1
|
Aazmi A, Zhang D, Mazzaglia C, Yu M, Wang Z, Yang H, Huang YYS, Ma L. Biofabrication methods for reconstructing extracellular matrix mimetics. Bioact Mater 2024; 31:475-496. [PMID: 37719085 PMCID: PMC10500422 DOI: 10.1016/j.bioactmat.2023.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
In the human body, almost all cells interact with extracellular matrices (ECMs), which have tissue and organ-specific compositions and architectures. These ECMs not only function as cellular scaffolds, providing structural support, but also play a crucial role in dynamically regulating various cellular functions. This comprehensive review delves into the examination of biofabrication strategies used to develop bioactive materials that accurately mimic one or more biophysical and biochemical properties of ECMs. We discuss the potential integration of these ECM-mimics into a range of physiological and pathological in vitro models, enhancing our understanding of cellular behavior and tissue organization. Lastly, we propose future research directions for ECM-mimics in the context of tissue engineering and organ-on-a-chip applications, offering potential advancements in therapeutic approaches and improved patient outcomes.
Collapse
Affiliation(s)
- Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Duo Zhang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Corrado Mazzaglia
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Sun L, Wang Y, Bian F, Xu D, Zhao Y. Bioinspired optical and electrical dual-responsive heart-on-a-chip for hormone testing. Sci Bull (Beijing) 2023; 68:938-945. [PMID: 37062651 DOI: 10.1016/j.scib.2023.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Heart-on-chips have emerged as a powerful tool to promote the paradigm innovation in cardiac pathological research and drug development. Attempts are focused on improving microphysiological visuals, enhancing bionic characteristics, as well as expanding their biomedical applications. Herein, inspired by the bright feathers of peacock, we present a novel optical and electrical dual-responsive heart-on-a-chip based on cardiomyocytes hybrid bright MXene structural color hydrogels for hormone toxicity evaluation. Such hydrogels with inverse opal nanostructure are generated by using pregel to replicate MXene-decorated colloidal photonic crystal (PhC) array templates. The attendant MXene in the hydrogels could not only enhance the saturation of structural color, but also ensure the composite hydrogel with excellent electroconductivity to facilitate the synergetic beating of their surface cultured cardiomyocytes. In this case, the hydrogels would undergo a synchronous deformation and generate shift in corresponding photonic band gap and structural color, which could be employed as visual signal for self-reporting of the cardiomyocyte mechanics. Based on these features, we demonstrated the practical value of the optical and electrical dual-responsive structural color MXene hydrogels constructed heart-on-a-chip in hormone toxicity testing. These results indicated that the proposed heart-on-a-chip might find broad prospects in drug screening, biological research, and so on.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Feika Bian
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dongyu Xu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang 325001, China.
| |
Collapse
|
3
|
Monteduro AG, Rizzato S, Caragnano G, Trapani A, Giannelli G, Maruccio G. Organs-on-chips technologies – A guide from disease models to opportunities for drug development. Biosens Bioelectron 2023; 231:115271. [PMID: 37060819 DOI: 10.1016/j.bios.2023.115271] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 11/24/2022] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Current in-vitro 2D cultures and animal models present severe limitations in recapitulating human physiopathology with striking discrepancies in estimating drug efficacy and side effects when compared to human trials. For these reasons, microphysiological systems, organ-on-chip and multiorgans microdevices attracted considerable attention as novel tools for high-throughput and high-content research to achieve an improved understanding of diseases and to accelerate the drug development process towards more precise and eventually personalized standards. This review takes the form of a guide on this fast-growing field, providing useful introduction to major themes and indications for further readings. We start analyzing Organs-on-chips (OOC) technologies for testing the major drug administration routes: (1) oral/rectal route by intestine-on-a-chip, (2) inhalation by lung-on-a-chip, (3) transdermal by skin-on-a-chip and (4) intravenous through vascularization models, considering how drugs penetrate in the bloodstream and are conveyed to their targets. Then, we focus on OOC models for (other) specific organs and diseases: (1) neurodegenerative diseases with brain models and blood brain barriers, (2) tumor models including their vascularization, organoids/spheroids, engineering and screening of antitumor drugs, (3) liver/kidney on chips and multiorgan models for gastrointestinal diseases and metabolic assessment of drugs and (4) biomechanical systems recapitulating heart, muscles and bones structures and related diseases. Successively, we discuss technologies and materials for organ on chips, analyzing (1) microfluidic tools for organs-on-chips, (2) sensor integration for real-time monitoring, (3) materials and (4) cell lines for organs on chips. (Nano)delivery approaches for therapeutics and their on chip assessment are also described. Finally, we conclude with a critical discussion on current significance/relevance, trends, limitations, challenges and future prospects in terms of revolutionary impact on biomedical research, preclinical models and drug development.
Collapse
Affiliation(s)
- Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Silvia Rizzato
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Giusi Caragnano
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
4
|
Wang Q, Wang C, Yang X, Wang J, Zhang Z, Shang L. Microfluidic preparation of optical sensors for biomedical applications. SMART MEDICINE 2023; 2:e20220027. [PMID: 39188556 PMCID: PMC11235902 DOI: 10.1002/smmd.20220027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 08/28/2024]
Abstract
Optical biosensors are platforms that translate biological information into detectable optical signals, and have extensive applications in various fields due to their characteristics of high sensitivity, high specificity, dynamic sensing, etc. The development of optical sensing materials is an important part of optical sensors. In this review, we emphasize the role of microfluidic technology in the preparation of optical sensing materials and the application of the derived optical sensors in the biomedical field. We first present some common optical sensing mechanisms and the functional responsive materials involved. Then, we describe the preparation of these sensing materials by microfluidics. Afterward, we enumerate the biomedical applications of these optical materials as biosensors in disease diagnosis, drug evaluation, and organ-on-a-chip. Finally, we discuss the challenges and prospects in this field.
Collapse
Affiliation(s)
- Qiao Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Chong Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Xinyuan Yang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Jiali Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Zhuohao Zhang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
5
|
Criscione J, Rezaei Z, Hernandez Cantu CM, Murphy S, Shin SR, Kim DH. Heart-on-a-chip platforms and biosensor integration for disease modeling and phenotypic drug screening. Biosens Bioelectron 2022; 220:114840. [DOI: 10.1016/j.bios.2022.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2022]
|
6
|
Recent progress on microfluidic devices with incorporated 1D nanostructures for enhanced extracellular vesicle (EV) separation. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Sun L, Chen Z, Xu D, Zhao Y. Electroconductive and Anisotropic Structural Color Hydrogels for Visual Heart-on-a-Chip Construction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105777. [PMID: 35347883 PMCID: PMC9165491 DOI: 10.1002/advs.202105777] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/02/2022] [Indexed: 05/07/2023]
Abstract
Heart-on-a-chip plays an important role in revealing the biological mechanism and developing new drugs for cardiomyopathy. Tremendous efforts have been devoted to developing heart-on-a-chip systems featuring simplified fabrication, accurate imitation and microphysiological visuality. In this paper, the authors present a novel electroconductive and anisotropic structural color hydrogel by simply polymerizing non-close-packed colloidal arrays on super aligned carbon nanotube sheets (SACNTs) for visualized and accurate heart-on-a-chip construction. The generated anisotropic hydrogel consists of a colloidal array-locked hydrogel layer with brilliant structural color on one surface and a conductive methacrylated gelatin (GelMA)/SACNTs film on the other surface. It is demonstrated that the anisotropic morphology of the SACNTs could effectively induce the alignment of cardiomyocytes, and the conductivity of SACNTs could contribute to the synchronous beating of cardiomyocytes. Such consistent beating rhythm caused the deformation of the hydrogel substrates and dynamic shifts in structural color and reflection spectra of the whole hybrid hydrogels. More attractively, with the integration of such cardiomyocyte-driven living structural color hydrogels and microfluidics, a visualized heart-on-a-chip system with more consistent beating frequency has been established for dynamic cardiomyocyte sensing and drug screening. The results indicate that the electroconductive and anisotropic structural color hydrogels are potential for various biomedical applications.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Zhuoyue Chen
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Dongyu Xu
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
- Institute for Stem Cell and RegenerationChinese Academy of ScienceBeijing100101China
| |
Collapse
|
8
|
Zhang H, Guo J, Wang Y, Sun L, Zhao Y. Stretchable and Conductive Composite Structural Color Hydrogel Films as Bionic Electronic Skins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102156. [PMID: 34436831 PMCID: PMC8529447 DOI: 10.1002/advs.202102156] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/30/2021] [Indexed: 05/19/2023]
Abstract
Electronic skins have received increasing attention in biomedical areas. Current efforts about electronic skins are focused on the development of multifunctional materials to improve their performance. Here, the authors propose a novel natural-synthetic polymers composite structural color hydrogel film with high stretchability, flexibility, conductivity, and superior self-reporting ability to construct ideal multiple-signal bionic electronic skins. The composite hydrogel film is prepared by using the mixture of polyacrylamide (PAM), silk fibroin (SF), poly(3,4-ethylenedioxythiophene):poly (4-styrene sulfonate) (PEDOT:PSS, PP), and graphene oxide (GO) to replicate colloidal crystal templates and construct inverse opal scaffolds, followed by subsequent acid treatment. Due to these specific structures and components, the resultant film is imparted with vivid structural color and high conductivity while retaining the composite hydrogel's original stretchability and flexibility. The authors demonstrate that the composite hydrogel film has obvious color variation and electromechanical properties during the stretching and bending process, which could thus be utilized as a multi-signal response electronic skin to realize real-time color sensing and electrical response during human motions. These features indicate that the proposed composite structural color hydrogel film can widen the practical value of bionic electronic skins.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jiahui Guo
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yu Wang
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Lingyu Sun
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023China
| |
Collapse
|
9
|
Jin Z, Li Y, Yu K, Liu L, Fu J, Yao X, Zhang A, He Y. 3D Printing of Physical Organ Models: Recent Developments and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101394. [PMID: 34240580 PMCID: PMC8425903 DOI: 10.1002/advs.202101394] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/14/2021] [Indexed: 05/05/2023]
Abstract
Physical organ models are the objects that replicate the patient-specific anatomy and have played important roles in modern medical diagnosis and disease treatment. 3D printing, as a powerful multi-function manufacturing technology, breaks the limitations of traditional methods and provides a great potential for manufacturing organ models. However, the clinical application of organ model is still in small scale, facing the challenges including high cost, poor mimicking performance and insufficient accuracy. In this review, the mainstream 3D printing technologies are introduced, and the existing manufacturing methods are divided into "directly printing" and "indirectly printing", with an emphasis on choosing suitable techniques and materials. This review also summarizes the ideas to address these challenges and focuses on three points: 1) what are the characteristics and requirements of organ models in different application scenarios, 2) how to choose the suitable 3D printing methods and materials according to different application categories, and 3) how to reduce the cost of organ models and make the process simple and convenient. Moreover, the state-of-the-art in organ models are summarized and the contribution of 3D printed organ models to various surgical procedures is highlighted. Finally, current limitations, evaluation criteria and future perspectives for this emerging area are discussed.
Collapse
Affiliation(s)
- Zhongboyu Jin
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Yuanrong Li
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Linxiang Liu
- Zhejiang University HospitalZhejiang UniversityHangzhouZhejiang310027China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Xinhua Yao
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Aiguo Zhang
- Department of OrthopedicsWuxi Children's Hospital affiliated to Nanjing Medical UniversityWuxiJiangsu214023China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of Materials Processing and MoldZhengzhou UniversityZhengzhou450002China
| |
Collapse
|
10
|
Jing X, Ma Z, Antwi-Afari MF, Wang L, Li H, Mi HY, Feng PY, Liu Y. Synthesis and Fabrication of Supramolecular Polydimethylsiloxane-Based Nanocomposite Elastomer for Versatile and Intelligent Sensing. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xin Jing
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhenping Ma
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
| | - Maxwell Fordjour Antwi-Afari
- Department of Civil Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, U.K
| | - Lin Wang
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Heng Li
- Department of Building and Real Estate, Hong Kong Polytechnic University, Hong Kong 518000, China
| | - Hao-Yang Mi
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Pei-Yong Feng
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
11
|
Chen X, Guo Q, Chen W, Xie W, Wang Y, Wang M, You T, Pan G. Biomimetic design of photonic materials for biomedical applications. Acta Biomater 2021; 121:143-179. [PMID: 33301982 DOI: 10.1016/j.actbio.2020.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Photonic crystal (PC) materials with bio-inspired structure colors have drawn increasing attention as their potentials have been rapidly progressed in the field of biomedicine. After elaborate integration with smart materials or preparations through advanced techniques, PC materials have shown significant advantages in biosensing, bio-probing, bio-screening, tissue engineering, and so forth. In this review, we first introduced the fundamentals of PC materials as well as their fabrication strategies with different dimensional outputs. Based on these diversified PC materials, their biomedical potentials as biosensing elements, cell carriers, drug delivery systems, screening methods, cell scaffolds for tissue engineering, cell imaging probes, as well as the monitoring means for biological processes were then highlighted. In addition to these, we finally listed and discussed some emerging applications of PCs integrated with functional materials and newly developed material engineering technologies. In short, this review will provide a panoramic view of PCs-based biomedicines, and moreover, the progressive discussions from fundamentals to advanced applications in this review may also encourage researchers to innovate PC materials or devices for broader biomedical applications.
Collapse
|
12
|
Huang D, Zhang X, Fu X, Zu Y, Sun W, Zhao Y. Liver spheroids on chips as emerging platforms for drug screening. ENGINEERED REGENERATION 2021. [DOI: 10.1016/j.engreg.2021.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
13
|
|