1
|
Regnier M, Vega C, Ioannou DI, Zhang Z, Noël T. Flow Electroreductive Nickel-Catalyzed Cyclopropanation of Alkenes Using gem-Dichloroalkanes. Angew Chem Int Ed Engl 2025; 64:e202500203. [PMID: 39888099 DOI: 10.1002/anie.202500203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Abstract
Cyclopropanes are valuable motifs in organic synthesis, widely featured in pharmaceuticals and functional materials. Herein, we report an efficient electrochemical methodology for the cyclopropanation of alkenes, leveraging a nickel-catalyzed process in continuous-flow. The developed protocol demonstrates broad substrate scope, accommodating both electron-rich and electron-poor alkenes with high functional group tolerance. Beyond dichloromethane as a feedstock methylene source, the methodology enables the synthesis of methylated, deuterated, and chloro-substituted cyclopropanes. Mechanistic investigations suggest the electro-generation of a nickel carbene as key intermediate. Notably, the reaction operates under ambient conditions, tolerates air and moisture, and achieves scalability through continuous-flow technology, offering a straightforward route to multi-gram quantities with enhanced throughput.
Collapse
Affiliation(s)
- Morgan Regnier
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The, Netherlands
| | - Clara Vega
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The, Netherlands
| | - Dimitris I Ioannou
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The, Netherlands
| | - Zhenyu Zhang
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The, Netherlands
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The, Netherlands
| |
Collapse
|
2
|
Köpfler DM, Laudadio G, Bovino C, Bersier M, Littich R, Roberge DM, Wagschal S, Kappe CO, Cantillo D. Electrochemical Fluorination of Organic Compounds Using a Hexafluorosilicate Salt as an Inexpensive and Widely Available Fluorine Source. Org Lett 2025; 27:1084-1088. [PMID: 39831423 DOI: 10.1021/acs.orglett.5c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The introduction of fluorine into organic molecules is of the utmost importance in the preparation of active pharmaceutical ingredients (APIs). While a wide range of fluorine sources for organic synthesis have been used over the past decades, the associated safety risks, cost, or environmental impact are still serious limitations. Hexafluorosilicate salts are one of the most inexpensive and readily available sources of nucleophilic fluorine, but they have so far not been used in organic synthesis. Herein we report the first example of the use of a hexafluorosilicate salt as a reagent for the formation of C-F bonds. We have selected as the model reaction an electrochemical decarboxylative fluorination procedure. The synthesis of bis(5-ethyl-2-methylpyridin-1-ium) hexafluorosilicate(IV) was key to obtaining a soluble and reactive hexafluorosilicate salt. This protocol enabled the synthesis of a wide range of primary, secondary, and tertiary aliphatic fluorides (22 examples) in up to 85% yield. The electrochemical method was also successfully transferred to a flow electrolysis cell, demonstrating its robustness and scalability. Finally, we extended the scope of the fluorine source by demonstrating its applicability to electrochemical benzylic C-H fluorination.
Collapse
Affiliation(s)
- David M Köpfler
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Gabriele Laudadio
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Clara Bovino
- Advanced Chemistry Technologies, Lonza AG, Visp CH-3930, Switzerland
| | - Michael Bersier
- Advanced Chemistry Technologies, Lonza AG, Visp CH-3930, Switzerland
| | - Ryan Littich
- Advanced Chemistry Technologies, Lonza AG, Visp CH-3930, Switzerland
| | | | - Simon Wagschal
- Advanced Chemistry Technologies, Lonza AG, Visp CH-3930, Switzerland
| | - C Oliver Kappe
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - David Cantillo
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
3
|
Morvan J, Kuijpers KPL, Fanfair D, Tang B, Bartkowiak K, van Eynde L, Renders E, Alcazar J, Buijnsters PJJA, Carvalho MA, Jones AX. Electrochemical C-O and C-N Arylation using Alternating Polarity in flow for Compound Libraries. Angew Chem Int Ed Engl 2025; 64:e202413383. [PMID: 39383014 DOI: 10.1002/anie.202413383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024]
Abstract
Etherification and amination of aryl halide scaffolds are commonly used reactions in parallel medicinal chemistry to rapidly scan structure-activity relationships with abundant building blocks. Electrochemical methods for aryl etherification and amination demonstrate broad functional group tolerance and extended nucleophile scope compared to traditional methods. Nevertheless, there is a need for robust and scale-transferable workflows for electrochemical compound library synthesis. Herein we describe a platform for automated electrochemical synthesis of C-X arylation (X=NH, OH) in flow to access compound libraries. A comprehensive Design of Experiment (DoE) study identifies an optimal protocol which generates high yields across>30 aryl halide scaffolds, diverse amines (including electron-deficient sulfonamides, sulfoximines, amides, and anilines) and alcohols (including serine residues within peptides). Reaction sequences are automated on commercially available equipment to generate libraries of anilines and aryl ethers. The unprecedented application of potentiostatic alternating polarity in flow is essential to avoid accumulating electrode passivation. Moreover, it enables reactions to be performed in air, without supporting electrolyte and with high reproducibility over consecutive runs. Our method represents a powerful means to rapidly generate nucleophile independent C-X arylation compound libraries using flow electrochemistry.
Collapse
Affiliation(s)
- Jennifer Morvan
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Koen P L Kuijpers
- API SM Technology, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Dayne Fanfair
- API SM Technology, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Bingqing Tang
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Karolina Bartkowiak
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Lars van Eynde
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Evelien Renders
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Jesus Alcazar
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen-Cilag, S.A., C/Jarama 75, 45007, Toledo, Spain
| | - Peter J J A Buijnsters
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Mary-Ambre Carvalho
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Alexander X Jones
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
4
|
Rial-Rodríguez E, Williams JD, Cantillo D, Fuchß T, Sommer A, Eggenweiler HM, Kappe CO, Laudadio G. An Automated Electrochemical Flow Platform to Accelerate Library Synthesis and Reaction Optimization. Angew Chem Int Ed Engl 2024; 63:e202412045. [PMID: 39317660 PMCID: PMC11627123 DOI: 10.1002/anie.202412045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Automated batch and flow setups are well-established for high throughput experimentation in both thermal chemistry and photochemistry. However, the development of automated electrochemical platforms is hindered by cell miniaturization challenges in batch and difficulties in designing effective single-pass flow systems. In order to address these issues, we have designed and implemented a new, slug-based automated electrochemical flow platform. This platform was successfully demonstrated for electrochemical C-N cross-couplings of E3 ligase binders with diverse amines (44 examples), which were subsequently transferred to a continuous-flow mode for confirmation and isolation, showing its applicability for medicinal chemistry purposes. To further validate the versatility of the platform, Design of Experiments (DoE) optimization was performed for an unsuccessful library target. This optimization process, fully automated by the platform, resulted in a remarkable 6-fold increase in reaction yield.
Collapse
Affiliation(s)
- Eduardo Rial-Rodríguez
- Institute of Chemistry, NAWI Graz,. Department, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Jason D Williams
- Institute of Chemistry, NAWI Graz,. Department, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - David Cantillo
- Institute of Chemistry, NAWI Graz,. Department, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Thomas Fuchß
- Medicinal Chemistry and Drug Design, Merck Healthcare KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Alena Sommer
- Medicinal Chemistry and Drug Design, Merck Healthcare KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Hans-Michael Eggenweiler
- Medicinal Chemistry and Drug Design, Merck Healthcare KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - C Oliver Kappe
- Institute of Chemistry, NAWI Graz,. Department, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Gabriele Laudadio
- Institute of Chemistry, NAWI Graz,. Department, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| |
Collapse
|
5
|
Leclercq E, Chevet L, David N, Durandetti M, Chausset-Boissarie L. Synthesis of N-heterocyclic amides from imidazoheterocycles through convergent paired electrolysis. Org Biomol Chem 2024; 22:8730-8736. [PMID: 39390973 DOI: 10.1039/d4ob01115e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
An efficient ring opening of imidazoheterocycles induced by a direct C-H azidation resulting in an unusual formation of N-heterocyclic amides has been successfully developed through convergent paired electrolysis. A broad scope of pyridylbenzamides could be obtained in moderate to excellent yields under exogenous-oxidant, electrolyte- and metal-free electrochemical conditions. The methodology was transferred to continuous flow conditions resulting in notable improvements particularly in terms of cost-efficiency over traditional batch versions.
Collapse
Affiliation(s)
- Elise Leclercq
- Univ. Lille, CNRS, USR 3290, MSAP, F-59000 Lille, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| | - Laura Chevet
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| | - Nicolas David
- Univ. Lille, CNRS, USR 3290, MSAP, F-59000 Lille, France
| | - Muriel Durandetti
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| | - Laëtitia Chausset-Boissarie
- Univ. Lille, CNRS, USR 3290, MSAP, F-59000 Lille, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| |
Collapse
|
6
|
Regnier M, Vega C, Ioannou DI, Noël T. Enhancing electrochemical reactions in organic synthesis: the impact of flow chemistry. Chem Soc Rev 2024; 53:10741-10760. [PMID: 39297689 DOI: 10.1039/d4cs00539b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Utilizing electrons directly offers significant potential for advancing organic synthesis by facilitating novel reactivity and enhancing selectivity under mild conditions. As a result, an increasing number of organic chemists are exploring electrosynthesis. However, the efficacy of electrochemical transformations depends critically on the design of the electrochemical cell. Batch cells often suffer from limitations such as large inter-electrode distances and poor mass transfer, making flow cells a promising alternative. Implementing flow cells, however, requires a foundational understanding of microreactor technology. In this review, we briefly outline the applications of flow electrosynthesis before providing a comprehensive examination of existing flow reactor technologies. Our goal is to equip organic chemists with the insights needed to tailor their electrochemical flow cells to meet specific reactivity requirements effectively. We also highlight the application of reactor designs in scaling up electrochemical processes and integrating high-throughput experimentation and automation. These advancements not only enhance the potential of flow electrosynthesis for the synthetic community but also hold promise for both academia and industry.
Collapse
Affiliation(s)
- Morgan Regnier
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Clara Vega
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Dimitris I Ioannou
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Narobe R, Perner MN, Gálvez-Vázquez MDJ, Kuhwald C, Klein M, Broekmann P, Rösler S, Cezanne B, Waldvogel SR. Practical electrochemical hydrogenation of nitriles at the nickel foam cathode. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:10567-10574. [PMID: 39309016 PMCID: PMC11413620 DOI: 10.1039/d4gc03446e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
We report a scalable hydrogenation method for nitriles based on cost-effective materials in a very simple two-electrode setup under galvanostatic conditions. All components are commercially and readily available. The method is very easy to conduct and applicable to a variety of nitrile substrates, leading exclusively to primary amine products in yields of up to 89% using an easy work-up protocol. Importantly, this method is readily transferable from the milligram scale in batch-type screening cells to the multi-gram scale in a flow-type electrolyser. The transfer to flow electrolysis enabled us to achieve a notable 20 g day-1 productivity of phenylethylamine at a geometric current density of 50 mA cm-2 in a flow-type electrolyser with 48 cm2 electrodes. It is noteworthy that this method is sustainable in terms of process safety and reusability of components.
Collapse
Affiliation(s)
- Rok Narobe
- Department of Chemistry, Johannes Gutenberg University Mainz 55128 Mainz Germany
- Max-Planck-Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany +49 208/306-3131
| | - Marcel Nicolas Perner
- Department of Chemistry, Johannes Gutenberg University Mainz 55128 Mainz Germany
- Max-Planck-Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany +49 208/306-3131
| | | | | | | | - Peter Broekmann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern 3012 Bern Switzerland
| | - Sina Rösler
- Sigma-Aldrich Production GmbH 9470 Buchs Switzerland
| | | | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz 55128 Mainz Germany
- Max-Planck-Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany +49 208/306-3131
| |
Collapse
|
8
|
Wang WZ, Wang Q, He X, Shen YH, Zhai Z, Zhang R, Li Y, Ye KY. Electrochemical Continuous-Flow Scholl Reaction toward Polycyclic Aromatic Hydrocarbons. Org Lett 2024; 26:2243-2248. [PMID: 38456736 DOI: 10.1021/acs.orglett.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The preparation of polycyclic aromatic hydrocarbons (PAHs) by the Scholl reaction is typically performed by using superstoichiometric oxidants. Herein, we develop an electrochemical continuous-flow Scholl reaction to access PAHs that features a reduction in the use of supporting electrolytes and easy scale-up without changing the reaction conditions and setups. This reaction allows the synthesis of distorted PAHs containing three [5]helicene units that possess intriguing electronic and optical properties.
Collapse
Affiliation(s)
- Wei-Zhen Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qiang Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xinglei He
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi-Han Shen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zi'ang Zhai
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ruiying Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yuanming Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
9
|
Chen PY, Huang C, Jie LH, Guo B, Zhu S, Xu HC. Unlocking the Potential of Oxidative Asymmetric Catalysis with Continuous Flow Electrochemistry. J Am Chem Soc 2024; 146:7178-7184. [PMID: 38466344 DOI: 10.1021/jacs.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
In the field of catalytic asymmetric synthesis, the less-treated path lies in oxidative catalytic asymmetric transformations. The hurdles of pinpointing the appropriate chemical oxidants and addressing their compatibility issues with catalysts and functionalities present significant challenges. Organic electrochemistry, employing traceless electrons for redox reactions, is underscored as a promising solution. However, the commonly used electrolysis in batch cells introduces its own set of challenges, hindering the advancement of electrochemical asymmetric catalysis. Here we introduce a microfluidic electrochemistry platform with single-pass continuous flow reactors that exhibits a wide-ranging applicability to various oxidative asymmetric catalytic transformations. This is exemplified through the sulfenylation of 1,3-dicarbonyls, dehydrogenative C-C coupling, and dehydrogenative alkene annulation processes. The unique properties of microfluidic electrochemical reactors not only eliminate the need for chemical oxidants but also enhance reaction efficiency and reduce the use of additives and electrolytes. These salient features of microfluidic electrochemistry expedite the discovery and development of oxidative asymmetric transformations. In addition, the continuous production facilitated by parallel single-pass reactors ensures straightforward reaction upscaling, removing the necessity for reoptimization across various scales, as evidenced by direct translation from milligram screening to hectogram asymmetric synthesis.
Collapse
Affiliation(s)
- Peng-Yu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chong Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Liang-Hua Jie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Bin Guo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shaobin Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
- NanoFCM INC., Building No. 5, Xinke Square, Xiamen 361006, People's Republic of China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
10
|
Ioannou DI, Capaldo L, Sanramat J, Reek JNH, Noël T. Accelerated Electrophotocatalytic C(sp 3 )-H Heteroarylation Enabled by an Efficient Continuous-Flow Reactor. Angew Chem Int Ed Engl 2023; 62:e202315881. [PMID: 37972351 DOI: 10.1002/anie.202315881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
Electrophotocatalytic transformations are garnering attention in organic synthesis, particularly for accessing reactive intermediates under mild conditions. Moving these methodologies to continuous-flow systems, or flow ElectroPhotoCatalysis (f-EPC), showcases potential for scalable processes due to enhanced irradiation, increased electrode surface, and improved mixing of the reaction mixture. Traditional methods sequentially link photochemical and electrochemical reactions, using flow reactors connected in series, yet struggle to accommodate reactive transient species. In this study, we introduce a new flow reactor concept for electrophotocatalysis (EPC) that simultaneously utilizes photons and electrons. The reactor is designed with a transparent electrode and employs cost-effective materials. We used this technology to develop an efficient process for electrophotocatalytic heteroarylation of C(sp3 )-H bonds. Importantly, the same setup can also facilitate purely electrochemical and photochemical transformations. This reactor represents a significant advancement in electrophotocatalysis, providing a framework for its application in flow for complex synthetic transformations.
Collapse
Affiliation(s)
- Dimitris I Ioannou
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
- Supramolecular and Homogeneous Catalysis Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
| | - Luca Capaldo
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
- SynCat Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Jiri Sanramat
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
| | - Joost N H Reek
- Supramolecular and Homogeneous Catalysis Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
| |
Collapse
|
11
|
Murtaza A, Ulhaq Z, Shirinfar B, Rani S, Aslam S, Martins GM, Ahmed N. Arenes and Heteroarenes C-H Functionalization Under Enabling Conditions: Electrochemistry, Photoelectrochemistry & Flow Technology. CHEM REC 2023; 23:e202300119. [PMID: 37255348 DOI: 10.1002/tcr.202300119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Indexed: 06/01/2023]
Abstract
C-H bond functionalization generates molecular complexity in single-step transformation. However, the activation of C-H bonds requires expensive metals or stoichiometric amounts of oxidizing/reducing species. In many cases, they often require pre-functionalization of starting molecules. Such pre-activating measures cause waste generation and their separation from the final product is also troublesome. In such a scenario, reactions activating elements generating from renewable energy resources such as electricity and light would be more efficient, green, and cost-effective. Further, incorporation of growing flow technology in chemical transformation processes will accelerate the safer accesses of valuable products. Arenes & heteroarenes are ubiquitous in pharmaceuticals, natural products, medicinal compounds, and other biologically important molecules. Herein, we discussed enabling tools and technologies used for the recent C-H bonds functionalization of arenes and heteroarenes.
Collapse
Affiliation(s)
- Ayesha Murtaza
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Zia Ulhaq
- Chemical Engineering Department, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Bahareh Shirinfar
- Department of Chemistry, University of Bath, BA2 7AY, Bath, United Kingdom
- West Herts College, Hertfordshire, Watford, WD17 3EZ, London, United Kingdom
| | - Sadia Rani
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Samina Aslam
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Guilherme M Martins
- Department of Chemistry, Federal University of Sao Carlos - UFS Car, 13565-905, São Carlos -SP, Brazil
- School of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
- Centre for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
12
|
Makhoul E, Boulos M, Cretin M, Lesage G, Miele P, Cornu D, Bechelany M. CaCu 3Ti 4O 12 Perovskite Materials for Advanced Oxidation Processes for Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2119. [PMID: 37513130 PMCID: PMC10383651 DOI: 10.3390/nano13142119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The many pollutants detected in water represent a global environmental issue. Emerging and persistent organic pollutants are particularly difficult to remove using traditional treatment methods. Electro-oxidation and sulfate-radical-based advanced oxidation processes are innovative removal methods for these contaminants. These approaches rely on the generation of hydroxyl and sulfate radicals during electro-oxidation and sulfate activation, respectively. In addition, hybrid activation, in which these methods are combined, is interesting because of the synergistic effect of hydroxyl and sulfate radicals. Hybrid activation effectiveness in pollutant removal can be influenced by various factors, particularly the materials used for the anode. This review focuses on various organic pollutants. However, it focuses more on pharmaceutical pollutants, particularly paracetamol, as this is the most frequently detected emerging pollutant. It then discusses electro-oxidation, photocatalysis and sulfate radicals, highlighting their unique advantages and their performance for water treatment. It focuses on perovskite oxides as an anode material, with a particular interest in calcium copper titanate (CCTO), due to its unique properties. The review describes different CCTO synthesis techniques, modifications, and applications for water remediation.
Collapse
Affiliation(s)
- Elissa Makhoul
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Laboratoire de Chimie Physique des Matériaux (LCPM/PR2N), EDST, Faculté des Sciences II, Département de Chimie, Université Libanaise, Fanar P.O. Box 90656, Lebanon
| | - Madona Boulos
- Laboratoire de Chimie Physique des Matériaux (LCPM/PR2N), EDST, Faculté des Sciences II, Département de Chimie, Université Libanaise, Fanar P.O. Box 90656, Lebanon
| | - Marc Cretin
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Philippe Miele
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Institut Universitaire de France, 1 rue Descartes, CEDEX 05, 75231 Paris, France
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Gulf University for Science and Technology (GUST), West Mishref, Hawalli 32093, Kuwait
| |
Collapse
|
13
|
Kaisin G, Bovy L, Joyard Y, Maindron N, Tadino V, Monbaliu JCM. A perspective on automated advanced continuous flow manufacturing units for the upgrading of biobased chemicals toward pharmaceuticals. J Flow Chem 2022; 13:1-15. [PMID: 36467977 PMCID: PMC9707424 DOI: 10.1007/s41981-022-00247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/04/2022] [Indexed: 11/30/2022]
Abstract
Biomass is a renewable, almost infinite reservoir of a large diversity of highly functionalized chemicals. The conversion of biomass toward biobased platform molecules through biorefineries generally still lacks economic viability. Profitability could be enhanced through the development of new market opportunities for these biobased platform chemicals. The fine chemical industry, and more specifically the manufacturing of pharmaceuticals is one of the sectors bearing significant potential for these biobased building blocks to rapidly emerge and make a difference. There are, however, still many challenges to be dealt with before this market can thrive. Continuous flow technology and its integration for the upgrading of biobased platform molecules for the manufacturing of pharmaceuticals is foreseen as a game-changer. This perspective reflects on the main challenges relative to chemical, process, regulatory and supply chain-related burdens still to be addressed. The implementation of integrated continuous flow processes and their automation into modular units will help for tackling with these challenges. Graphical abstract
Collapse
Affiliation(s)
- Geoffroy Kaisin
- SynLock SRL, Rue de la Vieille Sambre 153, B-5190 Jemeppe-sur-Sambre, Belgium
| | - Loïc Bovy
- Center for Integrated Technology and Organic Synthesis, Research Unit MolSys, University of Liège, B-4000 Liège, Sart Tilman, Belgium
| | - Yoann Joyard
- SynLock SRL, Rue de la Vieille Sambre 153, B-5190 Jemeppe-sur-Sambre, Belgium
| | - Nicolas Maindron
- SynLock SRL, Rue de la Vieille Sambre 153, B-5190 Jemeppe-sur-Sambre, Belgium
| | - Vincent Tadino
- SynLock SRL, Rue de la Vieille Sambre 153, B-5190 Jemeppe-sur-Sambre, Belgium
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Research Unit MolSys, University of Liège, B-4000 Liège, Sart Tilman, Belgium
| |
Collapse
|
14
|
Aelterman M, Biremond T, Jubault P, Poisson T. Electrochemical Synthesis of gem-Difluoro- and γ-Fluoro-Allyl Boronates and Silanes. Chemistry 2022; 28:e202202194. [PMID: 36067044 PMCID: PMC9828158 DOI: 10.1002/chem.202202194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 01/12/2023]
Abstract
The electrochemical synthesis of fluorinated allyl silanes and boronates was disclosed. The addition of electrogenerated boryl or silyl radicals onto many α-trifluoromethyl or α-difluoromethylstyrenes in an undivided cell allowed the formation of a large panel of synthetically useful gem-difluoro and γ-fluoroallyl boronates and silanes (64 examples, from 31 % to 95 % yield). In addition, a scale up of the reactions under continuous flow was showcased using an electrochemical reactor with promising volumetric productivity (688 g.L-1 .h-1 and 496 g.L-1 .h-1 ). Moreover, the synthetic utility of these building blocks was highlighted through versatile transformations. Finally, plausible reaction mechanisms were suggested to explain the formation of the products.
Collapse
Affiliation(s)
- Maude Aelterman
- Normandie Univ INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Tony Biremond
- Normandie Univ INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Philippe Jubault
- Normandie Univ INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Thomas Poisson
- Normandie Univ INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
- Institut Universitaire de France1 rue Descartes75231ParisFrance
| |
Collapse
|
15
|
Baumgarten N, Etzold BJM, Magomajew J, Ziogas A. Scalable Microreactor Concept for the Continuous Kolbe Electrolysis of Carboxylic Acids Using Aqueous Electrolyte. ChemistryOpen 2022; 11:e202200171. [PMID: 36200517 PMCID: PMC9535501 DOI: 10.1002/open.202200171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The Kolbe electrolysis is a promising reaction to combine the usage of electrons as reagents and the application of renewable generated carboxylic acids as raw materials producing value added chemicals. Within this study, the electrolysis was conducted in a specially developed concept electrochemical microreactor and draws the particular attention to continuous operation and reuse of the aqueous electrolyte as well as of the dissolved unreacted feedstock. The electrolysis was conducted in alkaline aqueous solution using n-octanoic acid as model substance. Platinized titanium as anode material in an undivided cell setup was shown to give Kolbe selectivity above 90 %. During the technically relevant conditions of current densities up to 0.6 A cm-2 and overall electrolysis times of up to 3 h, a high electrode stability was observed. Finally, a proof-of-concept continuous operation and the numbering up potential of the ECMR could be demonstrated.
Collapse
Affiliation(s)
- Nils Baumgarten
- Division Chemistry – Sustainable Chemical SynthesesFraunhofer Institute for Microengineering and Microsystems IMMCarl-Zeiss-Straße 18–2055129MainzGermany
- Technical University of DarmstadtDepartment of ChemistryErnst-Berl-Institut für Technische und Makromolekulare ChemieAalrich-Weiss-Straße 864287DarmstadtGermany
| | - Bastian J. M. Etzold
- Technical University of DarmstadtDepartment of ChemistryErnst-Berl-Institut für Technische und Makromolekulare ChemieAalrich-Weiss-Straße 864287DarmstadtGermany
| | - Juri Magomajew
- Division Chemistry – Sustainable Chemical SynthesesFraunhofer Institute for Microengineering and Microsystems IMMCarl-Zeiss-Straße 18–2055129MainzGermany
| | - Athanassios Ziogas
- Division Chemistry – Sustainable Chemical SynthesesFraunhofer Institute for Microengineering and Microsystems IMMCarl-Zeiss-Straße 18–2055129MainzGermany
| |
Collapse
|
16
|
An Electrochemical Oscillatory Flow Reactor with Pillar Array Electrodes Improving Mass Transfer in Electrosynthesis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Lee D, Love A, Mansouri Z, Waldron Clarke TH, Harrowven DC, Jefferson-Loveday R, Pickering SJ, Poliakoff M, George MW. High-Productivity Single-Pass Electrochemical Birch Reduction of Naphthalenes in a Continuous Flow Electrochemical Taylor Vortex Reactor. Org Process Res Dev 2022; 26:2674-2684. [PMID: 36158467 PMCID: PMC9486933 DOI: 10.1021/acs.oprd.2c00108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 11/29/2022]
Abstract
We report the development of a single-pass electrochemical Birch reduction carried out in a small footprint electrochemical Taylor vortex reactor with projected productivities of >80 g day-1 (based on 32.2 mmol h-1), using a modified version of our previously reported reactor [Org. Process Res. Dev. 2021, 25, 7, 1619-1627], consisting of a static outer electrode and a rapidly rotating cylindrical inner electrode. In this study, we used an aluminum tube as the sacrificial outer electrode and stainless steel as the rotating inner electrode. We have established the viability of using a sacrificial aluminum anode for the electrochemical reduction of naphthalene, and by varying the current, we can switch between high selectivity (>90%) for either the single ring reduction or double ring reduction with >80 g day-1 projected productivity for either product. The concentration of LiBr in solution changes the fluid dynamics of the reaction mixture investigated by computational fluid dynamics, and this affects equilibration time, monitored using Fourier transform infrared spectroscopy. We show that the concentrations of electrolyte (LiBr) and proton source (dimethylurea) can be reduced while maintaining high reaction efficiency. We also report the reduction of 1-aminonaphthalene, which has been used as a precursor to the API Ropinirole. We find that our methodology produces the corresponding dihydronaphthalene with excellent selectivity and 88% isolated yield in an uninterrupted run of >8 h with a projected productivity of >100 g day-1.
Collapse
Affiliation(s)
- Darren
S. Lee
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Ashley Love
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Zakaria Mansouri
- Department
of Mechanical and Manufacturing Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Toby H. Waldron Clarke
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - David C. Harrowven
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Richard Jefferson-Loveday
- Department
of Mechanical and Manufacturing Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Stephen J. Pickering
- Department
of Mechanical and Manufacturing Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Martyn Poliakoff
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Michael W. George
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
18
|
Arndt S, Rücker R, Stenglein A, Waldvogel SR. Reactor Design for the Direct Electrosynthesis of Periodate. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Arndt
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Richard Rücker
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Andreas Stenglein
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| |
Collapse
|
19
|
Electrosynthesis of tetrabenzylthiuram disulfide via flow reactors. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Long H, Chen TS, Song J, Zhu S, Xu HC. Electrochemical aromatic C-H hydroxylation in continuous flow. Nat Commun 2022; 13:3945. [PMID: 35803941 PMCID: PMC9270493 DOI: 10.1038/s41467-022-31634-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
The direct hydroxylation of arene C-H bonds is a highly sought-after transformation but remains an unsolved challenge due to the difficulty in efficient and regioselective C-H oxygenation and high reactivity of the phenolic products leading to overoxidation. Herein we report electrochemical C-H hydroxylation of arenes in continuous flow for the synthesis of phenols. The method is characterized by broad scope (compatible with arenes of diverse electronic properties), mild conditions without any catalysts or chemical oxidants, and excellent scalability as demonstrated by the continuous production of 1 mol (204 grams) of one of the phenol products.
Collapse
Affiliation(s)
- Hao Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, 361005, Xiamen, China
| | - Tian-Sheng Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Jinshuai Song
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Shaobin Zhu
- NanoFCM INC., Xiamen Pioneering Park for Overseas Chinese Scholars, 361006, Xiamen, China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
- Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, 361005, Xiamen, China.
| |
Collapse
|
21
|
Seitz AK, Kohlpaintner PJ, van Lingen T, Dyga M, Sprang F, Zirbes M, Waldvogel SR, Gooßen LJ. Concentrated Aqueous Peroxodicarbonate: Efficient Electrosyn- thesis and Use as Oxidizer in Epoxidations, S-, and N-Oxidations. Angew Chem Int Ed Engl 2022; 61:e202117563. [PMID: 35384198 PMCID: PMC9324847 DOI: 10.1002/anie.202117563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/12/2022]
Abstract
Peroxodicarbonates are of substantial interest as potentially powerful and sustainable oxidizers but have so far been accessible only in low concentrations with unsatisfactory energy efficiency. Concentrated (> 0.9 mol L−1) peroxodicarbonate solutions have now been made accessible by the electrolysis of aqueous K2CO3/Na2CO3/KHCO3 solutions at high current density of 3.33 A cm−2 in an efficiently cooled circular flow reactor equipped with a boron‐doped diamond anode and a stainless‐steel cathode. Their synthetic potential as platform oxidizers was clearly demonstrated in transformations including sulfoxidation, N‐oxidation, and epoxidation.
Collapse
Affiliation(s)
- Ann-Katrin Seitz
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Philipp J Kohlpaintner
- Department of Chemistry, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Tim van Lingen
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Marco Dyga
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Fiona Sprang
- Department of Chemistry, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Michael Zirbes
- Department of Chemistry, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Lukas J Gooßen
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
22
|
Seitz A, Kohlpaintner PJ, van Lingen T, Dyga M, Sprang F, Zirbes M, Waldvogel SR, Gooßen LJ. Konzentriertes Wässriges Peroxodikarbonat: Effiziente Elektrosynthese und Anwendungen in Epoxidierungen,
S
‐, und
N
‐Oxidationen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ann‐Katrin Seitz
- Evonik Chair of Organic Chemistry Ruhr-Universität Bochum Universitätsstr. 150 44801 Bochum Deutschland
| | - Philipp J. Kohlpaintner
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Tim van Lingen
- Evonik Chair of Organic Chemistry Ruhr-Universität Bochum Universitätsstr. 150 44801 Bochum Deutschland
| | - Marco Dyga
- Evonik Chair of Organic Chemistry Ruhr-Universität Bochum Universitätsstr. 150 44801 Bochum Deutschland
| | - Fiona Sprang
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Michael Zirbes
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Siegfried R. Waldvogel
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Lukas J. Gooßen
- Evonik Chair of Organic Chemistry Ruhr-Universität Bochum Universitätsstr. 150 44801 Bochum Deutschland
| |
Collapse
|
23
|
Jud W, Salazar CA, Imbrogno J, Verghese J, Guinness SM, Desrosiers JN, Kappe CO, Cantillo D. Electrochemical Oxidation of Alcohols Using Nickel Oxide Hydroxide as Heterogeneous Electrocatalyst in Batch and Continuous Flow. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wolfgang Jud
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Chase A. Salazar
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Joseph Imbrogno
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Jenson Verghese
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Steven M. Guinness
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Jean-Nicolas Desrosiers
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - C. Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - David Cantillo
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
24
|
Claraz A, Masson G. Recent Advances in C(sp 3)-C(sp 3) and C(sp 3)-C(sp 2) Bond Formation through Cathodic Reactions: Reductive and Convergent Paired Electrolyses. ACS ORGANIC & INORGANIC AU 2022; 2:126-147. [PMID: 36855458 PMCID: PMC9954344 DOI: 10.1021/acsorginorgau.1c00037] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The formation of C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds is one of the major research goals of synthetic chemists. Electrochemistry is commonly considered to be an appealing means to drive redox reactions in a safe and sustainable fashion and has been utilized for C-C bond-forming reactions. Compared to anodic oxidative methods, which have been extensively explored, cathodic processes are much less investigated, whereas it can pave the way to alternative retrosynthetic disconnections of target molecules and to the discovery of new transformations. This review provides an overview on the recent achievements in the construction of C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds via cathodic reactions since 2017. It includes electrochemical reductions and convergent paired electrolyses.
Collapse
Affiliation(s)
- Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, Gif-sur-Yvette 91198 Cedex, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, Gif-sur-Yvette 91198 Cedex, France
| |
Collapse
|
25
|
Pokhrel T, B K B, Giri R, Adhikari A, Ahmed N. C-H Bond Functionalization under Electrochemical Flow Conditions. CHEM REC 2022; 22:e202100338. [PMID: 35315954 DOI: 10.1002/tcr.202100338] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023]
Abstract
Electrochemical C-H functionalization is a rapidly growing area of interest in organic synthesis. To achieve maximum atom economy, the flow electrolysis process is more sustainable. This allows shorter reaction times, safer working environments, and better selectivities. Using this technology, the problem of overoxidation can be reduced and less emergence of side products or no side products are possible. Flow electro-reactors provide high surface-to-volume ratios and contain electrodes that are closely spaced where the diffusion layers overlap to give the desired product, electrochemical processes can now be managed without the need for a deliberately added supporting electrolyte. Considering the importance of flow electrochemical C-H functionalization, a comprehensive review is presented. Herein, we summarize flow electrolysis for the construction of C-C and C-X (X=O, N, S, and I) bonds formation. Also, benzylic oxidation and access to biologically active molecules are discussed.
Collapse
Affiliation(s)
- Tamlal Pokhrel
- Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618, Kathmandu, Nepal
| | - Bijaya B K
- Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618, Kathmandu, Nepal
| | - Ramesh Giri
- Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618, Kathmandu, Nepal
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618, Kathmandu, Nepal
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
26
|
Azeredo JB, Penteado F, Nascimento V, Sancineto L, Braga AL, Lenardao EJ, Santi C. "Green Is the Color": An Update on Ecofriendly Aspects of Organoselenium Chemistry. Molecules 2022; 27:1597. [PMID: 35268698 PMCID: PMC8911681 DOI: 10.3390/molecules27051597] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Organoselenium compounds have been successfully applied in biological, medicinal and material sciences, as well as a powerful tool for modern organic synthesis, attracting the attention of the scientific community. This great success is mainly due to the breaking of paradigm demonstrated by innumerous works, that the selenium compounds were toxic and would have a potential impact on the environment. In this update review, we highlight the relevance of these compounds in several fields of research as well as the possibility to synthesize them through more environmentally sustainable methodologies, involving catalytic processes, flow chemistry, electrosynthesis, as well as by the use of alternative energy sources, including mechanochemical, photochemistry, sonochemical and microwave irradiation.
Collapse
Affiliation(s)
- Juliano B. Azeredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, Uruguaiana 97501-970, RS, Brazil;
| | - Filipe Penteado
- Laboratório de Síntese Orgânica Limpa-LaSOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil; (F.P.); (E.J.L.)
| | - Vanessa Nascimento
- Laboratório SupraSelen, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, Universidade Federal Fluminense, Niteroi 24020-150, RJ, Brazil
| | - Luca Sancineto
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06100 Perugia, Italy;
| | - Antonio L. Braga
- Departamento de Química, Universidade Federal de Santa Catarina—UFSC, Florianopolis 88040-900, SC, Brazil;
| | - Eder João Lenardao
- Laboratório de Síntese Orgânica Limpa-LaSOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil; (F.P.); (E.J.L.)
| | - Claudio Santi
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06100 Perugia, Italy;
| |
Collapse
|
27
|
Alvarez E, Romero-Fernandez M, Iglesias D, Martinez-Cuenca R, Okafor O, Delorme A, Lozano P, Goodridge R, Paradisi F, Walsh DA, Sans V. Electrochemical Oscillatory Baffled Reactors Fabricated with Additive Manufacturing for Efficient Continuous-Flow Oxidations. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:2388-2396. [PMID: 35223215 PMCID: PMC8864614 DOI: 10.1021/acssuschemeng.1c06799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/14/2022] [Indexed: 05/16/2023]
Abstract
Electrochemical continuous-flow reactors offer a great opportunity for enhanced and sustainable chemical syntheses. Here, we present a novel application of electrochemical continuous-flow oscillatory baffled reactors (ECOBRs) that combines advanced mixing features with electrochemical transformations to enable efficient electrochemical oxidations under continuous flow at a millimeter distance between electrodes. Different additive manufacturing techniques have been employed to rapidly fabricate reactors. The electrochemical oxidation of NADH, a very sensitive substrate key for the regeneration of enzymes in biocatalytic transformations, has been employed as a benchmark reaction. The oscillatory conditions improved bulk mixing, facilitating the contact of reagents to electrodes. Under oscillatory conditions, the ECOBR demonstrated improved performance in the electrochemical oxidation of NADH, which is attributed to improved mass transfer associated with the oscillatory regime.
Collapse
Affiliation(s)
- Elena Alvarez
- Departamento
de Bioquimica, Biologia Molecular e Inmunologia, Facultad de Quimica, Universidad de Murcia, Campus Reg Excelencia Int Mare Nostrum, E-30100 Murcia, Spain
| | - Maria Romero-Fernandez
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Diego Iglesias
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avda. Sos Baynat s/n, 12071 Castellon, Spain
| | - Raul Martinez-Cuenca
- Department
of Mechanical Engineering and Construction, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellon, Spain
| | - Obinna Okafor
- Faculty
of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Astrid Delorme
- The GSK Carbon
Neutral Laboratory for Sustainable Chemistry, Jubilee Campus, University of Nottingham, Triumph Road, Nottingham NG7 2TU, United Kingdom
| | - Pedro Lozano
- Departamento
de Bioquimica, Biologia Molecular e Inmunologia, Facultad de Quimica, Universidad de Murcia, Campus Reg Excelencia Int Mare Nostrum, E-30100 Murcia, Spain
| | - Ruth Goodridge
- Faculty
of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Francesca Paradisi
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Darren A. Walsh
- The GSK Carbon
Neutral Laboratory for Sustainable Chemistry, Jubilee Campus, University of Nottingham, Triumph Road, Nottingham NG7 2TU, United Kingdom
| | - Victor Sans
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avda. Sos Baynat s/n, 12071 Castellon, Spain
| |
Collapse
|
28
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
29
|
Cantillo D. Synthesis of active pharmaceutical ingredients using electrochemical methods: keys to improve sustainability. Chem Commun (Camb) 2022; 58:619-628. [PMID: 34951414 DOI: 10.1039/d1cc06296d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Organic electrochemistry is receiving renewed attention as a green and cost-efficient synthetic technology. Electrochemical methods promote redox transformations by electron exchange between electrodes and species in solution, thus avoiding the use of stoichiometric amounts of oxidizing or reducing agents. The rapid development of electroorganic synthesis over the past decades has enabled the preparation of molecules of increasing complexity. Redox steps that involve hazardous or waste-generating reagents during the synthesis of active pharmaceutical ingredients or their intermediates can be substituted by electrochemical procedures. In addition to enhance sustainability, increased selectivity toward the target compound has been achieved in some cases. Electroorganic synthesis can be safely and readily scaled up to production quantities. For this pupose, utilization of flow electrolysis cells is fundamental. Despite these advantages, the application of electrochemical methods does not guarantee superior sustainability when compared with conventional protocols. The utilization of large amounts of supporting electrolytes, enviromentally unfriendly solvents or sacrificial electrodes may turn electrochemistry unfavorable in some cases. It is therefore crucial to carefully select and optimize the electrolysis conditions and carry out green metrics analysis of the process to ensure that turning a process electrochemical is advantageous.
Collapse
Affiliation(s)
- David Cantillo
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| |
Collapse
|
30
|
Schotten C, Manson J, Chamberlain TW, Bourne RA, Nguyen BN, Kapur N, Willans CE. Development of a multistep, electrochemical flow platform for automated catalyst screening. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00587e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An integrated flow platform enables the electrochemical synthesis of base-metal catalysts with high-throughput screening and rapid data generation.
Collapse
Affiliation(s)
| | - Jamie Manson
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | | | - Richard A. Bourne
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Bao N. Nguyen
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Nik Kapur
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
31
|
Wan L, Jiang M, Cheng D, Liu M, Chen F. Continuous flow technology-a tool for safer oxidation chemistry. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00520k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advantages and benefits of continuous flow technology for oxidation chemistry have been illustrated in tube reactors, micro-channel reactors, tube-in-tube reactors and micro-packed bed reactors in the presence of various oxidants.
Collapse
Affiliation(s)
- Li Wan
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Dang Cheng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
32
|
Li N, Shi Z, Yuan Y, Li Z, Ye KY. Rapid synthesis of spirodienones via electrochemical dearomative spirocyclization in flow. Org Chem Front 2022. [DOI: 10.1039/d2qo01392d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An electrochemical dearomative spirocyclization in flow has been developed, featuring the use of electrons as the clean oxidant in a minimum amount of electrolytes to afford diverse spirodienones in a short reaction time.
Collapse
Affiliation(s)
- Nan Li
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhaojiang Shi
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yaofeng Yuan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Ke-Yin Ye
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
33
|
Forni JA, Czyz ML, Lupton DW, Polyzos A. An Electrochemical γ-C-H Arylation of Amines in Continuous Flow. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Charboneau DJ, Huang H, Barth EL, Germe CC, Hazari N, Mercado BQ, Uehling MR, Zultanski SL. Tunable and Practical Homogeneous Organic Reductants for Cross-Electrophile Coupling. J Am Chem Soc 2021; 143:21024-21036. [PMID: 34846142 DOI: 10.1021/jacs.1c10932] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The syntheses of four new tunable homogeneous organic reductants based on a tetraaminoethylene scaffold are reported. The new reductants have enhanced air stability compared to current homogeneous reductants for metal-mediated reductive transformations, such as cross-electrophile coupling (XEC), and are solids at room temperature. In particular, the weakest reductant is indefinitely stable in air and has a reduction potential of -0.85 V versus ferrocene, which is significantly milder than conventional reductants used in XEC. All of the new reductants can facilitate C(sp2)-C(sp3) Ni-catalyzed XEC reactions and are compatible with complex substrates that are relevant to medicinal chemistry. The reductants span a range of nearly 0.5 V in reduction potential, which allows for control over the rate of electron transfer events in XEC. Specifically, we report a new strategy for controlled alkyl radical generation in Ni-catalyzed C(sp2)-C(sp3) XEC. The key to our approach is to tune the rate of alkyl radical generation from Katritzky salts, which liberate alkyl radicals upon single electron reduction, by varying the redox potentials of the reductant and Katritzky salt utilized in catalysis. Using our method, we perform XEC reactions between benzylic Katritzky salts and aryl halides. The method tolerates a variety of functional groups, some of which are particularly challenging for most XEC transformations. Overall, we expect that our new reductants will both replace conventional homogeneous reductants in current reductive transformations due to their stability and relatively facile synthesis and lead to the development of novel synthetic methods due to their tunability.
Collapse
Affiliation(s)
- David J Charboneau
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Haotian Huang
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Emily L Barth
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Cameron C Germe
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Mycah R Uehling
- Discovery Chemistry, HTE and Lead Discovery Capabilities, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Susan L Zultanski
- Department of Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
35
|
Liu L, Hong X, Hu X. Direct electrochemical reduction of ethyl isonicotinate to 4-pyridinemethanol in an undivided flow reactor. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00206-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Amri N, Wirth T. Flow Electrosynthesis of Sulfoxides, Sulfones, and Sulfoximines without Supporting Electrolytes. J Org Chem 2021; 86:15961-15972. [PMID: 34164983 DOI: 10.1021/acs.joc.1c00860] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An efficient electrochemical flow process for the selective oxidation of sulfides to sulfoxides and sulfones and of sulfoxides to N-cyanosulfoximines has been developed. In total, 69 examples of sulfoxides, sulfones, and N-cyanosulfoximines have been synthesized in good to excellent yields and with high current efficiencies. The synthesis was assisted and facilitated through a supporting electrolyte-free, fully automated electrochemical protocol that highlights the advantages of flow electrolysis.
Collapse
Affiliation(s)
- Nasser Amri
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
37
|
Long H, Huang C, Zheng YT, Li ZY, Jie LH, Song J, Zhu S, Xu HC. Electrochemical C-H phosphorylation of arenes in continuous flow suitable for late-stage functionalization. Nat Commun 2021; 12:6629. [PMID: 34785664 PMCID: PMC8616953 DOI: 10.1038/s41467-021-26960-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/27/2021] [Indexed: 11/08/2022] Open
Abstract
The development of efficient and sustainable methods for carbon-phosphorus bond formation is of great importance due to the wide application of organophosphorus compounds in chemistry, material sciences and biology. Previous C-H phosphorylation reactions under nonelectrochemical or electrochemical conditions require directing groups, transition metal catalysts, or chemical oxidants and suffer from limited scope. Herein we disclose a catalyst- and external oxidant-free, electrochemical C-H phosphorylation reaction of arenes in continuous flow for the synthesis of aryl phosphorus compounds. The C-P bond is formed through the reaction of arenes with anodically generated P-radical cations, a class of reactive intermediates remained unexplored for synthesis despite intensive studies of P-radicals. The high reactivity of the P-radical cations coupled with the mild conditions of the electrosynthesis ensures not only efficient reactions of arenes of diverse electronic properties but also selective late-stage functionalization of complex natural products and bioactive compounds. The synthetic utility of the electrochemical method is further demonstrated by the continuous production of 55.0 grams of one of the phosphonate products.
Collapse
Affiliation(s)
- Hao Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Chong Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yun-Tao Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Zhao-Yu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Liang-Hua Jie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Jinshuai Song
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Shaobin Zhu
- NanoFCM INC., Xiamen Pioneering Park for Overseas Chinese Scholars, 361006, Xiamen, China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
| |
Collapse
|
38
|
Leclercq E, Boddaert M, Beaucamp M, Penhoat M, Chausset-Boissarie L. Electrochemical sulfonylation of imidazoheterocycles under batch and continuous flow conditions. Org Biomol Chem 2021; 19:9379-9385. [PMID: 34673877 DOI: 10.1039/d1ob01822a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and versatile protocol for the C-H sulfonylation of imidazoheterocycles via electrochemical activation was established under batch and flow conditions. The selective C-H bond functionalization proceeded under catalyst- and oxidant-free conditions and tolerated a wide range of functional groups. Various sodium sulfinates as well as imidazo[1,2-a]-pyridines, -pyrimidine, -quinolines, and -isoquinolines, imidazo[1,2-b]pyridazine, imidazo[2,1-b]thiazoles and benzo[d]imidazo[1,2-b]thiazoles reacted successfully. Interestingly, significant acceleration and higher yields were obtained under microfluidic conditions.
Collapse
Affiliation(s)
- Elise Leclercq
- Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59000 Lille, France.
| | - Maxime Boddaert
- Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59000 Lille, France.
| | - Mathieu Beaucamp
- Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59000 Lille, France.
| | - Maël Penhoat
- Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59000 Lille, France.
| | - Laëtitia Chausset-Boissarie
- Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59000 Lille, France.
| |
Collapse
|
39
|
Bonner A, Loftus A, Padgham AC, Baumann M. Forgotten and forbidden chemical reactions revitalised through continuous flow technology. Org Biomol Chem 2021; 19:7737-7753. [PMID: 34549240 DOI: 10.1039/d1ob01452h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Continuous flow technology has played an undeniable role in enabling modern chemical synthesis, whereby a myriad of reactions can now be performed with greater efficiency, safety and control. As flow chemistry furthermore delivers more sustainable and readily scalable routes to important target structures a growing number of industrial applications are being reported. In this review we highlight the impact of flow chemistry on revitalising important chemical reactions that were either forgotten soon after their initial report as necessary improvements were not realised due to a lack of available technology, or forbidden due to unacceptable safety concerns relating to the experimental procedure. In both cases flow processing in combination with further reaction optimisation has rendered a powerful set of tools that make such transformations not only highly efficient but moreover very desirable due to a more streamlined construction of desired scaffolds. This short review highlights important contributions from academic and industrial laboratories predominantly from the last 5 years allowing the reader to gain an appreciation of the impact of flow chemistry.
Collapse
Affiliation(s)
- Arlene Bonner
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| | - Aisling Loftus
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| | - Alex C Padgham
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| | - Marcus Baumann
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| |
Collapse
|
40
|
Wills AG, Charvet S, Battilocchio C, Scarborough CC, Wheelhouse KMP, Poole DL, Carson N, Vantourout JC. High-Throughput Electrochemistry: State of the Art, Challenges, and Perspective. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Alfie G. Wills
- Medicinal Chemistry, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
- Department of Pure & Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Sylvain Charvet
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Bâtiment LEDERER, 1 rue Victor Grignard, 69622 Villeurbanne Cedex, France
| | - Claudio Battilocchio
- Research Chemistry, Syngenta Crop Protection, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | | | - Katherine M. P. Wheelhouse
- Chemical Development, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Darren L. Poole
- Medicinal Chemistry, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Nessa Carson
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Julien C. Vantourout
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Bâtiment LEDERER, 1 rue Victor Grignard, 69622 Villeurbanne Cedex, France
| |
Collapse
|
41
|
Brown RCD. The Longer Route can be Better: Electrosynthesis in Extended Path Flow Cells. CHEM REC 2021; 21:2472-2487. [PMID: 34302434 DOI: 10.1002/tcr.202100163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Indexed: 01/01/2023]
Abstract
This personal account provides an overview of work conducted in my research group, and through collaborations with other chemists and engineers, to develop flow electrolysis cells and apply these cells in organic electrosynthesis. First, a brief summary of my training and background in organic synthesis is provided, leading in to the start of flow electrosynthesis in my lab in collaboration with Derek Pletcher. Our work on the development of extended path electrolysis flow reactors is described from a synthetic organic chemist's perspective, including laboratory scale-up to give several moles of an anodic methoxylation product in one day. The importance of cell design is emphasised with regards to achieving good performance in laboratory electrosynthesis with productivities from hundreds of mg h-1 to many g h-1 , at high conversion in a selective fashion. A simple design of recycle flow cell that can be readily constructed in a small University workshop is also discussed, including simple modifications to improve cell performance. Some examples of flow electrosyntheses are provided, including Shono-type oxidation, anodic cleavage of protecting groups, Hofer-Moest reaction of cubane carboxylic acids, oxidative esterification and amidation of aldehydes, and reduction of aryl halides.
Collapse
Affiliation(s)
- Richard C D Brown
- School of Chemistry, The University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
42
|
Cembellín S, Batanero B. Organic Electrosynthesis Towards Sustainability: Fundamentals and Greener Methodologies. CHEM REC 2021; 21:2453-2471. [PMID: 33955158 DOI: 10.1002/tcr.202100128] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
The adoption of new measures that preserve our environment, on which our survival depends, is a necessity. Electro-organic processes are sustainable per se, by producing the activation of a substrate by electron transfer at normal pressure and room temperature. In the recent years, a highly crescent number of works on organic electrosynthesis are available. Novel strategies at the electrode are being developed enabling the construction of a great variety of complex organic molecules. However, the possibility of being scaled-up is mandatory in terms of sustainability. Thus, some electrochemical methodologies have demonstrated to report the best results in reducing pollution and saving energy. In this personal account, these methods have been compiled, being organized as follows: • Direct discharge electrosynthesis • Paired electrochemical reactions. and • Organic transformations utilizing electrocatalysis (in absence of heavy metals). Selected protocols are herein presented and discussed with representative recent examples. Final perspectives and reflections are also considered.
Collapse
Affiliation(s)
- Sara Cembellín
- University of Alcala, Organic and Inorganic Chemistry Department (Organic area), Campus, km 33,6 A2, 28805, Alcalá de Henares, Madrid, Spain
| | - Belén Batanero
- University of Alcala, Organic and Inorganic Chemistry Department (Organic area), Campus, km 33,6 A2, 28805, Alcalá de Henares, Madrid, Spain.,Instituto de Investigación Química, "Andrés M. del Río" (IQAR) University of Alcala
| |
Collapse
|
43
|
Schotten C, Bourne RA, Kapur N, Nguyen BN, Willans CE. Electrochemical Generation of
N
‐Heterocyclic Carbenes for Use in Synthesis and Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Richard A. Bourne
- School of Chemical and Process Engineering University of Leeds Leeds LS2 9JT UK
| | - Nikil Kapur
- School of Mechanical Engineering University of Leeds Leeds LS2 9JT UK
| | - Bao N. Nguyen
- School of Chemistry University of Leeds Leeds LS2 9JT UK
| | | |
Collapse
|
44
|
Bortolami M, Chiarotto I, Mattiello L, Petrucci R, Rocco D, Vetica F, Feroci M. Organic electrochemistry: Synthesis and functionalization of β-lactams in the twenty-first century. HETEROCYCL COMMUN 2021. [DOI: 10.1515/hc-2020-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Organic electrochemistry is a technique that allows for the heterogeneous redox reactions avoiding both the use of stoichiometric amounts of redox reagents and the resulting formation of stoichiometric by-products. In fact, the redox reagent in these reactions is the electron, which is naturally eco-friendly and produces no side compounds. It is therefore quite obvious that electrochemistry can be classified as a “green” technology. The use of this methodology in the synthesis of β-lactams is not a novelty, but the growing interest in this class of biologically active compounds, due to the discovery of new fields of application (after a moment of decrease in interest due to antibiotic resistance) has been a stimulus for the search for more efficient electrochemical ways to synthesize and transform β-lactams. Thus, this review deals with the twenty-first-century applications of electroorganic technique to the chemistry of β-lactams, by analyzing first the syntheses classified by the type of reactions (cyclization, cycloaddition, etc.) and then by manipulating the β-lactam structure, using it as a synthon. Lastly, the importance of this technique is demonstrated by a study of a pilot plant scale reduction of a cephalosporanic acid derivative to a commercially important antibiotic.
Collapse
Affiliation(s)
- Martina Bortolami
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University , via del Castro Laurenziano, 7, I-00161 , Rome , Italy
| | - Isabella Chiarotto
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University , via del Castro Laurenziano, 7, I-00161 , Rome , Italy
| | - Leonardo Mattiello
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University , via del Castro Laurenziano, 7, I-00161 , Rome , Italy
| | - Rita Petrucci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University , via del Castro Laurenziano, 7, I-00161 , Rome , Italy
| | - Daniele Rocco
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University , via del Castro Laurenziano, 7, I-00161 , Rome , Italy
| | - Fabrizio Vetica
- Department of Chemistry, Sapienza University , p.le Aldo Moro, 5, I-00185 , Rome , Italy
| | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University , via del Castro Laurenziano, 7, I-00161 , Rome , Italy
| |
Collapse
|
45
|
Cao Y, Knijff J, Delparish A, d'Angelo MFN, Noёl T. A Divergent Paired Electrochemical Process for the Conversion of Furfural Using a Divided-Cell Flow Microreactor. CHEMSUSCHEM 2021; 14:590-594. [PMID: 33305485 PMCID: PMC7898665 DOI: 10.1002/cssc.202002833] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 05/05/2023]
Abstract
Furfural is a prominent, non-petroleum-based chemical feedstock material, derived from abundantly available hemicellulose. Hence, its derivatization into other useful biobased chemicals is a subject of high interest in contemporary academic and industrial research activities. While most strategies to convert furfural require energy-intensive reaction routes, the use of electrochemical activation allows to provide a sustainable and green alternative. Herein, a disparate approach for the conversion of furfural is reported based on a divergent paired electrochemical conversion, enabling the simultaneous production of 2(5H)-furanone via an anodic oxidation, and the generation of furfuryl alcohol and/or hydrofuroin via a cathodic reduction. Using water as solvent and NaBr as supporting electrolyte and electron-mediator, a green and sustainable process was developed, which maximizes productive use of electricity and minimizes byproduct formation.
Collapse
Affiliation(s)
- Yiran Cao
- Department of Chemical Engineering and ChemistrySustainable Process EngineeringEindhoven University of Technology (TU/e)Het Kranenveld (Bldg 14-Helix)5600 MBEindhoven (TheNetherlands
| | - Jasper Knijff
- Department of Chemical Engineering and ChemistrySustainable Process EngineeringEindhoven University of Technology (TU/e)Het Kranenveld (Bldg 14-Helix)5600 MBEindhoven (TheNetherlands
| | - Amin Delparish
- Department of Chemical Engineering and ChemistrySustainable Process EngineeringEindhoven University of Technology (TU/e)Het Kranenveld (Bldg 14-Helix)5600 MBEindhoven (TheNetherlands
| | - Maria Fernanda Neira d'Angelo
- Department of Chemical Engineering and ChemistrySustainable Process EngineeringEindhoven University of Technology (TU/e)Het Kranenveld (Bldg 14-Helix)5600 MBEindhoven (TheNetherlands
| | - Timothy Noёl
- Department of Chemical Engineering and ChemistrySustainable Process EngineeringEindhoven University of Technology (TU/e)Het Kranenveld (Bldg 14-Helix)5600 MBEindhoven (TheNetherlands
- Flow Chemistry Groupvan't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA)Science Park 9041098 XHAmsterdam (TheNetherlands
| |
Collapse
|
46
|
Schotten C, Taylor CJ, Bourne RA, Chamberlain TW, Nguyen BN, Kapur N, Willans CE. Alternating polarity for enhanced electrochemical synthesis. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00399a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Improved synthesis through the use of alternating polarity.
Collapse
Affiliation(s)
| | | | - Richard A. Bourne
- School of Chemical and Process Engineering
- University of Leeds
- Leeds LS2 9JT
- UK
| | | | - Bao N. Nguyen
- School of Chemistry
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Nik Kapur
- School of Mechanical Engineering
- University of Leeds
- Leeds LS2 9JT
- UK
| | | |
Collapse
|
47
|
Abstract
A revitalization of organic electrosynthesis has incited the organic chemistry community to adopt electrochemistry as a green and cost-efficient method for activating small molecules to replace highly toxic and expensive redox chemicals. However, many of the critical challenges of batch electrosynthesis, especially for organic synthesis, still remain. The combination of continuous flow technology and electrochemistry is a potent means to enable industry to implement large scale electrosynthesis. Indeed, flow electrosynthesis helps overcome problems that mainly arise from macro batch electro-organic systems, such as mass transfer, ohmic drop, and selectivity, but this is still far from being a flawless and generic applicable process. As a result, a notable increase in research on methodology and hardware sophistication has emerged, and many hitherto uncharted chemistries have been achieved. To better help the commercialization of wide-scale electrification of organic synthesis, we highlight in this perspective the advances made in large-scale flow electrosynthesis and its future trajectory while pointing out the main challenges and key improvements of current methodologies.
Collapse
Affiliation(s)
- Nour Tanbouza
- Département de Chimie, Université Laval, 1045 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada
| | - Thierry Ollevier
- Département de Chimie, Université Laval, 1045 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada
| | - Kevin Lam
- Department of Pharmaceutical, Chemical and Environmental Sciences, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| |
Collapse
|
48
|
Jud W, Kappe CO, Cantillo D. Development and Assembly of a Flow Cell for Single‐Pass Continuous Electroorganic Synthesis Using Laser‐Cut Components. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/cmtd.202000042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wolfgang Jud
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - C. Oliver Kappe
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - David Cantillo
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| |
Collapse
|
49
|
Gérardy R, Debecker DP, Estager J, Luis P, Monbaliu JCM. Continuous Flow Upgrading of Selected C 2-C 6 Platform Chemicals Derived from Biomass. Chem Rev 2020; 120:7219-7347. [PMID: 32667196 DOI: 10.1021/acs.chemrev.9b00846] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ever increasing industrial production of commodity and specialty chemicals inexorably depletes the finite primary fossil resources available on Earth. The forecast of population growth over the next 3 decades is a very strong incentive for the identification of alternative primary resources other than petro-based ones. In contrast with fossil resources, renewable biomass is a virtually inexhaustible reservoir of chemical building blocks. Shifting the current industrial paradigm from almost exclusively petro-based resources to alternative bio-based raw materials requires more than vibrant political messages; it requires a profound revision of the concepts and technologies on which industrial chemical processes rely. Only a small fraction of molecules extracted from biomass bears significant chemical and commercial potentials to be considered as ubiquitous chemical platforms upon which a new, bio-based industry can thrive. Owing to its inherent assets in terms of unique process experience, scalability, and reduced environmental footprint, flow chemistry arguably has a major role to play in this context. This review covers a selection of C2 to C6 bio-based chemical platforms with existing commercial markets including polyols (ethylene glycol, 1,2-propanediol, 1,3-propanediol, glycerol, 1,4-butanediol, xylitol, and sorbitol), furanoids (furfural and 5-hydroxymethylfurfural) and carboxylic acids (lactic acid, succinic acid, fumaric acid, malic acid, itaconic acid, and levulinic acid). The aim of this review is to illustrate the various aspects of upgrading bio-based platform molecules toward commodity or specialty chemicals using new process concepts that fall under the umbrella of continuous flow technology and that could change the future perspectives of biorefineries.
Collapse
Affiliation(s)
- Romaric Gérardy
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
| | - Julien Estager
- Certech, Rue Jules Bordet 45, Zone Industrielle C, B-7180 Seneffe, Belgium
| | - Patricia Luis
- Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Materials & Process Engineering (iMMC-IMAP), UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| |
Collapse
|
50
|
Jud W, Kappe CO, Cantillo D. A Continuous Flow Cell for High‐Temperature/High‐Pressure Electroorganic Synthesis. ChemElectroChem 2020. [DOI: 10.1002/celc.202000696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wolfgang Jud
- Institute of ChemistryUniversity of Graz NAWI Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW)Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - C. Oliver Kappe
- Institute of ChemistryUniversity of Graz NAWI Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW)Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - David Cantillo
- Institute of ChemistryUniversity of Graz NAWI Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW)Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| |
Collapse
|