‐ and palladium‐based catalysts have been commonly used for these reactions, more recent work has demonstrated nickel catalysis is also highly effective, in many cases offering unique reactivity and access to products that might otherwise not be readily available. This review gives an overview of nickel‐catalyzed arylative cyclizations of alkyne‐ and allene‐tethered electrophiles using arylboron reagents. The scope of the reactions is discussed in detail, and general mechanistic concepts underpinning the processes are described.
Collapse
Affiliation(s)
- Simone M Gillbard
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, NG7 2TU, Nottingham, UK.,School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, NG7 2TU, Nottingham, UK.,School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| |
Collapse
|
10
|
Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chem Rev 2022; 122:3180-3218. [PMID: 34797053 PMCID: PMC9714963 DOI: 10.1021/acs.chemrev.1c00614] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew B Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jaime R Cabrera-Pardo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tammy D Pham
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Skylar Blank
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
11
|
Sarkar T, Maharana PK, Roy S, Punniyamurthy T. Expedient Ni-catalyzed C-H/C-H cross-dehydrogenative coupling of aryl amides with azoles. Chem Commun (Camb) 2022; 58:5980-5983. [DOI: 10.1039/d2cc01097f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel-catalyzed C-H heteroarylation of arenes has been described using a removable oxazoline-aniline derived directing group. Utilization of inexpensive nickel(II)-catalyst, substrate scope, functional group diversity and late-stage functionalization of xanthine-derived...
Collapse
|
12
|
Pei C, Zong J, Li B, Wang B. Ni‐Catalyzed Direct Carboxylation of Aryl C−H Bonds in Benzamides with CO
2. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chunzhe Pei
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Jiarui Zong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 People's Republic of China
| |
Collapse
|
13
|
Xu LP, Haines BE, Ajitha MJ, Yu JQ, Musaev DG. Unified Mechanistic Concept of the Copper-Catalyzed and Amide-Oxazoline-Directed C(sp 2)–H Bond Functionalization. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Li-Ping Xu
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Brandon E. Haines
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Manjaly J. Ajitha
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
14
|
|
15
|
Mantry L, Maayuri R, Kumar V, Gandeepan P. Photoredox catalysis in nickel-catalyzed C-H functionalization. Beilstein J Org Chem 2021; 17:2209-2259. [PMID: 34621388 PMCID: PMC8451005 DOI: 10.3762/bjoc.17.143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/18/2021] [Indexed: 01/24/2023] Open
Abstract
Catalytic C‒H functionalization has become a powerful strategy in organic synthesis due to the improved atom-, step- and resource economy in comparison with cross-coupling or classical organic functional group transformations. Despite the significant advances in the metal-catalyzed C‒H activations, recent developments in the field of metallaphotoredox catalysis enabled C‒H functionalizations with unique reaction pathways under mild reaction conditions. Given the relative earth-abundance and cost-effective nature, nickel catalysts for photoredox C‒H functionalization have received significant attention. In this review, we highlight the developments in the field of photoredox nickel-catalyzed C‒H functionalization reactions with a range of applications until summer 2021.
Collapse
Affiliation(s)
- Lusina Mantry
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| | - Rajaram Maayuri
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| | - Vikash Kumar
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| | - Parthasarathy Gandeepan
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| |
Collapse
|
16
|
Jagtap RA, Punji B. Nickel-Catalyzed C-H Bond Functionalization of Azoles and Indoles. CHEM REC 2021; 21:3573-3588. [PMID: 34075686 DOI: 10.1002/tcr.202100113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Direct C-H functionalization of privileged and biologically relevant azoles and indoles represents an important chemical transformation in molecular science. Despite significant progress in the palladium-catalyzed regioselective C-H functionalization of azoles and indoles, the use of abundant and less expensive nickel catalyst is underdeveloped. In the recent past, the nickel-catalyzed regioselective C-H alkylation, arylation, alkenylation and alkynylation of azoles and indoles have been substantially explored, which can be applied to the complex organic molecule synthesis. In this Account, we summarize the developments in nickel-catalyzed regioselective functionalization of azoles and indoles with a considerable focus on the reaction mechanism.
Collapse
Affiliation(s)
- Rahul A Jagtap
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
17
|
|
18
|
Abstract
Sustainable transformations towards the production of valuable chemicals constantly attract interest, both in terms of academic and applied research. C–H activation has long been scrutinized in this regard, given that it offers a straightforward pathway to prepare compounds of great significance. In this context, directing groups (DG) have paved the way for chemical transformations that had not been achievable using traditional reactions. Few steps, high yields, selectivity and activation of inert substrates are some of the invaluable assets of directed catalysis. Additionally, the employment of traceless directing groups (TDG) greatly improves and simplifies this strategy, enabling the realization of multi-step reactions in one-pot, cascade procedures. Cheap, abundant, readily available transition metal salts and complexes can catalyze a plethora of reactions employing TDGs, usually under low catalyst loadings—rarely under stoichiometric amounts, leading in greater atom economy and milder conditions with increased yields and step-economy. This review article summarizes all the work done on TDG-assisted catalysis with manganese, iron, cobalt, nickel, or copper catalysts, and discusses the structure-activity relationships observed, by presenting the catalytic pathways and range of transformations reported thus far.
Collapse
|
19
|
Sikari R, Chakraborty G, Guin AK, Paul ND. Nickel-Catalyzed [4 + 2] Annulation of Nitriles and Benzylamines by C-H/N-H Activation. J Org Chem 2021; 86:279-290. [PMID: 33314935 DOI: 10.1021/acs.joc.0c02069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nickel-catalyzed [4 + 2] annulation of benzylamines and nitriles via C-H/N-H bond activation, providing straightforward atom-economic access to a wide variety of multisubstituted quinazolines, is reported. Mechanistic investigation revealed that the in situ formed amidines from the coupling of benzylamines and nitriles direct the nickel catalyst to activate the ortho-C-H bond of the phenyl ring of the benzylamine.
Collapse
Affiliation(s)
- Rina Sikari
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
20
|
Cheng HC, Guo PH, Ma JL, Hu XQ. Directing group strategies in catalytic sp2 C–H cyanations: scope, mechanism and limitations. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00241d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Directing group strategy in transition metal catalyzed sp2 C–H bond cyanation has contributed to the direct conversion of hydrocarbons to cyano-containing compounds. Recent developments in transition metal-mediated sp2 C–H bond cyanation using this strategy are reviewed.
Collapse
Affiliation(s)
- Hui-cheng Cheng
- College of Chemistry
- Guangdong University of Petrochemical Technology
- Maoming 525000
- PR China
| | - Peng-hu Guo
- College of Chemistry
- Guangdong University of Petrochemical Technology
- Maoming 525000
- PR China
| | - Jiao-li Ma
- College of Chemistry
- Guangdong University of Petrochemical Technology
- Maoming 525000
- PR China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| |
Collapse
|
21
|
Wang D, Feng W, Wu Y, Liu T, Wang P. Redox‐Neutral Nickel(II) Catalysis: Hydroarylation of Unactivated Alkenes with Arylboronic Acids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dao‐Ming Wang
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Wang Feng
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Yichen Wu
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Tao Liu
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Peng Wang
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
- CAS Key Laboratory of Energy Regulation Materials Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
22
|
Wang D, Feng W, Wu Y, Liu T, Wang P. Redox‐Neutral Nickel(II) Catalysis: Hydroarylation of Unactivated Alkenes with Arylboronic Acids. Angew Chem Int Ed Engl 2020; 59:20399-20404. [DOI: 10.1002/anie.202009195] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/02/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Dao‐Ming Wang
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Wang Feng
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Yichen Wu
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Tao Liu
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Peng Wang
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
- CAS Key Laboratory of Energy Regulation Materials Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
23
|
Pei C, Zong J, Han S, Li B, Wang B. Ni-Catalyzed Direct Carboxylation of an Unactivated C-H Bond with CO 2. Org Lett 2020; 22:6897-6902. [PMID: 32812433 DOI: 10.1021/acs.orglett.0c02429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transition-metal-catalyzed direct carboxylation of an unactivated C-H bond is rarely reported, and no example of catalysis using abundant and cheap nickel has been reported. In this work, the first Ni-catalyzed direct carboxylation of an unactivated C-H bond under an atmospheric pressure of CO2 is reported. This method affords moderate to high carboxylation yields of various methyl carboxylates under mild conditions. Preliminary mechanistic studies reveal that a Ni(0)-Ni(II)-Ni(I) catalytic cycle may be involved in this reaction.
Collapse
Affiliation(s)
- Chunzhe Pei
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jiarui Zong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Shanglin Han
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
24
|
Messinis AM, Finger LH, Hu L, Ackermann L. Allenes for Versatile Iron-Catalyzed C-H Activation by Weak O-Coordination: Mechanistic Insights by Kinetics, Intermediate Isolation, and Computation. J Am Chem Soc 2020; 142:13102-13111. [PMID: 32536163 DOI: 10.1021/jacs.0c04837] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The iron-catalyzed hydroarylation of allenes was accomplished by weak phenone assistance. The C-H activation proceeded with excellent efficacy and high ortho-regioselectivity in proximity to the weakly coordinating carbonyl group for a range of substituted phenones and allenes. Detailed mechanistic studies, including the isolation of key intermediates, the structural characterization of an iron-metallacycle, and kinetic analysis, allowed the sound elucidation of a plausible catalytic working mode. This mechanistic rationale is supported by detailed computational density functional theory studies, which fully address multi-spin-state reactivity. Furthermore, in operando nuclear magnetic resonance monitoring of the catalytic reaction provided detailed insights into the mode of action of the iron-catalyzed C-H alkylation with allenes.
Collapse
Affiliation(s)
- Antonis M Messinis
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| | - Lars H Finger
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| | - Lianrui Hu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany.,WISCh (Wöhler-Research Institute for Sustainable Chemistry), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| |
Collapse
|
25
|
Jagtap RA, Verma SK, Punji B. MnBr 2-Catalyzed Direct and Site-Selective Alkylation of Indoles and Benzo[ h]quinoline. Org Lett 2020; 22:4643-4647. [PMID: 32491871 DOI: 10.1021/acs.orglett.0c01398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Manganese-catalyzed regioselective C-H alkylation of indoles and benzo[h]quinoline with a variety of unactivated alkyl iodides is reported. Unlike other Mn-catalyzed C-H functionalization, this protocol does not require a Grignard reagent base and employs a simple and inexpensive MnBr2 as a catalyst. This method tolerates diverse functionalities, including fluoro, chloro, bromo, iodo, alkenyl, alkynyl, pyrrolyl, and carbazolyl groups. The alkylation proceeds through a single-electron transfer pathway comprising reversible C-H manganesation and involving an alkyl radical intermediate.
Collapse
|
26
|
Porcheddu A, Colacino E, De Luca L, Delogu F. Metal-Mediated and Metal-Catalyzed Reactions Under Mechanochemical Conditions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00142] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 bivio per Sestu, 09042 Monserrato, Cagliari, Italy
- Consorzio C.I.N.M.P.I.S., 70125 Bari, Italy
| | | | - Lidia De Luca
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
27
|
Chen T, Yang H, Yang Y, Dong G, Xing D. Water-Accelerated Nickel-Catalyzed α-Crotylation of Simple Ketones with 1,3-Butadiene under pH and Redox-Neutral Conditions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tiantian Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China 200062
| | - Haijian Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China 200062
| | - Yang Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China 200062
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China 200062
| |
Collapse
|
28
|
Xu LP, Haines BE, Ajitha MJ, Murakami K, Itami K, Musaev DG. Roles of Base in the Pd-Catalyzed Annulative Chlorophenylene Dimerization. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Li-Ping Xu
- Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Brandon E. Haines
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Manjaly J. Ajitha
- Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Kei Murakami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Graduate School of Science, and JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Graduate School of Science, and JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
29
|
Pandey DK, Ankade SB, Ali A, Vinod CP, Punji B. Nickel-catalyzed C-H alkylation of indoles with unactivated alkyl chlorides: evidence of a Ni(i)/Ni(iii) pathway. Chem Sci 2019; 10:9493-9500. [PMID: 32110305 PMCID: PMC7017866 DOI: 10.1039/c9sc01446b] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/17/2019] [Indexed: 11/21/2022] Open
Abstract
A mild and efficient nickel-catalyzed method for the coupling of unactivated primary and secondary alkyl chlorides with the C-H bond of indoles and pyrroles is described which demonstrates a high level of chemo and regioselectivity. The reaction tolerates numerous functionalities, such as halide, alkenyl, alkynyl, ether, thioether, furanyl, pyrrolyl, indolyl and carbazolyl groups including acyclic and cyclic alkyls under the reaction conditions. Mechanistic investigation highlights that the alkylation proceeds through a single-electron transfer (SET) process with Ni(i)-species being the active catalyst. Overall, the alkylation follows a Ni(i)/Ni(iii) pathway involving the rate-influencing two-step single-electron oxidative addition of alkyl chlorides.
Collapse
Affiliation(s)
- Dilip K Pandey
- Organometallic Synthesis and Catalysis Group , Chemical Engineering Division , CSIR-National Chemical Laboratory (CSIR-NCL) , Dr. Homi Bhabha Road , Pune 411 008 , Maharashtra , India .
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-NCL , Dr. Homi Bhabha Road , Pune , India
| | - Shidheshwar B Ankade
- Organometallic Synthesis and Catalysis Group , Chemical Engineering Division , CSIR-National Chemical Laboratory (CSIR-NCL) , Dr. Homi Bhabha Road , Pune 411 008 , Maharashtra , India .
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-NCL , Dr. Homi Bhabha Road , Pune , India
| | - Abad Ali
- Organometallic Synthesis and Catalysis Group , Chemical Engineering Division , CSIR-National Chemical Laboratory (CSIR-NCL) , Dr. Homi Bhabha Road , Pune 411 008 , Maharashtra , India .
| | - C P Vinod
- Catalysis Division , CSIR-NCL , Dr. Homi Bhabha Road , Pune , India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Group , Chemical Engineering Division , CSIR-National Chemical Laboratory (CSIR-NCL) , Dr. Homi Bhabha Road , Pune 411 008 , Maharashtra , India .
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-NCL , Dr. Homi Bhabha Road , Pune , India
| |
Collapse
|
30
|
Tercenio QD, Alexanian EJ. Nickel-catalyzed, ring-forming aromatic C-H alkylations with unactivated alkyl halides. Tetrahedron 2019; 75:4143-4149. [PMID: 31406389 PMCID: PMC6690380 DOI: 10.1016/j.tet.2019.05.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of a nickel-catalyzed C-H alkylation of aromatic substrates with unactivated alkyl halides is described. This carbocyclization facilitates the synthesis of diverse fused ring systems from simple aromatic substrates and is an attractive alternative to traditional polar or radical-mediated ring formations. The present system uses unactivated primary and secondary alkyl bromides and chlorides, while avoiding the use of precious palladium catalysts and more reactive alkyl halides commonly used in related C-H alkylations.
Collapse
Affiliation(s)
- Quentin D. Tercenio
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Erik J. Alexanian
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
31
|
Loup J, Dhawa U, Pesciaioli F, Wencel‐Delord J, Ackermann L. Enantioselective C−H Activation with Earth‐Abundant 3d Transition Metals. Angew Chem Int Ed Engl 2019; 58:12803-12818. [DOI: 10.1002/anie.201904214] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Joachim Loup
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Fabio Pesciaioli
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Joanna Wencel‐Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042) Université de Strasbourg/Université de Haute Alsace, ECPM 25 Rue Becquerel 67087 Strasbourg France
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| |
Collapse
|
32
|
Loup J, Dhawa U, Pesciaioli F, Wencel‐Delord J, Ackermann L. Enantioselektive C‐H‐Aktivierung mit natürlich vorkommenden 3d‐Übergangsmetallen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904214] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Joachim Loup
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Fabio Pesciaioli
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Joanna Wencel‐Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042) Université de Strasbourg/Université de Haute Alsace, ECPM 25 Rue Becquerel 67087 Strasbourg Frankreich
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
33
|
Xu W, Yoshikai N. Iron-Catalyzed ortho C-H Arylation and Methylation of Pivalophenone N-H Imines. CHEMSUSCHEM 2019; 12:3049-3053. [PMID: 30786170 DOI: 10.1002/cssc.201900164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Iron-catalyzed ortho C-H arylation and methylation reactions of pivalophenone N-H imines are reported. The pivaloyl N-H imine proved an excellent directing group for the arylation with diarylzinc reagents in the presence of an iron-diphosphine catalyst and 2,3-dichlorobutane at room temperature. A similar catalytic system also allowed methylation with Me3 Al at 70 °C. The pivaloyl imine of the product could be readily converted to a cyano group, thus allowing convenient preparation of ortho-functionalized benzonitriles.
Collapse
Affiliation(s)
- Wengang Xu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Naohiko Yoshikai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
34
|
Patel UN, Jagtap RA, Punji B. Scope and Mechanistic Aspect of Nickel-Catalyzed Alkenylation of Benzothiazoles and Related Azoles with Styryl Bromides. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Meyer TH, Finger LH, Gandeepan P, Ackermann L. Resource Economy by Metallaelectrocatalysis: Merging Electrochemistry and C H Activation. TRENDS IN CHEMISTRY 2019. [DOI: 10.1016/j.trechm.2019.01.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Liu Q, Li C, Lu Z, Huang G, Ye J, Gao Y, Chen H. A Direct Approach to 3‐Azo‐Substituted 2‐Oxindoles at Room Temperature by Nickel‐Catalyzed Oxidative Coupling Reaction. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qing Liu
- College of ChemistryFuzhou University Fuzhou Fujian 350116 China
| | - Cailong Li
- College of ChemistryFuzhou University Fuzhou Fujian 350116 China
| | - Zhenxin Lu
- College of ChemistryFuzhou University Fuzhou Fujian 350116 China
| | - Gaofeng Huang
- College of ChemistryFuzhou University Fuzhou Fujian 350116 China
| | - Jinxiang Ye
- College of ChemistryFuzhou University Fuzhou Fujian 350116 China
| | - Yu Gao
- College of ChemistryFuzhou University Fuzhou Fujian 350116 China
| | - Haijun Chen
- College of ChemistryFuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
37
|
Omer H, Liu P. Computational Study of the Ni-Catalyzed C-H Oxidative Cycloaddition of Aromatic Amides with Alkynes. ACS OMEGA 2019; 4:5209-5220. [PMID: 31459693 PMCID: PMC6648058 DOI: 10.1021/acsomega.9b00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/01/2019] [Indexed: 06/10/2023]
Abstract
The mechanism of Ni-catalyzed ortho C(sp2)-H oxidative cycloaddition of aromatic amides with internal alkynes containing 2-pyridinylmethylamine directing group was investigated using density functional theory (DFT) calculations. The C-H cleavage step proceeds via σ-complex-assisted metathesis (σ-CAM) with an alkenyl-Ni(II) complex. This is in contrast to the more common carboxylate/carbonate-assisted concerted metalation-deprotonation mechanism in related Ni-catalyzed C-H bond functionalization reactions with N,N-bidentate directing groups. In this reaction, the alkyne not only serves as the coupling partner, but also facilitates the σ-CAM C-H metalation both kinetically and thermodynamically. The subsequent functionalization of the five-membered nickelacycle proceeds via alkyne insertion into the Ni-C bond to form a seven-membered nickelacycle. This process proceeds with high levels of regioselectivity to form a C-C bond with sterically more encumbered alkyne terminus. This unusual regioselectivity is due to steric repulsions with the directing group that is coplanar with the alkyne in the migratory insertion transition state. The C-N bond reductive elimination to form the isoquinolone cycloadduct is promoted by PPh3 complexation to the Ni center and the use of flexible 2-pyridinylmethylamine directing group. The origin of the cis-trans isomerism of alkene byproduct was also explained by computations.
Collapse
Affiliation(s)
- Humair
M. Omer
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
38
|
Obata A, Sasagawa A, Yamazaki K, Ano Y, Chatani N. Nickel-catalyzed oxidative C-H/N-H annulation of N-heteroaromatic compounds with alkynes. Chem Sci 2019; 10:3242-3248. [PMID: 30996908 PMCID: PMC6430018 DOI: 10.1039/c8sc05063e] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/03/2019] [Indexed: 12/13/2022] Open
Abstract
The reaction of N-heteroaromatic compounds, such as 2-aryl-pyrrole, benzimidazole, imidazole, indole, and pyrazole derivatives, with alkynes in the presence of a catalytic amount of a nickel complex results in C-H/N-H oxidative annulation. The reaction shows a high functional group compatibility. While both Ni(0) and Ni(ii) complexes show a high catalytic activity, Ni(0) is proposed as a key catalytic species in the main catalytic cycle. In the case of the Ni(ii) system, the presence of a catalytic amount of a strong base, such as KOBu t , is required for the reaction to proceed. In sharp contrast, a base is not required in the case of the Ni(0) system. The proposed mechanism is supported by DFT studies.
Collapse
Affiliation(s)
- Atsushi Obata
- Department of Applied Chemistry , Faculty of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan .
| | - Akane Sasagawa
- Department of Applied Chemistry , Faculty of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan .
| | - Ken Yamazaki
- Department of Applied Chemistry , Faculty of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan .
| | - Yusuke Ano
- Department of Applied Chemistry , Faculty of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan .
| | - Naoto Chatani
- Department of Applied Chemistry , Faculty of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan .
| |
Collapse
|
39
|
Chen J, Lv S, Tian S. Electrochemical Transition-Metal-Catalyzed C-H Bond Functionalization: Electricity as Clean Surrogates of Chemical Oxidants. CHEMSUSCHEM 2019; 12:115-132. [PMID: 30280508 DOI: 10.1002/cssc.201801946] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/01/2018] [Indexed: 06/08/2023]
Abstract
Transition-metal-catalyzed C-H activation has attracted much attention from the organic synthetic community because it obviates the need to prefunctionalize substrates. However, superstoichiometric chemical oxidants, such as copper- or silver-based metal oxidants, benzoquinones, organic peroxides, K2 S2 O8 , hypervalent iodine, and O2 , are required for most of the reactions. Thus, the development of environmentally benign and user-friendly C-H bond activation protocols, in the absence of chemical oxidants, are urgently desired. The inherent advantages and unique characteristics of organic electrosynthesis make fill this gap. Herein, recent progress in this area (until the end of September 2018) is summarized for different transition metals to highlight the potential sustainability of electro-organic chemistry.
Collapse
Affiliation(s)
- Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Shide Lv
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Siyu Tian
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| |
Collapse
|
40
|
Harry NA, Saranya S, Ujwaldev SM, Anilkumar G. Recent advances and prospects in nickel-catalyzed C–H activation. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00009g] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nickel-catalyzed C–H activation has become a predominant and ubiquitous research area in organic chemistry.
Collapse
Affiliation(s)
- Nissy Ann Harry
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - Salim Saranya
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | | | - Gopinathan Anilkumar
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
- Advanced Molecular Materials Research Centre (AMMRC)
| |
Collapse
|
41
|
Jagtap RA, Vinod CP, Punji B. Nickel-Catalyzed Straightforward and Regioselective C–H Alkenylation of Indoles with Alkenyl Bromides: Scope and Mechanistic Aspect. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04267] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Wang TH, Ambre R, Wang Q, Lee WC, Wang PC, Liu Y, Zhao L, Ong TG. Nickel-Catalyzed Heteroarenes Cross Coupling via Tandem C–H/C–O Activation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03436] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ting-Hsuan Wang
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nangang, Taipei, Taiwan 11529, ROC
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
| | - Ram Ambre
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nangang, Taipei, Taiwan 11529, ROC
| | - Qing Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Wei-Chih Lee
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan 31057, ROC
| | - Pen-Cheng Wang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
| | - Yuhua Liu
- School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Tiow-Gan Ong
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nangang, Taipei, Taiwan 11529, ROC
| |
Collapse
|
43
|
Matsushita K, Takise R, Hisada T, Suzuki S, Isshiki R, Itami K, Muto K, Yamaguchi J. Pd-Catalyzed Decarbonylative C-H Coupling of Azoles and Aromatic Esters. Chem Asian J 2018; 13:2393-2396. [PMID: 29719140 DOI: 10.1002/asia.201800478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Indexed: 01/10/2023]
Abstract
A decarbonylative C-H coupling of azoles and aromatic esters by palladium catalysis is described. Our previously reported Ni-catalyzed C-H coupling of azoles and aromatic esters has a significant drawback regarding the substrate scope. Herein, we employ palladium catalysis instead of nickel, resulting in a broader substrate scope in terms of azoles and aromatic esters.
Collapse
Affiliation(s)
- Kaoru Matsushita
- Department of Applied Chemistry, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Ryosuke Takise
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Tomoya Hisada
- Department of Applied Chemistry, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Shin Suzuki
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Ryota Isshiki
- Department of Applied Chemistry, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kei Muto
- Department of Applied Chemistry, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo, 169-8555, Japan
| |
Collapse
|
44
|
Xiao Z, Shu S, Lin Y, Zhang Q, Ren P, Li D. Chelation-Assisted C−N Cross-Coupling between Picolinamides and Aryl Boronic Acids under Nickel Catalysis. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhen Xiao
- School of Materials and Chemical Engineering; Hubei University of Technology; Wuhan 430068 China
| | - Sihao Shu
- School of Materials and Chemical Engineering; Hubei University of Technology; Wuhan 430068 China
| | - Yi Lin
- School of Materials and Chemical Engineering; Hubei University of Technology; Wuhan 430068 China
| | - Qian Zhang
- School of Materials and Chemical Engineering; Hubei University of Technology; Wuhan 430068 China
| | - Peng Ren
- School of Science; Harbin Institute of Technology (Shenzhen); Shenzhen 518055 China
| | - Dong Li
- School of Materials and Chemical Engineering; Hubei University of Technology; Wuhan 430068 China
| |
Collapse
|
45
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1142] [Impact Index Per Article: 163.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
46
|
Planas O, Roldán-Gómez S, Martin-Diaconescu V, Luis JM, Company A, Ribas X. Mechanistic insights into the S N2-type reactivity of aryl-Co(iii) masked-carbenes for C-C bond forming transformations. Chem Sci 2018; 9:5736-5746. [PMID: 30079183 PMCID: PMC6050605 DOI: 10.1039/c8sc00851e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Herein we describe the synthesis and characterization of a family of C-metalated aryl-Co(iii) enolates, which can be considered as masked-carbenes, using diazoacetates as coupling partners. These species have been proved to be necessary intermediates in the C(sp2)-C(sp3) bond forming event to obtain cyclic amides, taming the elusive Co(iii)-carbene species. The scope of diazoacetates has been exhaustively examined, varying the nature of the ester and the α-substitution, and a clear preference for electron-poor carbene precursors is observed. Exhaustive experimental and theoretical studies indicate that an unprecedented intramolecular SN2-type process governs the formation of the newly formed C-C bond. Furthermore, the key role of several Lewis acids as carboxylate-activating reagents is further explored by DFT calculations.
Collapse
Affiliation(s)
- O Planas
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , Girona , E-17003 , Catalonia , Spain . ;
| | - S Roldán-Gómez
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , Girona , E-17003 , Catalonia , Spain . ;
| | - V Martin-Diaconescu
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Països Catalans 16 , 43007 Tarragona , Catalonia , Spain
| | - J M Luis
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , Girona , E-17003 , Catalonia , Spain . ;
| | - A Company
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , Girona , E-17003 , Catalonia , Spain . ;
| | - X Ribas
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , Girona , E-17003 , Catalonia , Spain . ;
| |
Collapse
|
47
|
Affiliation(s)
- Nicolas Sauermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tjark H. Meyer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Youai Qiu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
48
|
Kalepu J, Gandeepan P, Ackermann L, Pilarski LT. C4-H indole functionalisation: precedent and prospects. Chem Sci 2018; 9:4203-4216. [PMID: 29780550 PMCID: PMC5944383 DOI: 10.1039/c7sc05336c] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/19/2018] [Indexed: 12/22/2022] Open
Abstract
C4-decorated indoles feature in a plethora of bioactive and functional compounds of importance to natural product synthesis, material sciences, as well as crop protection and pharmaceutical industries. Traditionally, their syntheses largely involved harsh stoichiometric metalations and radical reactions. However, transition metal catalysed C-H activation has recently evolved into a powerful strategy for the late-stage diversification of indoles at the C4-H position. Modern photoredox, enzymatic and precious transition metal catalysis represent the key stimuli for developing challenging C-C and C-Het bond forming transformations under mild reaction conditions. Herein, we discuss the evolution and application of these methods for the step-economical transformations of otherwise inert C4-H bonds up to December 2017.
Collapse
Affiliation(s)
- Jagadeesh Kalepu
- Department of Chemistry - BMC , Uppsala University , Box 576 , 75-123 Uppsala , Sweden . ; https://www.pilarskigroup.org/
| | - Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Goettingen , Germany .
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Goettingen , Germany .
| | - Lukasz T Pilarski
- Department of Chemistry - BMC , Uppsala University , Box 576 , 75-123 Uppsala , Sweden . ; https://www.pilarskigroup.org/
| |
Collapse
|
49
|
Diesel J, Finogenova AM, Cramer N. Nickel-Catalyzed Enantioselective Pyridone C–H Functionalizations Enabled by a Bulky N-Heterocyclic Carbene Ligand. J Am Chem Soc 2018. [DOI: 10.1021/jacs.8b01181] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Johannes Diesel
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anastasiia M. Finogenova
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
50
|
Gandeepan P, Mo J, Ackermann L. Photo-induced copper-catalyzed C-H chalcogenation of azoles at room temperature. Chem Commun (Camb) 2018; 53:5906-5909. [PMID: 28513650 DOI: 10.1039/c7cc03107f] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inexpensive copper catalysts enabled direct C-H chalcogenations at ambient temperature by means of photo-induced catalysis. The expedient copper catalysis set the stage for C-S and C-Se bond formation from readily accessible non-volatile elemental chalcogens. The photo-assisted copper catalysis manifold proved suitable for a wide range of substrates with good functional group tolerance and exhibited high catalytic efficacy even at a reaction temperature of 25 °C.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Goettingen, Germany.
| | | | | |
Collapse
|