1
|
Xing Y, Jiang H, Cai L. Engineered nanotransporters for efficient RNAi delivery in plant protection applications. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40080402 DOI: 10.1111/jipb.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 02/16/2025] [Accepted: 02/16/2025] [Indexed: 03/15/2025]
Abstract
RNA interference (RNAi) is increasingly used for plant protection against pathogens and pests. However, the traditional delivery method causes plant tissue damage, is affected by environmental factors, and faces difficulties in penetrating the barriers of cell walls and the limitations of plant species, ultimately leading to low delivery efficiency. With advances in nanotechnology, nanomaterials (NMs) have been identified as effective carriers for nucleic acid delivery because of their ability to operate independently of external mechanical forces, prevent degradation by bioenzymes, exhibit good biocompatibility, and offer high loading capacity. This review summarizes the application of NM-mediated RNAi against plant pathogens and pests, focusing on how different NMs break through the cell barriers of plants, pathogens, and pests according to their size, morphology, and charge characteristics. Furthermore, we discuss the advantages and improvement strategies of NMs as nucleic acid delivery carriers, alongside assessing their potential application for the management of plant pathogens and pests.
Collapse
Affiliation(s)
- Yue Xing
- College of Tobacco Science of Guizhou University, Guizhou Key Laboratory for Tobacco Quality, Guiyang, 550025, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hao Jiang
- College of Tobacco Science of Guizhou University, Guizhou Key Laboratory for Tobacco Quality, Guiyang, 550025, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Lin Cai
- College of Tobacco Science of Guizhou University, Guizhou Key Laboratory for Tobacco Quality, Guiyang, 550025, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
2
|
Liang H, Xing Y, Wang K, Zhang Y, Yin F, Li Z. Peptides: potential delivery systems for mRNA. RSC Chem Biol 2025:d4cb00295d. [PMID: 40071030 PMCID: PMC11891934 DOI: 10.1039/d4cb00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
mRNA-based therapies have broad applications in various disease treatments and have been applied in protein replacement therapy, gene editing, and vaccine development. Numerous research studies have been carried out aiming to increase the stability of mRNA, improve its translational efficiency, and reduce its immunogenicity. However, given mRNA's large molecular size and strong electronegativity, the safety and efficient delivery of mRNA into the target cells remains the critical rate-limiting step in current mRNA drug development. Various nanocarriers, such as liposomes, lipid nanoparticles, polyetherimide, and mesoporous silica nanoparticles, have been employed for mRNA delivery in the past few decades. Among them, peptides have demonstrated great potential as promising carrier candidates for mRNA delivery due to their high cell membrane permeability, good biocompatibility, definite chemical structure, and ease of preparation. Here, peptide-based mRNA delivery systems are systematically analyzed, including their construction strategies, mechanisms of action in mRNA delivery, and the application limitations or challenges. It is hoped that this review will guide the design, optimization, and applications of peptide carriers in mRNA-based drug development.
Collapse
Affiliation(s)
- Huiting Liang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 China
| | - Yun Xing
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Kexin Wang
- Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| | - Yaping Zhang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Zigang Li
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| |
Collapse
|
3
|
Yuan H, Jiang M, Fang H, Tian H. Recent advances in poly(amino acids), polypeptides, and their derivatives in drug delivery. NANOSCALE 2025; 17:3549-3584. [PMID: 39745097 DOI: 10.1039/d4nr04481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Poly(amino acids), polypeptides, and their derivatives have demonstrated significant potential as biodegradable biomaterials in the field of drug delivery. As degradable drug carriers, they can effectively load or conjugate drug molecules including small molecule drugs, nucleic acids, peptides, and protein-based drugs, enhancing the stability and targeting of the drugs in vivo. This strategy ultimately facilitates precise drug delivery and controlled release, thereby improving therapeutic efficacy and reducing side effects within the body. This review systematically describes the structural characteristics and preparation methods of poly(amino acids) and polypeptides, summarizes the advantages of poly(amino acids), polypeptides, and their derivatives in drug delivery, and detailedly introduces the latest advancements in this area. The review also discusses current challenges and opportunities associated with poly(amino acids), peptides, and their derivatives, and offers insights into the future directions for these biodegradable materials. This review aims to provide valuable references for scientific research and clinical translation of biodegradable biomaterials based on poly(amino acids) and peptides.
Collapse
Affiliation(s)
- Huilin Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| | - Mingxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
4
|
Sun X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid drugs: recent progress and future perspectives. Signal Transduct Target Ther 2024; 9:316. [PMID: 39609384 PMCID: PMC11604671 DOI: 10.1038/s41392-024-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/20/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
High efficacy, selectivity and cellular targeting of therapeutic agents has been an active area of investigation for decades. Currently, most clinically approved therapeutics are small molecules or protein/antibody biologics. Targeted action of small molecule drugs remains a challenge in medicine. In addition, many diseases are considered 'undruggable' using standard biomacromolecules. Many of these challenges however, can be addressed using nucleic therapeutics. Nucleic acid drugs (NADs) are a new generation of gene-editing modalities characterized by their high efficiency and rapid development, which have become an active research topic in new drug development field. However, many factors, including their low stability, short half-life, high immunogenicity, tissue targeting, cellular uptake, and endosomal escape, hamper the delivery and clinical application of NADs. Scientists have used chemical modification techniques to improve the physicochemical properties of NADs. In contrast, modified NADs typically require carriers to enter target cells and reach specific intracellular locations. Multiple delivery approaches have been developed to effectively improve intracellular delivery and the in vivo bioavailability of NADs. Several NADs have entered the clinical trial recently, and some have been approved for therapeutic use in different fields. This review summarizes NADs development and evolution and introduces NADs classifications and general delivery strategies, highlighting their success in clinical applications. Additionally, this review discusses the limitations and potential future applications of NADs as gene therapy candidates.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Chencheng Li
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialiang Hu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
6
|
Xiang K, Li Y, Cong H, Yu B, Shen Y. Peptide-based non-viral gene delivery: A comprehensive review of the advances and challenges. Int J Biol Macromol 2024; 266:131194. [PMID: 38554914 DOI: 10.1016/j.ijbiomac.2024.131194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Gene therapy is the most effective treatment option for diseases, but its effectiveness is affected by the choice and design of gene carriers. The genes themselves have to pass through multiple barriers in order to enter the cell and therefore require additional vectors to carry them inside the cell. In gene therapy, peptides have unique properties and potential as gene carriers, which can effectively deliver genes into specific cells or tissues, protect genes from degradation, improve gene transfection efficiency, and enhance gene targeting and biological responsiveness. This paper reviews the research progress of peptides and their derivatives in the field of gene delivery recently, describes the obstacles encountered by foreign materials to enter the interior of the cell, and introduces the following classes of functional peptides that can carry materials into the interior of the cell, and assist in transmembrane translocation of carriers, thus breaking through endosomal traps to enable successful entry of genetic materials into the nucleus of the cell. The paper also discusses the combined application of peptide vectors with other vectors to enhance its transfection ability, explores current challenges encountered by peptide vectors, and looks forward to future developments in the field.
Collapse
Affiliation(s)
- Kai Xiang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bio nanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Reichel LS, Traeger A. Stimuli-Responsive Non-viral Nanoparticles for Gene Delivery. Handb Exp Pharmacol 2024; 284:27-43. [PMID: 37644142 DOI: 10.1007/164_2023_694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Considering nucleic acids as the language of life and the genome as the instruction manual of cells, their targeted modulation promises great opportunities in treating and healing diseases. In addition to viral gene transfer, the overwhelming power of non-viral mRNA-based vaccines is driving the development of novel gene transporters. Thereby, various nucleic acids such as DNA (pDNA) or RNA (mRNA, siRNA, miRNA, gRNA, or ASOs) need to be delivered, requiring a transporter due to their high molar mass and negative charge in contrast to classical agents. This chapter presents the specific biological hurdles for using nucleic acids and shows how new materials can overcome these.
Collapse
Affiliation(s)
- Liên S Reichel
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Anja Traeger
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
8
|
Zhang J, Yang Y, Li K, Li J. Application of graphene oxide in tumor targeting and tumor therapy. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2551-2576. [PMID: 37768314 DOI: 10.1080/09205063.2023.2265171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Graphene oxide (GO), as a kind of two-dimensional sp2 carbon nanomaterials, has attracted great attention in many fields in the past decade. Due to its unique physical and chemical properties, GO is showing great promise in the field of biomedicine. For GO, all the atoms on its surface are exposed to the surface with ultra-high specific surface area, and a variety of groups on the surface, such as carboxyl, hydroxyl and epoxy groups, can effectively bind/load various biomolecules. Due to the availability of these groups, GO also possesses excellent hydrophilicity and biocompatibility for the modification of the desired biocompatible molecules or polymers on the surface of GO. The nano-network structure and hydrophobicity of GO enable it to load a large number of hydrophobic drugs containing benzene rings and it has been widely used as a multi-functional nano-carrier for chemotherapeutic drug or gene delivery. This review article will give an in-depth overview of the synthesis methods of GO, the advantages and disadvantages of GO used in nano-drug delivery system, the research progress of GO as a stimulus-responsive nano-drug carrier, and the application of these intelligent systems in cancer treatment.
Collapse
Affiliation(s)
- Jia Zhang
- College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Yibo Yang
- College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Kun Li
- College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Jian Li
- College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China
| |
Collapse
|
9
|
Stepanova M, Nikiforov A, Tennikova T, Korzhikova-Vlakh E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023; 15:2641. [PMID: 38004619 PMCID: PMC10674432 DOI: 10.3390/pharmaceutics15112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic polypeptides are biocompatible and biodegradable macromolecules whose composition and architecture can vary over a wide range. Their unique ability to form secondary structures, as well as different pathways of modification and biofunctionalization due to the diversity of amino acids, provide variation in the physicochemical and biological properties of polypeptide-containing materials. In this review article, we summarize the advances in the synthesis of polypeptides and their copolymers and the application of these systems for drug delivery in the form of (nano)particles or hydrogels. The issues, such as the diversity of polypeptide-containing (nano)particle types, the methods for their preparation and drug loading, as well as the influence of physicochemical characteristics on stability, degradability, cellular uptake, cytotoxicity, hemolysis, and immunogenicity of polypeptide-containing nanoparticles and their drug formulations, are comprehensively discussed. Finally, recent advances in the development of certain drug nanoformulations for peptides, proteins, gene delivery, cancer therapy, and antimicrobial and anti-inflammatory systems are summarized.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Alexey Nikiforov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, Petergof, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| |
Collapse
|
10
|
Li X, Guo X, Hu M, Cai R, Chen C. Optimal delivery strategies for nanoparticle-mediated mRNA delivery. J Mater Chem B 2023; 11:2063-2077. [PMID: 36794598 DOI: 10.1039/d2tb02455a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Messenger RNA (mRNA) has emerged as a new and efficient agent for the treatment of various diseases. The success of lipid nanoparticle-mRNA against the novel coronavirus (SARS-CoV-2) pneumonia epidemic has proved the clinical potential of nanoparticle-mRNA formulations. However, the deficiency in the effective biological distribution, high transfection efficiency and good biosafety are still the major challenges in clinical translation of nanomedicine for mRNA delivery. To date, a variety of promising nanoparticles have been constructed and then gradually optimized to facilitate the effective biodistribution of carriers and efficient mRNA delivery. In this review, we describe the design of nanoparticles with an emphasis on lipid nanoparticles, and discuss the manipulation strategies for nanoparticle-biology (nano-bio) interactions for mRNA delivery to overcome the biological barriers and improve the delivery efficiency, because the specific nano-bio interaction of nanoparticles usually remoulds the biomedical and physiological properties of the nanoparticles especially the biodistribution, mechanism of cellular internalization and immune response. Finally, we give a perspective for the future applications of this promising technology. We believe that the regulation of nano-bio interactions would be a significant breakthrough to improve the mRNA delivery efficiency and cross biological barriers. This review may provide a new direction for the design of nanoparticle-mediated mRNA delivery systems.
Collapse
Affiliation(s)
- Xiaoyan Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Xiaocui Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Mingdi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
11
|
Chen YF, Wang ZH, Chen YC, Chang CH, Zhuang HZ, Chung FY, Jan JS. Polypeptide Bilayer Assembly-Mediated Gene Delivery Enhances Chemotherapy in Cancer Cells. Mol Pharm 2023; 20:680-689. [PMID: 36515396 DOI: 10.1021/acs.molpharmaceut.2c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Developing gene vectors with high transfection efficiency and low cytotoxicity to humans is crucial to improve gene therapy outcomes. This study set out to investigate the use of cationic polypeptide bilayer assemblies formed by coil-sheet poly(l-lysine)-block-poly(l-benzyl-cysteine) (PLL-b-PBLC) as gene vectors that present improved transfection efficiency, endosomal escape, and biocompatibility compared to PLL. The formation of the polyplexes was triggered by hydrogen bonding, hydrophobic interactions, and electrostatic association between the cationic PLL segments and the negatively charged plasmid encoding p53, resulting in self-assembled polypeptide chains. Transfection efficiency of these polyplexes increased with increments of PLL-to-PBLC block ratios, with PLL15-b-PBLC5 bilayers exhibiting the best in vitro transfection efficiency among all, suggesting that PLL-b-PBLC bilayer assemblies are efficient in the protection and stabilization of genes. The polypeptide bilayer gene vector reversed the cisplatin sensitivity of p53-null cancer cells by increasing apoptotic signaling. Consistent with in vitro results, mouse xenograft studies revealed that PLL15-b-PBLC5/plasmid encoding p53 therapy significantly suppressed tumor growth and enhanced low-dose cisplatin treatment, while extending survival of tumor-bearing mice and avoiding significant body weight loss. This study presents a feasible gene therapy that, combined with low-dose chemotherapeutic drugs, may treat genetically resistant cancers while reducing side effects in clinical patients.
Collapse
Affiliation(s)
- Yu-Fon Chen
- Master Program in Biomedicine, National Taitung University, No. 684, Section 1, Zhonghua Road, Taitung 95092, Taiwan.,Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Zih-Hua Wang
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Yi-Cheng Chen
- Translational Medicine Research Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, No. 539, Zhongxiao Road, East District, Chiayi 600566, Taiwan
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Hui-Zhong Zhuang
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Fang-Yu Chung
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| |
Collapse
|
12
|
Zhang Q, Qiang L, Liu Y, Fan M, Si X, Zheng P. Biomaterial-assisted tumor therapy: A brief review of hydroxyapatite nanoparticles and its composites used in bone tumors therapy. Front Bioeng Biotechnol 2023; 11:1167474. [PMID: 37091350 PMCID: PMC10119417 DOI: 10.3389/fbioe.2023.1167474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Malignant bone tumors can inflict significant damage to affected bones, leaving patients to contend with issues like residual tumor cells, bone defects, and bacterial infections post-surgery. However, hydroxyapatite nanoparticles (nHAp), the principal inorganic constituent of natural bone, possess numerous advantages such as high biocompatibility, bone conduction ability, and a large surface area. Moreover, nHAp's nanoscale particle size enables it to impede the growth of various tumor cells via diverse pathways. This article presents a comprehensive review of relevant literature spanning the past 2 decades concerning nHAp and bone tumors. The primary goal is to explore the mechanisms responsible for nHAp's ability to hinder tumor initiation and progression, as well as to investigate the potential of integrating other drugs and components for bone tumor diagnosis and treatment. Lastly, the article discusses future prospects for the development of hydroxyapatite materials as a promising modality for tumor therapy.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Lei Qiang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yihao Liu
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minjie Fan
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xinxin Si
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Xinxin Si, ; Pengfei Zheng,
| | - Pengfei Zheng
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xinxin Si, ; Pengfei Zheng,
| |
Collapse
|
13
|
Ke J, Zhang J, Li J, Liu J, Guan S. Design of Cyclic Peptide-Based Nanospheres and the Delivery of siRNA. Int J Mol Sci 2022; 23:ijms232012071. [PMID: 36292932 PMCID: PMC9602810 DOI: 10.3390/ijms232012071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, cyclic peptides have attracted much attention due to their chemical and enzymatic stability, low toxicity, and easy modification. In general, the self-assembled nanostructures of cyclic peptides tend to form nanotubes in a cyclic stacking manner through hydrogen bonding. However, studies exploring other assembly strategies are scarce. In this context, we proposed a new assembly strategy based on cyclic peptides with covalent self-assembly. Here, cyclic peptide-(DPDPDP) was rationally designed and used as a building block to construct new assemblies. With cyclo-(DP)3 as the structural unit and 2,2′-diamino-N-methyldiethylamine as the linker, positively charged nanospheres ((CP)6NS) based on cyclo-(DP)3 were successfully constructed by covalent self-assembly. We assessed their size and morphology by scanning electron microscopy (SEM), TEM, and DLS. (CP)6NS were found to have a strong positive charge, so they could bind to siRNA through electrostatic interactions. Confocal microscopy analysis and cell viability assays showed that (CP)6NS had high cellular internalization efficiency and low cytotoxicity. More importantly, real-time polymerase chain reaction (PCR) and flow cytometry analyses indicated that (CP)6NS-siRNA complexes potently inhibited gene expression and promoted tumor cell apoptosis. These results suggest that (CP)6NS may be a potential siRNA carrier for gene therapy.
Collapse
Affiliation(s)
- Junfeng Ke
- School of Life Sciences, Jilin University, Changchun 130012, China
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Jingli Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Junyang Li
- School of Life Sciences, Jilin University, Changchun 130012, China
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Junqiu Liu
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Correspondence: (J.L.); (S.G.); Tel.: +86-135-0432-8390 (S.G.)
| | - Shuwen Guan
- School of Life Sciences, Jilin University, Changchun 130012, China
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
- Correspondence: (J.L.); (S.G.); Tel.: +86-135-0432-8390 (S.G.)
| |
Collapse
|
14
|
Treating Pulmonary Fibrosis with Non-Viral Gene Therapy: From Bench to Bedside. Pharmaceutics 2022; 14:pharmaceutics14040813. [PMID: 35456646 PMCID: PMC9027953 DOI: 10.3390/pharmaceutics14040813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease characterized by irreversible lung scarring, which achieves almost 80% five-year mortality rate. Undeniably, commercially available pharmaceuticals, such as pirfenidone and nintedanib, exhibit certain effects on improving the well-being of IPF patients, but the stubbornly high mortality still indicates a great urgency of developing superior therapeutics against this devastating disease. As an emerging strategy, gene therapy brings hope for the treatment of IPF by precisely regulating the expression of specific genes. However, traditional administration approaches based on viruses severely restrict the clinical application of gene therapy. Nowadays, non-viral vectors are raised as potential strategies for in vivo gene delivery, attributed to their low immunogenicity and excellent biocompatibility. Herein, we highlight a variety of non-viral vectors, such as liposomes, polymers, and proteins/peptides, which are employed in the treatment of IPF. By respectively clarifying the strengths and weaknesses of the above candidates, we would like to summarize the requisite features of vectors for PF gene therapy and provide novel perspectives on design-decisions of the subsequent vectors, hoping to accelerate the bench-to-bedside pace of non-viral gene therapy for IPF in clinical setting.
Collapse
|
15
|
Hadianamrei R, Wang J, Brown S, Zhao X. Rationally designed cationic amphiphilic peptides for selective gene delivery to cancer cells. Int J Pharm 2022; 617:121619. [PMID: 35218898 DOI: 10.1016/j.ijpharm.2022.121619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
Abstract
Gene therapy has gained increasing attention as an alternative to pharmacotherapy for treatment of various diseases. The extracellular and intracellular barriers to gene delivery necessitate the use of gene vectors which has led to the development of myriads of gene delivery systems. However, many of these gene delivery systems have pitfalls such as low biocompatibility, low loading efficiency, low transfection efficiency, lack of tissue selectivity and high production costs. Herein, we report the development of a new series of short cationic amphiphilic peptides with anticancer activity for selective delivery of small interfering RNA (siRNA) and antisense oligodeoxynucleotides (ODNs) to cancer cells. The peptides consist of alternating dyads of hydrophobic (isoleucine (I) or leucine (L)) and hydrophilic (arginine (R) or lysine (L)) amino acids. The peptides exhibited higher preference for transfection of HCT 116 colorectal cancer cells compared to human dermal fibroblasts (HDFs) and induced higher level of gene silencing in the cancer cells. The nucleic acid complexation and transfection efficiency of the peptides was a function of their secondary structure, their hydrophobicity and their C-terminal amino acid. The peptides containing L in their hydrophobic domain formed stronger complexes with siRNA and successfully delivered it to the cancer cells but were unable to release their cargo inside the cells and therefore could not induce any gene silencing. On the contrary, the peptides containing I in their hydrophobic domain were able to release their associated siRNA and induce considerable gene silencing in cancer cells. The peptides exhibited higher selectivity for colorectal cancer cells and induced less gene silencing in fibroblasts compared to the lipid-based commercial transfection reagent DharmaFECT™ 1. The results from this study can serve as a tool for rational design of new peptide-based gene vectors for high selective gene delivery to cancer cells.
Collapse
Affiliation(s)
- Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266555, China
| | - Stephen Brown
- Department of Biomedical Science, University of Sheffield, S10 2TN, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
16
|
Hadianamrei R, Zhao X. Current state of the art in peptide-based gene delivery. J Control Release 2022; 343:600-619. [PMID: 35157938 DOI: 10.1016/j.jconrel.2022.02.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
Abstract
Gene therapy involves introduction of exogenous genetic materials into the cells in order to correct a specific pathological condition. However, efficient delivery of the genetic materials to the target cells is hampered by a number of extracellular and intracellular barriers which necessitates the use of gene vectors. Despite the high transfection efficiencies of the viral vectors, their immunogenicity and complex manufacturing procedures has led to the quest for development of non-viral vectors with lower toxicity and easier fabrication from a variety of materials such as polymers and lipids. More recently, peptides have been introduced as new promising biomaterials for gene delivery owing to their desirable physicochemical properties and their biocompatibility. Various naturally derived, synthetic or hybrid peptides with varying sizes and structural features have been used for gene delivery. In this review, a summary of recent advances in the development of peptide-based gene delivery systems for delivery of different types of genetic materials to different types of cells/tissues has been provided. The focus of this review is on gene delivery systems consisting merely of peptides without incorporation of polymers or lipids. The transfection efficiencies of different groups of peptides and their abilities for targeted gene delivery have been viewed in the context of their chemical structures in order to provide an insight into the structural features required for efficient gene delivery by different classes of peptides and to serve as a guide for rational design of new types of peptide vectors for highly efficient and tissue-specific gene delivery.
Collapse
Affiliation(s)
- Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
17
|
Pi-Boleda B, Ramisetty S, Illa O, Branchadell V, Dias RS, Ortuño RM. Efficient DNA Condensation Induced by Chiral β-Amino Acid-Based Cationic Surfactants. ACS APPLIED BIO MATERIALS 2021; 4:7034-7043. [DOI: 10.1021/acsabm.1c00683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bernat Pi-Boleda
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Sravani Ramisetty
- Department of Physics, The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Ona Illa
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Rita S. Dias
- Department of Physics, The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Rosa M. Ortuño
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
18
|
Zhao Z, Ma S, Wu C, Li X, Ma X, Hu H, Wu J, Wang Y, Liu Z. Chimeric Peptides Quickly Modify the Surface of Personalized 3D Printing Titanium Implants to Promote Osseointegration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33981-33994. [PMID: 34260195 DOI: 10.1021/acsami.1c11207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Titanium (Ti) and titanium alloys have been widely used in the field of biomedicine. However, the unmatched biomechanics and poor bioactivities of conventional Ti implants usually lead to insufficient osseointegration. To tackle these challenges, it is critical to develop a novel Ti implant that meets the bioadaptive requirements for load-bearing critical bone defects. Notably, three-dimensional (3D)-printed Ti implants mimic the microstructure and mechanical properties of natural bones. Additionally, eco-friendly techniques based on inorganic-binding peptides have been applied to modify Ti surfaces. Herein, in our study, Ti surfaces were modified to reinforce osseointegration using chimeric peptides constructed by connecting W9, RP1P, and minTBP-1 directly or via (GP)4, respectively. PR1P is derived from the extracellular VEGF-binding domain of prominin-1, which increases the expression of VEGF and promotes the binding of VEGF to endothelial cells, thereby accelerating angiogenesis. W9 induces osteoblast differentiation in bone marrow mesenchymal stem cells and human mesenchymal stem cells to promote bone formation. Overall, chimeric peptides promote osseointegration by promoting angiogenesis and osteogenesis. Additionally, chimeric peptides with P3&4 were more effective than those with P1&2 in improving osseointegration, which might be ascribed to the capacity of P3&4 to provide a greater range for chimeric peptides to express their activity. This work successfully used chimeric peptides to modify 3D-Ti implant surfaces to improve osseointegration on the implant-bone surface.
Collapse
Affiliation(s)
- Zhezhe Zhao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Shiqing Ma
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Chenxuan Wu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Xuewen Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Xinying Ma
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Han Hu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Jie Wu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Yonglan Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Zihao Liu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| |
Collapse
|
19
|
Yang J, Firdaus F, Azuar A, Khalil ZG, Marasini N, Capon RJ, Hussein WM, Toth I, Skwarczynski M. Cell-Penetrating Peptides-Based Liposomal Delivery System Enhanced Immunogenicity of Peptide-Based Vaccine against Group A Streptococcus. Vaccines (Basel) 2021; 9:499. [PMID: 34066099 PMCID: PMC8151947 DOI: 10.3390/vaccines9050499] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Peptide-based vaccine development represents a highly promising strategy for preventing Group A Streptococcus (GAS) infection. However, these vaccines need to be administered with the help of a delivery system and/or immune adjuvant. Cell-penetrating peptides (CPPs) have been used as a powerful tool for delivering various therapeutic agents, including peptides, as they can overcome the permeability barrier of cell membranes. Here, we used CPPs to deliver our lead lipopeptide-based vaccine (LCP-1). CPPs were anchored through a spacer to LCP-1-bearing multilamellar and unilamellar liposomes and administered to Swiss outbred mice. Tat47-57 conjugated to two palmitic acids via a (Gly)6 spacer (to form a liposome-anchoring moiety) was the most efficient system for triggering immune responses when combined with multilamellar liposomes bearing LCP-1. The immunostimulatory potential of a variety of other CPPs was examined following intranasal administration in mice. Among them, LCP-1/liposomes/Tat47-57 and LCP-1/liposomes/KALA induced the highest antibody titers. The antibodies produced showed high opsonic activity against clinically isolated GAS strains D3840 and GC2 203. The use of the CPP-liposome delivery system is a promising strategy for liposome-based GAS vaccine development.
Collapse
Affiliation(s)
- Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| | - Farrhana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Nirmal Marasini
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| |
Collapse
|
20
|
de Braganca L, Ferguson GJ, Luis Santos J, Derrick JP. Adverse immunological responses against non-viral nanoparticle (NP) delivery systems in the lung. J Immunotoxicol 2021; 18:61-73. [PMID: 33956565 PMCID: PMC8788408 DOI: 10.1080/1547691x.2021.1902432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is a large, unmet medical need to treat chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and other respiratory diseases. New modalities are being developed, including gene therapy which treats the disease at the DNA/RNA level. Despite recent innovations in non-viral gene therapy delivery for chronic respiratory diseases, unwanted or adverse interactions with immune cells, particularly macrophages, can limit drug efficacy. This review will examine the relationship between the design and fabrication of non-viral nucleic acid nanoparticle (NP) delivery systems and their ability to trigger unwanted immunogenic responses in lung tissues. NP formulated with peptides, lipids, synthetic and natural polymers provide a robust means of delivering the genetic cargos to the desired cells. However NP, or their components, may trigger local responses such as cell damage, edema, inflammation, and complement activation. These effects may be acute short-term reactions or chronic long-term effects like fibrosis, increased susceptibility to diseases, autoimmune disorders, and even cancer. This review examines the relationship between physicochemical properties, i.e. shape, charge, hydrophobicity, composition and stiffness, and interactions of NP with pulmonary immune cells. Inhalation is the ideal route of administration for direct delivery but inhaled NP encounter innate immune cells, such as alveolar macrophages (AM) and dendritic cells (DC), that perceive them as harmful foreign material, interfere with gene delivery to target cells, and can induce undesirable side effects. Recommendations for fabrication and formulation of gene therapies to avoid adverse immunological responses are given. These include fine tuning physicochemical properties, functionalization of the surface of NP to actively target diseased pulmonary cells and employing biomimetics to increase immunotolerance.
Collapse
Affiliation(s)
- Leonor de Braganca
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - G John Ferguson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jose Luis Santos
- Dosage Form Design Development, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Linnik DS, Tarakanchikova YV, Zyuzin MV, Lepik KV, Aerts JL, Sukhorukov G, Timin AS. Layer-by-Layer technique as a versatile tool for gene delivery applications. Expert Opin Drug Deliv 2021; 18:1047-1066. [DOI: 10.1080/17425247.2021.1879790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dmitrii S. Linnik
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Yana V. Tarakanchikova
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Nanobiotechnology Laboratory, St. Petersburg Academic University, St. Petersburg, Russia
| | - Mikhail V. Zyuzin
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Kirill V. Lepik
- Department of Hematology, Transfusion, and Transplantation, First I. P. Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Joeri L. Aerts
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Neuro-Aging & Viro-Immunotherapy Lab (NAVI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Gleb Sukhorukov
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- School of Engineering and Material Science, Queen Mary University of London, London, UK
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - Alexander S. Timin
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
22
|
Uğurlu Ö, Barlas FB, Evran S, Timur S. The cell-penetrating YopM protein-functionalized quantum dot-plasmid DNA conjugate as a novel gene delivery vector. Plasmid 2020; 110:102513. [PMID: 32502501 DOI: 10.1016/j.plasmid.2020.102513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Non-viral gene delivery systems have great potential for safe and efficient gene therapy, while inefficient cellular and nuclear uptake remain as the major hurdles. Novel approaches are needed to enhance the transfection efficiency of non-viral vectors. In accordance with this need, the objective of this study was to construct a non-viral vector that could achieve gene delivery without using additional lipid-based transfection agent. We aimed to impart self-delivery property to a non-viral vector by using the cell and nucleus penetrating properties of YopM proteins from the three Yersinia spp. (Y. pestis, Y. enterocolotica and Y. pseudotuberculosis). Plasmid DNA (pDNA) encoding green fluorescent protein (GFP) was labeled with quantum dots (QDs) via peptide-nucleic acid (PNA) recognition site. Recombinant YopM protein was then attached to the conjugate via a second PNA recognition site. The YopM ̶ QDs ̶ pDNA conjugate was transfected into HeLa cells without using additional transfection reagent. All three conjugates produced GFP fluorescence, indicating that the plasmid was successfully delivered to the nucleus. As control, naked pDNA was transfected into the cells by using a commercial transfection reagent. The Y. pseudotuberculosis YopM-functionalized conjugate achieved the highest GFP expression, compared to other two YopM proteins and the transfection reagent. To the best of our knowledge, YopM protein was used for the first time in a non-viral gene delivery vector.
Collapse
Affiliation(s)
- Özge Uğurlu
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey
| | - Fırat Barış Barlas
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey.
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey; Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
23
|
Chen J, Guo Z, Jiao Z, Lin L, Xu C, Tian H, Chen X. Poly(l-glutamic acid)-Based Zwitterionic Polymer in a Charge Conversional Shielding System for Gene Therapy of Malignant Tumors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19295-19306. [PMID: 32239907 DOI: 10.1021/acsami.0c02769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, pH-sensitive polymers have received extensive attention in tumor therapy. However, the rapid response to pH changes is the key to achieving efficient treatment. Here, a novel shielding system with a rapidly pH-responsive polymer (PAMT) is synthesized by click reaction between poly(γ-allyl-l-glutamate) and thioglycolic acid or 2-(Boc-amino)ethanethiol. The zwitterionic biodegradable polymer PAMT, which is negatively charged at physiological pH, can be used to shield positively charged nanoparticles. PAMT is electrostatically attached to the surface of the positively charged PEI/pDNA complex to form a ternary complex. The zwitterionic PAMT-shielded complex exhibits rapid charge conversion when the pH decreases from 7.4 to 6.8. For the in vivo tumor inhibition experiment, PAMT/PEI/shVEGF injected intravenously shows a more significant inhibitory effect on tumor growth. The excellent results are mainly attributed to introduction of the zwitterionic copolymer PAMT, which can shield the positively charged PEI/shVEGF complex in physiological conditions, while the surface potential of the shielded complexes changes to a positive charge in the acidic tumor environment.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Zixue Jiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Caina Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| |
Collapse
|
24
|
Li P, Ma Y, Li Y, Zhang X, Wang Y. Cascade Synthesis from Cyclohexane to ϵ‐Caprolactone by Visible‐Light‐Driven Photocatalysis Combined with Whole‐Cell Biological Oxidation. Chembiochem 2020; 21:1852-1855. [DOI: 10.1002/cbic.202000035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Peilin Li
- School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 P.R. China
| | - Yunjian Ma
- School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 P.R. China
| | - Yongru Li
- School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 P.R. China
| | - Xizhen Zhang
- School of Bioscience and BioengineeringSouth China University of Technology Guangzhou 510006 P.R. China
| | - Yonghua Wang
- School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 P.R. China
| |
Collapse
|
25
|
Rasines Mazo A, Allison-Logan S, Karimi F, Chan NJA, Qiu W, Duan W, O’Brien-Simpson NM, Qiao GG. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem Soc Rev 2020; 49:4737-4834. [DOI: 10.1039/c9cs00738e] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides a comprehensive overview of the latest advances in the synthesis, architectural design and biomedical applications of polypeptides and their hybrids.
Collapse
Affiliation(s)
- Alicia Rasines Mazo
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Stephanie Allison-Logan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Fatemeh Karimi
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Nicholas Jun-An Chan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wenlian Qiu
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wei Duan
- School of Medicine
- Deakin University
- Geelong
- Australia
| | - Neil M. O’Brien-Simpson
- Centre for Oral Health Research
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology
- University of Melbourne
- Parkville
- Australia
| | - Greg G. Qiao
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| |
Collapse
|
26
|
Gvozdev VD, Shavrin KN, Nefedov OM. New synthesis of 3,3-disubstituted piperidin-2-ones from esters and 1-(3-halopropyl)-2,5-dimethylpyrroles. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2674-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Tong Y, Wang Z, Xiao Y, Liu W, Pan J, Zhou Y, Lang M. In Situ Forming and Reversibly Cross-Linkable Hydrogels Based on Copolypept(o)ides and Polysaccharides. ACS APPLIED BIO MATERIALS 2019; 2:4545-4556. [DOI: 10.1021/acsabm.9b00668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yanping Tong
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaochuang Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinghao Pan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Zhou
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Meidong Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
28
|
Sousa Â, Almeida AM, Faria R, Konate K, Boisguerin P, Queiroz JA, Costa D. Optimization of peptide-plasmid DNA vectors formulation for gene delivery in cancer therapy exploring design of experiments. Colloids Surf B Biointerfaces 2019; 183:110417. [PMID: 31408780 DOI: 10.1016/j.colsurfb.2019.110417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022]
Abstract
The field of gene therapy still attracts great interest due to its potential therapeutic effect towards the most deadly diseases, such as cancer. For cancer gene therapy to be feasible and viable in a clinical setting, the design and development of a suitable gene delivery system is imperative. Peptide based vectors, in particular, reveal to be promising for therapeutic gene release. Following this, two different peptides, RALA and WRAP5, have been investigated mainly regarding their ability to form complexes with a p53 encoding plasmid (pDNA) with suitable properties for gene delivery. To address this issue, and after an initial screening study focused on the dependence of pDNA complexation capacity with the nitrogen to phosphate groups (N/P) ratio, a design of experiments (DoE) tool has been employed. For each peptide/pDNA system, parameters such as, the buffer pH and the N/P ratio were considered the DoE inputs and the vector size, zeta potential and pDNA complexation capacity (CC) were monitored as DoE outputs. The main goal was to find the optimal experimental conditions to minimize particle sizes, as well as, to maximize the positive surface charges of the formulated nanosystems and maximize the pDNA CC. Through the DoE method applied, the optimal RALA/pDNA and WRAP5/pDNA formulations were revealed and show interesting features related to peptide structure and pDNA complexation ability. This work illustrates the great utility of experimental design tools in optimizing the formulation of peptide/pDNA vectors in a minimum number of experiments providing relevant knowledge for the development of more suitable and efficient gene delivery systems. The new insights achieved on these carriers clearly instigate deeper research on gene therapy.
Collapse
Affiliation(s)
- Ângela Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana M Almeida
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Rúben Faria
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Karidia Konate
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Prisca Boisguerin
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - João A Queiroz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Diana Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
29
|
Yang J, Luo Y, Shibu MA, Toth I, Skwarczynski M. Cell-penetrating Peptides: Efficient Vectors for Vaccine Delivery. Curr Drug Deliv 2019; 16:430-443. [PMID: 30760185 PMCID: PMC6637094 DOI: 10.2174/1567201816666190123120915] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 11/22/2022]
Abstract
Subunit vaccines are composed of pathogen fragments that, on their own, are generally poorly immunogenic. Therefore, the incorporation of an immunostimulating agent, e.g. adjuvant, into vaccine formulation is required. However, there are only a limited number of licenced adjuvants and their immunostimulating ability is often limited, while their toxicity can be substantial. To overcome these problems, a variety of vaccine delivery systems have been proposed. Most of them are designed to improve the stability of antigen in vivo and its delivery into immune cells. Cell-penetrating peptides (CPPs) are especially attractive component of antigen delivery systems as they have been widely used to enhance drug transport into the cells. Fusing or co-delivery of antigen with CPPs can enhance antigen uptake, processing and presentation by antigen presenting cells (APCs), which are the fundamental steps in initiating an immune response. This review describes the different mechanisms of CPP intercellular uptake and various CPP-based vaccine delivery strategies.
Collapse
Affiliation(s)
| | | | | | - Istvan Toth
- Address correspondence to these authors at the School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; Tel: (617)33469892; E-mail: ;
| | - Mariusz Skwarczynski
- Address correspondence to these authors at the School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; Tel: (617)33469892; E-mail: ;
| |
Collapse
|
30
|
Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu JF, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9397-5] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Chen J, Wang K, Wu J, Tian H, Chen X. Polycations for Gene Delivery: Dilemmas and Solutions. Bioconjug Chem 2018; 30:338-349. [PMID: 30383373 DOI: 10.1021/acs.bioconjchem.8b00688] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene therapy has been a promising strategy for treating numerous gene-associated human diseases by altering specific gene expressions in pathological cells. Application of nonviral gene delivery is hindered by various dilemmas encountered in systemic gene therapy. Therefore, solutions must be established to address the unique requirements of gene-based treatment of diseases. This review will particularly highlight the dilemmas in polycation-based gene therapy by systemic treatment. Several promising strategies, which are expected to overcome these challenges, will be briefly reviewed. This review will also explore the development of polycation-based gene delivery systems for clinical applications.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China.,University of Science and Technology of China , Hefei 230026 , P. R. China.,Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , P. R. China
| | - Kui Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China.,University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Jiayan Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China.,University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China.,University of Science and Technology of China , Hefei 230026 , P. R. China.,Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China.,University of Science and Technology of China , Hefei 230026 , P. R. China.,Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , P. R. China
| |
Collapse
|
32
|
Hollmann F, Kara S, Opperman DJ, Wang Y. Biocatalytic synthesis of lactones and lactams. Chem Asian J 2018; 13:3601-3610. [PMID: 30256534 PMCID: PMC6348383 DOI: 10.1002/asia.201801180] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/26/2018] [Indexed: 01/15/2023]
Abstract
Cyclic esters and amides (lactones and lactams) are important active ingredients and polymer building blocks. In recent years, numerous biocatalytic methods for their preparation have been developed including enzymatic and chemoenzymatic Baeyer-Villiger oxidations, oxidative lactonisation of diols, and reductive lactonisation and lactamisation of ketoesters. The current state of the art of these methods is reviewed.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology, Delft University of Technology, The Netherlands
| | - Selin Kara
- Department of Engineering, Biological and Chemical Engineering, Aarhus University, Denmark
| | | | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
33
|
He D, Lin H, Yu Y, Shi L, Tu J. Precisely Defined Polymers for Efficient Gene Delivery. Top Curr Chem (Cham) 2018; 376:2. [PMID: 29335799 DOI: 10.1007/s41061-017-0183-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/27/2017] [Indexed: 01/03/2023]
|