1
|
Jia S, Gao Y, Ma X, Cao Y, Huang Q, Zhang Q, Wang Z, Wang Y, Li Y, Li D, Chang R, Mu Y. V-doped Co 2P Anchored on the N-P-Doped Three-Dimensional Covalently Cross-Linked Graphene As a Hydrogen Evolution Reaction Catalyst for Alkaline Water/Seawater Splitting. Inorg Chem 2025; 64:6147-6158. [PMID: 40106507 DOI: 10.1021/acs.inorgchem.4c05537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Designing and synthesizing highly efficient and stable electrocatalysts of seawater electrolysis for the hydrogen evolution reaction is important for realizing green hydrogen production. Herein, a heterostructured V-doped Co2P anchored on N-P-doped three-dimensional covalently cross-linked graphene (V-Co2P@NPPC/3DG) electrocatalysts was synthesized with the help of V-doped ZIF-67 as an intermediate and a controlled phosphidation process. The as-prepared V-Co2P@NPPC/3DG-1:5 had low overpotentials of 98.3 and 88.3 mV (at 10 mA cm-2) in alkaline water and artificial seawater, respectively, and the corresponding Tafel slopes were 56.4 and 51.0 mV dec-1. The electrolyzer with a flowing alkaline artificial seawater assembled from V-Co2P@NPPC/3DG-1:5 with a commercial RuO2 catalyst exhibited a cell voltage of 1.54 V at 10 mA cm-2, which is close to that of Pt/C||RuO2 (1.52 V). Notably, the cell voltage of V-Co2P@NPPC/3DG-1:5||RuO2 was lower than that of Pt/C||RuO2 at a high current density (>58 mA cm-2), which exhibited superior stability. V doping effectively enhanced the intrinsic activity of Co2P, and the complexation with NPPC/3DG achieved full exposure of the active sites while enhancing the charge transfer rate during HER. This work will attract attention to the role of metal compound-carbon support interactions in enhancing the intrinsic activity, conductivity, and stability of electrocatalysts.
Collapse
Affiliation(s)
- Shaopei Jia
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, 1 Huaihe Road, Zhengzhou, Henan Province 451191, China
| | - Yanfeng Gao
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, 1 Huaihe Road, Zhengzhou, Henan Province 451191, China
| | - Xiaofei Ma
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, 1 Huaihe Road, Zhengzhou, Henan Province 451191, China
| | - Yunfei Cao
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, 1 Huaihe Road, Zhengzhou, Henan Province 451191, China
| | - Quan Huang
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, 1 Huaihe Road, Zhengzhou, Henan Province 451191, China
| | - Qian Zhang
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, 1 Huaihe Road, Zhengzhou, Henan Province 451191, China
| | - Zhixin Wang
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, 1 Huaihe Road, Zhengzhou, Henan Province 451191, China
| | - Yanjie Wang
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, 1 Huaihe Road, Zhengzhou, Henan Province 451191, China
| | - Yuanyuan Li
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, 1 Huaihe Road, Zhengzhou, Henan Province 451191, China
| | - Dan Li
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, 1 Huaihe Road, Zhengzhou, Henan Province 451191, China
| | - Renkai Chang
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, 1 Huaihe Road, Zhengzhou, Henan Province 451191, China
| | - Yunchao Mu
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, 1 Huaihe Road, Zhengzhou, Henan Province 451191, China
- School of Materials Science and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, Henan Province 471023, China
| |
Collapse
|
2
|
Conter G, Monti S, Barcaro G, Goddard WA, Fortunelli A. Functionalized Amorphous Carbon Materials via Reactive Molecular Dynamics Simulations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48043-48057. [PMID: 39205653 DOI: 10.1021/acsami.4c06527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We derive a database of atomistic structural models of amorphous carbon materials endowed with exohedral functional groups. We start from phases previously derived using the DynReaxMas method for reactive molecular dynamics simulations, which exhibit atomistic and medium-length-scale features in excellent agreement with available experimental data. Given a generic input structure/phase, we develop postprocessing simulation algorithms mimicking experimental preparation protocols aimed at: (1) "curing" the phase to decrease the defect concentration; (2) automatically selecting the most reactive carbon atoms via interaction with a probe molecular species, and (3) stabilizing the phase by saturating the valence of carbon atoms with single-bond functional groups. Although we focus on oxygen-bearing functionalities, they can be replaced with other monovalent groups, such as -H, -COOH, -CHO, so that the protocol is quite general. We finally classify reactive sites in terms of their location within the structural framework and coordination environment (edges, tunnels, rings, aromatic carbons becoming aliphatic) and try to single out descriptors that correlate with tendency to functionalization.
Collapse
Affiliation(s)
- Giorgio Conter
- Consiglio Nazionale delle Ricerche, CNR-ICCOM, Pisa 56124, Italy
- Scuola Normale Superiore, Pisa 56126, Italy
| | - Susanna Monti
- Consiglio Nazionale delle Ricerche, CNR-ICCOM, Pisa 56124, Italy
| | | | - William A Goddard
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, United States
| | - Alessandro Fortunelli
- Consiglio Nazionale delle Ricerche, CNR-ICCOM, Pisa 56124, Italy
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
3
|
Wei R, Liao M, Sun L, Zhang Q, Zhang H, Zhang L, Song Z. Opposite Electron Transfer Induced High Valence Mo Sites for Boosting the Water Splitting Performance of Ir Atoms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7141-7151. [PMID: 38305178 DOI: 10.1021/acsami.3c16507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Developing highly efficient and low-cost bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in water splitting poses significant challenges. In this study, a novel bifunctional electrocatalyst, Irn-CoMoPOx, was achieved via incorporating low-loading Ir single atoms and clusters with the high-valence Mo6+ modified CoPOx nanosheets. The Irn-CoMoPOx catalyst demonstrates remarkable low overpotentials of 222 mV and 36 mV for the OER and HER, respectively, in delivering a current density of 10 mA cm-2. When employed as both the anode and cathode catalyst in overall water splitting, the Irn-CoMoPOx∥Irn-CoMoPOx configuration exhibits a superior cell voltage of 1.53 V, outperforming the benchmark Pt/C∥IrO2 electrolytic cell (1.60 V) for achieving the current density of 10 mA cm-2. Benefiting from the high-valence of Mo species, the metal-support interaction of Irn-CoMoPOx was greatly strengthened, resulting in an order of magnitude increase in the mass activity of Ir for the HER. The high valence of non-noble metals plays a crucial role in tuning the local electronic configurations and optimizing the adsorption energies of the intermediates, which synergistically improves the overall performance of Ir in water splitting. The study provides valuable insights for future research in the utilization of Ir-based bifunctional catalysts for overall water electrocatalysis applications.
Collapse
Affiliation(s)
- Ruoyu Wei
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Mansheng Liao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Lidan Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qingfeng Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Hong Zhang
- School of Materials and Energy, Electron Microscopy Centre, Yunnan University, Kunming 650500, P.R. China
- School of Materials and Energy, Electron Microscopy Centre, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhongxin Song
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
4
|
Ali A, Long F, Shen PK. Innovative Strategies for Overall Water Splitting Using Nanostructured Transition Metal Electrocatalysts. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Jafari F, Rahsepar FR. V 2O 5-Fe 3O 4/rGO Ternary Nanocomposite with Dual Applications as a Dye Degradation Photocatalyst and OER Electrocatalyst. ACS OMEGA 2023; 8:35427-35439. [PMID: 37779947 PMCID: PMC10536842 DOI: 10.1021/acsomega.3c06094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
The design and synthesis of structured nanomaterials with dual properties have always been highly attractive in various fields, especially in the reduction of environmental pollution as well as the generation of renewable energy. In this study, the synthesized ternary V2O5-Fe3O4/rGO nanocomposite was investigated to evaluate both the photocatalytic and electrocatalytic activities for the removal of methylene blue (MB) dye under UV/visible light radiation and oxygen evolution reaction (OER), respectively. The magnetized V2O5-Fe3O4/rGO nanocomposite is characterized by TEM, FE-SEM (with coupling by elemental mapping), EDS, XRD, FTIR, Raman, PL, DRS, and UV-vis analyses. The obtained results show that the graphene oxide substrate is decorated very well using Fe3O4 and V2O5 nanoparticles and converted to reduced graphene oxide (rGO). Furthermore, the V2O5-Fe3O4/rGO nanocomposite is considered as an active catalyst material to modify the commercial glassy carbon electrode for OER using linear sweep voltammetry (LSV). The photocatalytic activity of this novel nanocomposite revealed 89.2% (kobs = 1.7 × 10-2 min-1) and 76% (kobs = 8.3 × 10-3 min-1) degradation efficiencies of MB dye under UV and visible light irradiation at room temperature, respectively, and the surface area of the V2O5-Fe3O4/rGO nanocomposite was examined to be 705.8 cm2/g by N2 adsorption-desorption isotherms. In addition, electrochemical measurements determined the best OER performance of the ternary nanocomposite with the lowest overpotential (458 mV) and Tafel slope (132 mV dec-1) compared to the rGO substrate, Fe3O4, V2O5 nanoparticles, and binary nanocomposites. This work shows much enhancements in both photocatalytic and electrocatalytic activities due to the synergistic effect of the decorated GO support with V2O5 and Fe3O4 nanoparticles.
Collapse
Affiliation(s)
- Fatemeh Jafari
- School of Chemistry, College
of Science, University of Tehran, Tehran 1417614411, Iran
| | | |
Collapse
|
6
|
Zhao J, Pan C, Zhang Y, Li X, Zhang G, Yang L. Proton penetration mechanism and selective hydrogen isotope separation through two-dimensional biphenylene. RSC Adv 2023; 13:27590-27598. [PMID: 37720838 PMCID: PMC10503273 DOI: 10.1039/d3ra02993j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023] Open
Abstract
Hydrogen isotope separation is of prime significance in various scientific and industrial applications. Nevertheless, the existing technologies are often expensive and energy demanding. Two-dimensional carbon materials are regarded as promising candidates for cost-effective separation of different hydrogen isotopes. Herein, based on theoretical calculations, we have systematically investigated the proton penetration mechanism and the associated isotope separation behavior through two-dimensional biphenylene, a novel graphene allotrope. The unique non-uniform rings with different sizes in the biphenylene layer resemble the topological defects of graphene, serving as proton transmission channels. We found that a proton can readily pass through biphenylene with a low energy barrier in some specific patterns. Furthermore, large kinetic isotope effect ratios for proton-deuteron (13.58) and proton-triton (53.10) were observed in an aqueous environment. We thus conclude that biphenylene would be a potential carbon material used for hydrogen isotope separation. This subtle exploitation of the natural structural specificity of biphenylene provides new insight into the search for materials for hydrogen isotope separation.
Collapse
Affiliation(s)
- Jiahui Zhao
- Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 China
| | - Changti Pan
- Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 China
| | - Yue Zhang
- Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 China
| | - Xiyu Li
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - Guozhen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - Li Yang
- Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 China
- Helmholtz-Zentrum Dresden-Rossendorf Bautzner Landstrasse 400 Dresden 01328 Germany
- Theoretical Chemistry, Technische Universität Dresden Mommsenstr. 13 Dresden 01062 Germany
| |
Collapse
|
7
|
Liu H, Liu C, Zong X, Wang Y, Hu Z, Zhang Z. Role of the Support Effects in Single-Atom Catalysts. Chem Asian J 2023; 18:e202201161. [PMID: 36635222 DOI: 10.1002/asia.202201161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
In recent years, single-atom catalysts (SACs) have received a significant amount of attention due to their high atomic utilization, low cost, high reaction activity, and selectivity for multiple catalytic reactions. Unfortunately, the high surface free energy of single atoms leads them easily migrated and aggregated. Therefore, support materials play an important role in the preparation and catalytic performance of SACs. Aiming at understanding the relationship between support materials and the catalytic performance of SACs, the support effects in SACs are introduced and reviewed herein. Moreover, special emphasis is placed on exploring the influence of the type and structure of supports on SAC catalytic performance through advanced characterization and theoretical research. Future research directions for support materials are also proposed, providing some insight into the design of SACs with high efficiency and high loading.
Collapse
Affiliation(s)
- Huimin Liu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Chang Liu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Xing Zong
- School of Materials and Metallurgy, University of Science and Technology Liaoning Anshan, Liaoning, 114051, P. R. China
| | - Yongfei Wang
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China.,School of Materials and Metallurgy, University of Science and Technology Liaoning Anshan, Liaoning, 114051, P. R. China
| | - Zhizhi Hu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| |
Collapse
|
8
|
Ahmad F, Ali A, Qin J. Synergistically boosting the Oxygen Evolution Reaction activity of NiOOH nanosheets by Fe Doping. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
9
|
Bai H, Chen D, Ma Q, Qin R, Xu H, Zhao Y, Chen J, Mu S. Atom Doping Engineering of Transition Metal Phosphides for Hydrogen Evolution Reactions. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Ali A, Qi Huang Y, Chen P, Ullah Khan Q, Zhu J, Kang Shen P. Nitrogen and phosphorous co-doped carbon nanotubes embedded via active Ni2P nanoparticles as an advanced in-situ generated electrocatalyst for water oxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Murugesan R, Meng R, de Volder A, Keijers W, Janssens E, van de Vondel J, Afanasiev V, Houssa M. Interaction of graphene with Au nclusters: a first-principles study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:405701. [PMID: 35856847 DOI: 10.1088/1361-648x/ac829e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The interaction between Aun(n= 1-6) clusters and graphene is studied using first-principles simulations, based on density functional theory. The computed binding energy between Aunand graphene depends on the number of atoms in the cluster and lies between -0.6 eV and -1.7 eV, suggesting (weak) chemisorption of the clusters on graphene, rather than physisorption. Overall, the electronic properties, spin-orbit interaction and spin texture, as well as the transport properties of graphene strongly depend on the precise size of the Aunclusters. Doping of graphene is predicted for clusters with an odd number of Au atoms, due to overlap between Ausand carbonpzstates close to the Fermi level. On the other hand, there is no charge transfer between even size Au clusters and graphene, but a gap is formed at the Dirac cone, due to the breaking of the pseudo spin inversion symmetry of graphene's lattice. The adsorbed Aunclusters induce spin-orbit interactions as well as spin and pseudo spin interactions in graphene, as indicated by the splitting of the electronic band structure. A hedgehog spin texture is also predicted for adsorbed clusters with an even number of Au atoms. Ballistic transport simulations are performed to study the influence of the adsorbed clusters on graphene's electronic transport properties. The influence of the cluster on the electron transmission across the structure depends on the mixing of the valence orbitals in the transport energy window. In the specific case of the Au3/graphene system, the adsorbed clusters reduce the transmission and the conductance of graphene. The Au3clusters act as 'scattering centers' for charge carriers, in agreement with recent experimental studies.
Collapse
Affiliation(s)
- Ramasamy Murugesan
- Semiconductor Physics Laboratory, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Ruishen Meng
- Semiconductor Physics Laboratory, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Alexander de Volder
- Semiconductor Physics Laboratory, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Wout Keijers
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Ewald Janssens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Joris van de Vondel
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Valeri Afanasiev
- Semiconductor Physics Laboratory, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Michel Houssa
- Semiconductor Physics Laboratory, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
- Imec, B-3001 Leuven, Belgium
| |
Collapse
|
12
|
Ali A, Liang F, Zhu J, Shen PK. The role of graphene in rechargeable lithium batteries: Synthesis, functionalisation, and perspectives. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Liu X, Zhang S, Liang J, Li S, Shi H, Liu J, Wang T, Han J, Li Q. Protrusion-Rich Cu@NiRu Core@shell Nanotubes for Efficient Alkaline Hydrogen Evolution Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202496. [PMID: 35839472 DOI: 10.1002/smll.202202496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The development of highly efficient and durable water electrolysis catalysts plays an important role in the large-scale applications of hydrogen energy. In this work, protrusion-rich Cu@NiRu core@shell nanotubes are prepared by a facile wet chemistry method and used for catalyzing hydrogen evolution reaction (HER) in an alkaline environment. The protrusion-like RuNi alloy shells with accessible channels and abundant defects possess a large surface area and can optimize the surface electronic structure through the electron transfer from Ni to Ru. Moreover, the unique 1D hollow structure can effectively stabilize RuNi alloy shell through preventing the aggregation of nanoparticles. The synthesized catalyst can achieve a current density of 10 mA cm-2 in 1.0 m KOH with an overpotential of only 22 mV and show excellent stability after 5000 cycles, which is superior to most reported Ru-based catalysts. Density functional theory calculations illustrate that the weakened hydrogen adsorption on Ru sites induced by the alloying with Ni and active electron transfer between Ru and Ni/Cu are the keys to the much improved HER activity.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Siyang Zhang
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiashun Liang
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shenzhou Li
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hao Shi
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jinjia Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China
| | - Tanyuan Wang
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiantao Han
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
14
|
Feng H, Luo Y, Yan B, Guo H, He L, Qun Tian Z, Tsiakaras P, Kang Shen P. Highly stable cathodes for proton exchange membrane fuel cells: Novel carbon supported Au@PtNiAu concave octahedral core-shell nanocatalyst. J Colloid Interface Sci 2022; 626:1040-1050. [DOI: 10.1016/j.jcis.2022.06.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/26/2022] [Accepted: 06/22/2022] [Indexed: 10/31/2022]
|
15
|
Recent Progress in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction. NANOMATERIALS 2022; 12:nano12111806. [PMID: 35683662 PMCID: PMC9182338 DOI: 10.3390/nano12111806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023]
Abstract
Hydrogen is regarded as a key renewable energy source to meet future energy demands. Moreover, graphene and its derivatives have many advantages, including high electronic conductivity, controllable morphology, and eco-friendliness, etc., which show great promise for electrocatalytic splitting of water to produce hydrogen. This review article highlights recent advances in the synthesis and the applications of graphene-based supported electrocatalysts in hydrogen evolution reaction (HER). Herein, powder-based and self-supporting three-dimensional (3D) electrocatalysts with doped or undoped heteroatom graphene are highlighted. Quantum dot catalysts such as carbon quantum dots, graphene quantum dots, and fullerenes are also included. Different strategies to tune and improve the structural properties and performance of HER electrocatalysts by defect engineering through synthetic approaches are discussed. The relationship between each graphene-based HER electrocatalyst is highlighted. Apart from HER electrocatalysis, the latest advances in water electrolysis by bifunctional oxygen evolution reaction (OER) and HER performed by multi-doped graphene-based electrocatalysts are also considered. This comprehensive review identifies rational strategies to direct the design and synthesis of high-performance graphene-based electrocatalysts for green and sustainable applications.
Collapse
|
16
|
Wyss KM, Chen W, Beckham JL, Savas PE, Tour JM. Holey and Wrinkled Flash Graphene from Mixed Plastic Waste. ACS NANO 2022; 16:7804-7815. [PMID: 35471012 DOI: 10.1021/acsnano.2c00379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
High surface area varieties of graphene have captured significant attention, allowing for improved performance in a variety of applications. However, there are challenges facing the use of graphene in these applications since it is expensive and difficult to synthesize in bulk. Here, we leverage the capabilities of flash Joule heating to synthesize holey and wrinkled flash graphene (HWFG) in seconds from mixed plastic waste feedstocks, using in situ salt decomposition to produce and stabilize pore formation during the reaction. Surface areas as high as 874 m2 g-1 are obtained, with characteristics of micro-, meso-, and macroporosities. Raman spectroscopy confirms the wrinkled and turbostratic nature of the HWFG. We demonstrate HWFG applications in its use as a metal-free hydrogen evolution reaction electrocatalyst, with excellent stability, competitive overpotential, and Tafel slope; in a Li-metal battery anode allowing for stable and high discharge rates; and in a material with high gas adsorption. This represents an upcycle of mixed plastic waste, thereby affording a valuable route to address this pressing environmental pollutant concern.
Collapse
Affiliation(s)
- Kevin M Wyss
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Weiyin Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jacob L Beckham
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Paul E Savas
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - James M Tour
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute, NanoCarbon Center, Welch Institute for Advanced Materials, Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
17
|
Wang J, Yang H, Li F, Li L, Wu J, Liu S, Cheng T, Xu Y, Shao Q, Huang X. Single-site Pt-doped RuO 2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting. SCIENCE ADVANCES 2022; 8:eabl9271. [PMID: 35235348 PMCID: PMC8890715 DOI: 10.1126/sciadv.abl9271] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Realizing stable and efficient overall water splitting is highly desirable for sustainable and efficient hydrogen production yet challenging because of the rapid deactivation of electrocatalysts during the acidic oxygen evolution process. Here, we report that the single-site Pt-doped RuO2 hollow nanospheres (SS Pt-RuO2 HNSs) with interstitial C can serve as highly active and stable electrocatalysts for overall water splitting in 0.5 M H2SO4. The performance toward overall water splitting have surpassed most of the reported catalysts. Impressively, the SS Pt-RuO2 HNSs exhibit promising stability in polymer electrolyte membrane electrolyzer at 100 mA cm-2 during continuous operation for 100 hours. Detailed experiments reveal that the interstitial C can elongate Ru-O and Pt-O bonds, and the presence of SS Pt can readily vary the electronic properties of RuO2 and improve the OER activity by reducing the energy barriers and enhancing the dissociation energy of *O species.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hao Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu 215123, China
| | - Fan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Leigang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tao Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu 215123, China
| | - Yong Xu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Corresponding author. (Y.X.); (X.H.)
| | - Qi Shao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Corresponding author. (Y.X.); (X.H.)
| |
Collapse
|
18
|
Lou H, Yu G, Tang M, Chen W, Yang G. Janus MoPC Monolayer with Superior Electrocatalytic Performance for the Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7836-7844. [PMID: 35104411 DOI: 10.1021/acsami.1c20114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Designing the earth's abundant and high-performance electrocatalysts, which possess high stability, excellent electrical conductivity, inherent active sites, and catalytic activity identical with Pt, is challenging but crucial for the hydrogen evolution reaction (HER). By first-principles structure search simulations, we identify a new two-dimensional (2D) MoPC material with the Janus structure as a promising catalyst. This novel 2D monolayer has superior stability and metallic conductivity. Especially, it exhibits a remarkable HER catalytic activity, where all of the constituent atoms, including Mo, P, and C, can uniformly act as active sites in view of the near-zero ΔGH* value. Its active site density counts up to 1.46 × 1015 site/cm2, larger than that of many reported materials and even comparable to Pt. The excellent HER catalytic activity can also be maintained at a very high H coverage with or without external strain. The MoPC monolayer can produce H2 spontaneously through the favorable Volmer-Heyrovsky pathway. The detailed catalytic mechanism behind the high HER activity has been also analyzed. Our work provides a feasible action for the experimental synthesis of excellent HER catalysts.
Collapse
Affiliation(s)
- Huan Lou
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Guangtao Yu
- Engineering Research Center of Industrial Biocatalysis, Fujian Province University, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Meng Tang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Wei Chen
- Engineering Research Center of Industrial Biocatalysis, Fujian Province University, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Guochun Yang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
19
|
Chen Z, Chen W, Zheng L, Huang T, Hu J, Lei Y, Yuan Q, Ren X, Li Y, Zhang L, Huang S, Ye S, Zhang Q, Ouyang X, Sun X, Liu J. Rational design of Ru species on N-doped graphene promoting water dissociation for boosting hydrogen evolution reaction. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1163-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Qian G, Chen J, Yu T, Liu J, Luo L, Yin S. Three-Phase Heterojunction NiMo-Based Nano-Needle for Water Splitting at Industrial Alkaline Condition. NANO-MICRO LETTERS 2021; 14:20. [PMID: 34882293 PMCID: PMC8660933 DOI: 10.1007/s40820-021-00744-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/08/2021] [Indexed: 05/29/2023]
Abstract
Constructing heterojunction is an effective strategy to develop high-performance non-precious-metal-based catalysts for electrochemical water splitting (WS). Herein, we design and prepare an N-doped-carbon-encapsulated Ni/MoO2 nano-needle with three-phase heterojunction (Ni/MoO2@CN) for accelerating the WS under industrial alkaline condition. Density functional theory calculations reveal that the electrons are redistributed at the three-phase heterojunction interface, which optimizes the adsorption energy of H- and O-containing intermediates to obtain the best ΔGH* for hydrogen evolution reaction (HER) and decrease the ΔG value of rate-determining step for oxygen evolution reaction (OER), thus enhancing the HER/OER catalytic activity. Electrochemical results confirm that Ni/MoO2@CN exhibits good activity for HER (ƞ-10 = 33 mV, ƞ-1000 = 267 mV) and OER (ƞ10 = 250 mV, ƞ1000 = 420 mV). It shows a low potential of 1.86 V at 1000 mA cm-2 for WS in 6.0 M KOH solution at 60 °C and can steadily operate for 330 h. This good HER/OER performance can be attributed to the three-phase heterojunction with high intrinsic activity and the self-supporting nano-needle with more active sites, faster mass diffusion, and bubbles release. This work provides a unique idea for designing high efficiency catalytic materials for WS.
Collapse
Affiliation(s)
- Guangfu Qian
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Jinli Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Tianqi Yu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Jiacheng Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Lin Luo
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Shibin Yin
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, People's Republic of China.
| |
Collapse
|
21
|
Pu Z, Liu T, Zhang G, Ranganathan H, Chen Z, Sun S. Electrocatalytic Oxygen Evolution Reaction in Acidic Conditions: Recent Progress and Perspectives. CHEMSUSCHEM 2021; 14:4636-4657. [PMID: 34411443 DOI: 10.1002/cssc.202101461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The electrochemical oxygen evolution reaction (OER) is an important half-cell reaction in many renewable energy conversion and storage technologies, including electrolyzers, nitrogen fixation, CO2 reduction, metal-air batteries, and regenerative fuel cells. Among them, proton exchange membrane (PEM)-based devices exhibit a series of advantages, such as excellent proton conductivity, high durability, and good mechanical strength, and have attracted global interest as a green energy device for transport and stationary sectors. Nevertheless, with a view to rapid commercialization, it is urgent to develop highly active and acid-stable OER catalysts for PEM-based devices. In this Review, based on the recent advances in theoretical calculation and in situ/operando characterization, the OER mechanism in acidic conditions is first discussed in detail. Subsequently, recent advances in the development of several types of acid-stable OER catalysts, including noble metals, non-noble metals, and even metal-free OER materials, are systematically summarized. Finally, the current key issues and future challenges for materials used as acidic OER catalysis are identified and potential future directions are proposed.
Collapse
Affiliation(s)
- Zonghua Pu
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| | - Tingting Liu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| | - Hariprasad Ranganathan
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| | - Zhangxing Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| |
Collapse
|
22
|
Li P, Duan X, Kuang Y, Sun X. Iridium in Tungsten Trioxide Matrix as an Efficient Bi-Functional Electrocatalyst for Overall Water Splitting in Acidic Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102078. [PMID: 34612000 DOI: 10.1002/smll.202102078] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Electrocatalytic water splitting in acidic media is a promising strategy for grid scale production of hydrogen using renewable energy, but challenges still exist in the development of advanced catalysts with both high activity and stability. Herein, it is reported that iridium doped tungsten trioxide (Ir-doped WO3 ) with arrayed structure and confined Ir sites is an efficient and durable bi-functional catalyst for overall acidic water splitting. A low overpotential (258 mV) is required to achieve an oxygen evolution reaction current density of 10 mA cm-2 in 0.5 m H2 SO4 solution. Meanwhile, Ir-doped WO3 processes a similar intrinsic activity to Pt/C toward hydrogen evolution reaction. Overall water splitting using the bi-functional Ir-doped WO3 catalyst shows low cell voltages of 1.56 and 1.68 V to drive the current densities of 10 and 100 mA cm-2 , respectively, with only 16 mV decay observed after 60 h continuous electrolysis under the current density of 100 mA cm-2 . Structural analysis and density functional theory calculation indicate that the adjusted coordination environment of Ir within the crystalline matrix of WO3 contributes to the high activity and durability.
Collapse
Affiliation(s)
- Pengsong Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinxuan Duan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yun Kuang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
23
|
Feng G, Ning F, Song J, Shang H, Zhang K, Ding Z, Gao P, Chu W, Xia D. Sub-2 nm Ultrasmall High-Entropy Alloy Nanoparticles for Extremely Superior Electrocatalytic Hydrogen Evolution. J Am Chem Soc 2021; 143:17117-17127. [PMID: 34554733 DOI: 10.1021/jacs.1c07643] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of sufficiently effective catalysts with extremely superior performance for electrocatalytic hydrogen production still remains a formidable challenge, especially in acidic media. Here, we report ultrasmall high-entropy alloy (us-HEA) nanoparticles (NPs) with the best-level performance for hydrogen evolution reaction (HER). The us-HEA (NiCoFePtRh) NPs show an average diameter of 1.68 nm, which is the smallest size in the reported HEAs. The atomic structure, coordinational structure, and electronic structure of the us-HEAs were comprehensively clarified. The us-HEA/C achieves an ultrahigh mass activity of 28.3 A mg-1noble metals at -0.05 V (vs the reversible hydrogen electrode, RHE) for HER in 0.5 M H2SO4 solution, which is 40.4 and 74.5 times higher than those of the commercial Pt/C and Rh/C catalysts, respectively. Moreover, the us-HEA/C demonstrates an ultrahigh turnover frequency of 30.1 s-1 at 50 mV overpotential (41.8 times higher than that of the Pt/C catalyst) and excellent stability with no decay after 10 000 cycles. Operando X-ray absorption spectroscopy and theoretical calculations reveal the actual active sites, tunable electronic structures, and a synergistic effect among five elements, which endow significantly enhanced HER activity. This work not only engineers a general and scalable strategy for synthesizing us-HEA NPs and elucidates the complex structural information and catalytic mechanisms of multielement HEA system in depth, but also highlights HEAs as sufficiently advanced catalysts and accelerates the research of HEAs in energy-related applications.
Collapse
Affiliation(s)
- Guang Feng
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Fanghua Ning
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Jin Song
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Huaifang Shang
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Kun Zhang
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhengping Ding
- International Center for Quantum Materials & Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Peng Gao
- International Center for Quantum Materials & Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R .China
| | - Dingguo Xia
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, College of Engineering, Peking University, Beijing 100871, P. R. China.,Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
24
|
Feng Y, Wang R, Dong P, Wang X, Feng W, Chen J, Cao L, Feng L, He C, Huang J. Enhanced Electrocatalytic Activity of Nickel Cobalt Phosphide Nanoparticles Anchored on Porous N-Doped Fullerene Nanorod for Efficient Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48949-48961. [PMID: 34610748 DOI: 10.1021/acsami.1c16546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Design and fabrication of bifunctional efficient and durable noble-metal-free electrocatalyst for hydrogen and oxygen evolution is highly desirable and challenging for overall water splitting. Herein, a novel hybrid nanostructure with Ni2P/CoP nanoparticles decorated on a porous N-doped fullerene nanorod (p-NFNR@Ni-Co-P) was developed as a bifunctional electrocatalyst. Benefiting from the electric current collector (ECC) effect of FNR for the active Ni2P/CoP nanoparticles, the p-NFNR@Ni-Co-P exhibited outstanding electrocatalytic performance for overall water splitting in alkaline medium. To deliver a current density of 10 mA cm-2, the electrolytic cell assembled by p-NFNR@Ni-Co-P merely required a potential as low as 1.62 V, superior to the benchmark noble-metal-based electrocatalyst. Experimental and theoretical results demonstrated that the surface engineered FNR serving as an ECC played a critical role in accelerating the charge transfer during the electrocatalytic reaction. The present work paves the way for fullerene nanostructures in the realm of energy conversion and storage.
Collapse
Affiliation(s)
- Yongqiang Feng
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ran Wang
- Institute of Environmental and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, People's Republic of China
| | - Peipei Dong
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiao Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Weihang Feng
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Junsheng Chen
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liyun Cao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liangliang Feng
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chaozheng He
- Institute of Environmental and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, People's Republic of China
| | - Jianfeng Huang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
25
|
Pu Z, Liu T, Zhang G, Liu X, Gauthier MA, Chen Z, Sun S. Nanostructured Metal Borides for Energy-Related Electrocatalysis: Recent Progress, Challenges, and Perspectives. SMALL METHODS 2021; 5:e2100699. [PMID: 34927953 DOI: 10.1002/smtd.202100699] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/14/2021] [Indexed: 06/14/2023]
Abstract
The discovery of durable, active, and affordable electrocatalysts for energy-related catalytic applications plays a crucial role in the advancement of energy conversion and storage technologies to achieve a sustainable energy future. Transition metal borides (TMBs), with variable compositions and structures, present a number of interesting features including coordinated electronic structures, high conductivity, abundant natural reserves, and configurable physicochemical properties. Therefore, TMBs provide a wide range of opportunities for the development of multifunctional catalysts with high performance and long durability. This review first summarizes the typical structural and electronic features of TMBs. Subsequently, the various synthetic methods used thus far to prepare nanostructured TMBs are listed. Furthermore, advances in emerging TMB-catalyzed reactions (both theoretical and experimental) are highlighted, including the hydrogen evolution reaction, the oxygen evolution reaction, the oxygen reduction reaction, the carbon dioxide reduction reaction, the nitrogen reduction reaction, the methanol oxidation reaction, and the formic acid oxidation reaction. Finally, challenges facing the development of TMB electrocatalysts are discussed, with focus on synthesis and energy-related catalytic applications, and some potential strategies/perspectives are suggested as well, which will profit the design of more efficient TMB materials for application in future energy conversion and storage devices.
Collapse
Affiliation(s)
- Zonghua Pu
- Institut National de la Recherche Scientifique-Énergie Matériauxet Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| | - Tingting Liu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique-Énergie Matériauxet Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique-Énergie Matériauxet Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| | - Zhangxing Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériauxet Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| |
Collapse
|
26
|
Hajjar P, Lacour MA, Masquelez N, Cambedouzou J, Tingry S, Cornu D, Holade Y. Insights on the Electrocatalytic Seawater Splitting at Heterogeneous Nickel-Cobalt Based Electrocatalysts Engineered from Oxidative Aniline Polymerization and Calcination. Molecules 2021; 26:molecules26195926. [PMID: 34641469 PMCID: PMC8512141 DOI: 10.3390/molecules26195926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/05/2022] Open
Abstract
Given the limited access to freshwater compared to seawater, a growing interest surrounds the direct seawater electrolysis to produce hydrogen. However, we currently lack efficient electrocatalysts to selectively perform the oxygen evolution reaction (OER) over the oxidation of the chloride ions that are the main components of seawater. In this contribution, we report an engineering strategy to synthesize heterogeneous electrocatalysts by the simultaneous formation of separate chalcogenides of nickel (NiSx, x = 0, 2/3, 8/9, and 4/3) and cobalt (CoSx, x = 0 and 8/9) onto a carbon-nitrogen-sulfur nanostructured network. Specifically, the oxidative aniline polymerization in the presence of metallic cations was combined with the calcination to regulate the separate formation of various self-supported phases in order to target the multifunctional applicability as both hydrogen evolution reaction (HER) and OER in a simulated alkaline seawater. The OER’s metric current densities of 10 and 100 mA cm−2 were achieved at the bimetallic for only 1.60 and 1.63 VRHE, respectively. This high-performance was maintained in the electrolysis with a starting voltage of 1.6 V and satisfactory stability at 100 mA over 17 h. Our findings validate a high selectivity for OER of ~100%, which outperforms the previously reported data of 87–95%.
Collapse
Affiliation(s)
- Perla Hajjar
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France; (P.H.); (N.M.); (J.C.); (S.T.); (D.C.)
| | | | - Nathalie Masquelez
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France; (P.H.); (N.M.); (J.C.); (S.T.); (D.C.)
| | - Julien Cambedouzou
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France; (P.H.); (N.M.); (J.C.); (S.T.); (D.C.)
| | - Sophie Tingry
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France; (P.H.); (N.M.); (J.C.); (S.T.); (D.C.)
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France; (P.H.); (N.M.); (J.C.); (S.T.); (D.C.)
| | - Yaovi Holade
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France; (P.H.); (N.M.); (J.C.); (S.T.); (D.C.)
- Correspondence: ; Tel.: +33-467-14-92-94
| |
Collapse
|
27
|
Sachdeva PK, Gupta S, Bera C. Designing an efficient bifunctional electrocatalyst heterostructure. Chem Commun (Camb) 2021; 57:9426-9429. [PMID: 34528943 DOI: 10.1039/d1cc02492b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oxygen and hydrogen evolutions are the two fundamental processes involved in electrocatalytic water splitting. Two dimensional (2D) transition metal dichalcogenides (TMDCs) and graphene-based materials are regarded as the emergent catalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, doped graphene and molybdenum dichalcogenide heterostructures are evaluated for their catalytic activity using density functional theory (DFT). The Janus MoSSe and P-doped graphene heterostructure is found to have the best electrocatalytic activities with smaller overpotential values (ηOER = 1.67 V and ηHER = 0.10 V) as compared to those of the parent monolayers graphene (ηOER = 1.85 V and ηHER = 1.80 V) and MoS2 (ηOER = 2.99 V and ηHER = 1.72 V).
Collapse
Affiliation(s)
- Parrydeep Kaur Sachdeva
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India. .,University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India.,Department of Physics, Panjab University, Sector-14, Chandigarh 160014, India
| | - Shuchi Gupta
- University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Chandan Bera
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India.
| |
Collapse
|
28
|
Zhou T, Qi Huang Y, Ali A, Kang Shen P. Ni-MoO2 nanoparticles heterojunction loaded on stereotaxically-constructed graphene for high-efficiency overall water splitting. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Aoudi B, Khaligh A, Sheidaei Y, Tuncel D. In situ-Electrochemically reduced graphene oxide integrated with cross-linked supramolecular polymeric network for electrocatalytic hydrogen evaluation reaction. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Bat-Erdene M, Batmunkh M, Sainbileg B, Hayashi M, Bati ASR, Qin J, Zhao H, Zhong YL, Shapter JG. Highly Dispersed Ru Nanoparticles on Boron-Doped Ti 3 C 2 T x (MXene) Nanosheets for Synergistic Enhancement of Electrocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102218. [PMID: 34411421 DOI: 10.1002/smll.202102218] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/07/2021] [Indexed: 06/13/2023]
Abstract
2D-layered materials have attracted increasing attention as low-cost supports for developing active catalysts for the hydrogen evolution reaction (HER). In addition, atomically thin Ti3 C2 Tx (MXene) nanosheets have surface termination groups (Tx : F, O, and OH), which are active sites for effective functionalization. In this work, heteroatom (boron)-doped Ti3 C2 Tx (MXene) nanosheets are developed as an efficient solid support to host ultrasmall ruthenium (Ru) nanoparticles for electrocatalytic HER. The quantum-mechanical first-principles calculations and electrochemical tests reveal that the B-doping onto 2D MXene nanosheets can largely improve the intermediate H* adsorption kinetics and reduce the charge-transfer resistance toward the HER, leading to increased reactivity of active sites and favorable electrode kinetics. Importantly, the newly designed electrocatalyst based on Ru nanoparticles supported on B-doped MXene (Ru@B-Ti3 C2 Tx ) nanosheets shows a remarkable catalytic activity with low overpotentials of 62.9 and 276.9 mV to drive 10 and 100 mA cm-2 , respectively, for the HER, while exhibiting excellent cycling stabilities. Moreover, according to the theoretical calculations, Ru@B-Ti3 C2 Tx exhibits a near-zero value of Gibbs free energy (ΔGH* = 0.002 eV) for the HER. This work introduces a facile strategy to functionalize MXene for use as a solid support for efficient electrocatalysts.
Collapse
Affiliation(s)
- Munkhjargal Bat-Erdene
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Munkhbayar Batmunkh
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Batjargal Sainbileg
- Center for Condensed Matter Sciences, Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 106, Taiwan
| | - Michitoshi Hayashi
- Center for Condensed Matter Sciences, Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 106, Taiwan
| | - Abdulaziz S R Bati
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
- Centre for Organic Photonics & Electronics, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Jiadong Qin
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Yu Lin Zhong
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Joseph G Shapter
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
31
|
Liang W, Dong P, Le Z, Lin X, Gong X, Xie F, Zhang H, Chen J, Wang N, Jin Y, Meng H. Electron Density Modulation of MoO 2/Ni to Produce Superior Hydrogen Evolution and Oxidation Activities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39470-39479. [PMID: 34433246 DOI: 10.1021/acsami.1c11025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) have aroused great interest, but the high price of platinum group metals (PGMs) limits their development. The electronic reconstruction at the interface of a heterostructure is a promising strategy to enhance their catalytic performance. Here, MoO2/Ni heterostructure was synthesized to provide effective HER in an alkaline electrolyte and exhibit excellent HOR performance. Theoretical and experimental analyses prove that the electron density around the Ni atom is reduced. The electron density modulation optimizes the hydrogen adsorption and hydroxide adsorption free energy, which can effectively improve the activity of both HER and HOR. Accordingly, the prepared MoO2/Ni@NF catalyst reveals robust HER activity (η10 = 50.48 mV) and HOR activity (j0 = ∼1.21 mA cm-2). This work demonstrates an effective method to design heterostructure interfaces and tailor the surface electronic structure to improve HER/HOR performance.
Collapse
Affiliation(s)
- Wanli Liang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Pengyu Dong
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Zhichen Le
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Xinyi Lin
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Xiyu Gong
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Fangyan Xie
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong 510275 P.R. China
| | - Hao Zhang
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong 510275 P.R. China
| | - Jian Chen
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong 510275 P.R. China
| | - Nan Wang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Yanshuo Jin
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Hui Meng
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| |
Collapse
|
32
|
Feng X, Zhou G, Fang L, Pang H, Yang J, Xu L, Sun D, Tang Y. One-Step Template/Solvent-Free Pyrolysis for In Situ Immobilization of CoP Nanoparticles onto N and P Co-Doped Carbon Porous Nanosheets towards High-efficiency Electrocatalytic Hydrogen Evolution. Chemistry 2021; 27:9850-9857. [PMID: 33891343 DOI: 10.1002/chem.202100612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 01/08/2023]
Abstract
The search for economical, active and stable electrocatalysts towards the hydrogen evolution reaction (HER) is highly imperative for the progression of water electrolysis technology and related sustainable energy conversion technologies. The delicate optimization of chemical composition and architectural configuration is paramount to design high-efficiency non-precious metal HER electrocatalysts. Herein, we report a one-step scalable template/solvent-free pyrolysis approach for in situ immobilizing uniform CoP nanoparticles onto N and P co-doped carbon porous nanosheets (denoted as CoP@N,P-CNSs hereafter). The simultaneous consideration of architectural design and nanocarbon hybridization renders the formed CoP@N,P-CNSs with plentiful well-dispersed anchored active sites, shortened pathway for mass diffusion, enhanced electric conductivity, and reinforced mechanical stability. As a consequence, the optimized CoP@N,P-CNSs exhibit an overpotential of 115 mV to afford a current density of 10 mA cm-2 , small Tafel slope of 74.2 mV dec-1 , high Faradaic efficiency of nearly 100 %, and superb long-term durability in an alkaline medium. Given the fabrication feasibility, mass production potential and outstanding HER performance, the CoP@N,P-CNSs may hold great promise for large-scale electrochemical water splitting. More importantly, the explored one-step template/solvent-free pyrolysis methodology offers a feasible and versatile route to fabricate carbon nanosheet-based nanocomposites for diverse energy conversation-related applications.
Collapse
Affiliation(s)
- Xiaoxuan Feng
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Guangyao Zhou
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Linya Fang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Jun Yang
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing 211100, Jiangsu (P. R. China), State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lin Xu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Dongmei Sun
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
33
|
2D-Layered Non-Precious Electrocatalysts for Hydrogen Evolution Reaction: Fundamentals to Applications. Catalysts 2021. [DOI: 10.3390/catal11060689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The production of hydrogen via the water splitting process is one of the most promising technologies for future clean energy requirements, and one of the best related challenges is the choice of the most highly efficient and cost effective electrocatalyst. Conventional electrocatalysts based on precious metals are rare and very-expensive for large-scale production of hydrogen, demanding the exploration for low-cost earth abundant alternatives. In this context, extensive works from both theoretical and experimental investigations have shown that two-dimensional (2D) layered materials have gained considerable attention as highly effective electrocatalytic materials for electrical-driven hydrogen production because of their unique layered structure and exciting electrical properties. This review highlights recent advancements on 2D layered materials, including graphene, transitional metal dichalcogenides (TMDs), layered double hydroxides (LDHs), MXene, and graphitic carbon nitride (g-C3N4) as cost-effective and highly efficient electrocatalysts for hydrogen production. In addition, some fundamental aspects of the hydrogen evolution reaction (HER) process and a wide ranging overview on several strategies to design and synthesize 2D layered material as HER electrocatalysts for commercial applications are introduced. Finally, the conclusion and futuristic prospects and challenges of the advancement of 2D layered materials as non-precious HER electrocatalysts are briefly discussed.
Collapse
|
34
|
Halder O, Mallik G, Suffczyński J, Pacuski W, Varadwaj KSK, Satpati B, Rath S. Enhanced exciton binding energy, Zeeman splitting and spin polarization in hybrid layered nanosheets comprised of (Cd, Mn)Se and nitrogen-doped graphene oxide: implication for semiconductor devices. NANOTECHNOLOGY 2021; 32:325204. [PMID: 33946057 DOI: 10.1088/1361-6528/abfdee] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The exciton properties of (Cd,Mn)Se-NrGO (nitrogen doped reduced graphene oxide) hybrid layered nanosheets have been studied in a magnetic field up to 10 T and compared to those of (Cd,Mn)Se nanosheets. The temperature dependent photoluminescence reveals the hybridization of inter-band exciton and intra-center Mn transition with enhancement of the binding energy of exciton-Mn hybridized state (80 meV with respect to 60 meV in (Cd,Mn)Se nanosheets) and increase of exciton-phonon coupling strength to 90 meV (with respect to 55 meV in (Cd,Mn)Se nanosheets). The circularly polarized magneto-photoluminescence at 2 K provides evidence for magnetic field induced exciton spin polarization and the realization of excitonic giant Zeeman splitting withgeffas high as 165.4 ± 10.3, much larger than in the case of (Cd,Mn)Se nanosheets (63.9 ± 6.6), promising for implementation in spin active semiconductor devices.
Collapse
Affiliation(s)
- Oindrila Halder
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni, Khordha 752050, India
| | - Gyanadeep Mallik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni, Khordha 752050, India
| | - Jan Suffczyński
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02 093, Poland
| | - Wojciech Pacuski
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02 093, Poland
| | | | - Biswarup Satpati
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Satchidananda Rath
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni, Khordha 752050, India
| |
Collapse
|
35
|
Wu H, Feng C, Zhang L, Zhang J, Wilkinson DP. Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction in Water Electrolysis. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-020-00086-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Abstract
2D metals, metallenes, feature exciting opportunities at the forefront of electrocatalysis. We bring to attention metallene preparation techniques and modification strategies for the derivation of highly functional metallenes in key electrocatalytic applications.
Collapse
Affiliation(s)
- P. Prabhu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|