1
|
Arafat KMY, Salem KS, Bera S, Jameel H, Lucia L, Pal L. Surfactant-modified microfibrillated cellulose reinforcement of high-barrier sustainable packaging films. Carbohydr Polym 2025; 357:123471. [PMID: 40158995 DOI: 10.1016/j.carbpol.2025.123471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/03/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
Surfactant-modified microfibrillated cellulose (S-MFC) enhanced the barrier properties of biobased packaging films for food applications. MFC of varying dimensions was mechanically produced from hardwood cellulosic fibers by applying different cumulative energy levels. The MFC was then modified employing a cationic surfactant, viz., cetyltrimethylammonium bromide (CTAB), and a non-ionic surfactant (NS), alcohol ethoxylate, followed by solution casting to develop packaging films. The MFC and S-MFC were characterized by using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The packaging films were evaluated for barrier and mechanical properties, including air permeability, water vapor transmission rate (WVTR), oil and grease resistance, hot oil resistance, water contact angle and surface energy, tensile, and stretch properties. The incorporation of hydrophobic long alkyl chains from the surfactant onto the surface of the MFC through electrostatic and hydrophobic interactions contributed to improved barrier properties of the films. The S-MFC-based films demonstrated a 38 % reduction in WVTR, zero air permeability, the highest oil and grease resistance (kit level 12), and passed the hot oil absorption (<4 %), with increasing fibrillation levels and surfactant modifications. S-MFC films showed the highest contact angle of ~81° and the lowest surface energy (37.2 mN/m).
Collapse
Affiliation(s)
- Kazi Md Yasin Arafat
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Khandoker Samaher Salem
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA; Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka 1000, Bangladesh
| | - Sharmita Bera
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Hasan Jameel
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Lucian Lucia
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Lokendra Pal
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Breheny C, Colbert DM, Bezerra G, Geever J, Geever LM. Evaluating the Chemical Resistance and Performance of Thermochromic Polymers for Food Packaging. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2085. [PMID: 40363588 PMCID: PMC12072750 DOI: 10.3390/ma18092085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
The use of thermochromic pigments in food packaging offers several advantages, including improved food safety, waste reduction, and temperature change monitoring. However, little is known about how chemically resilient these materials are, especially regarding optical stability, thermochromic activation, and mechanical integrity following exposure to acidic, alkaline, oil-based, and neutral food-contact environments. This study evaluates the chemical resistance, thermal cycling effects, and mechanical durability of thermochromic pigment-polymer blends. Thermochromic polymer samples were subjected to multiple chemical environments, repeated thermal cycling, and mechanical analysis to assess degradation behavior. The findings show that virgin food-grade polymer with no thermochromic pigment sustains its performance stability throughout chemical exposure with little degradation. However, thermochromic polymer blends experienced reduced thermochromic functionality. This study offers insight into how well thermochromic pigment can be incorporated into intelligent food packaging despite the limitations associated with chemical exposure.
Collapse
Affiliation(s)
- Colette Breheny
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Research Institute, Technological University of the Shannon, University Road, N37 HD68 Athlone, Ireland; (D.M.C.); (G.B.); (J.G.)
| | | | | | | | - Luke M. Geever
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Research Institute, Technological University of the Shannon, University Road, N37 HD68 Athlone, Ireland; (D.M.C.); (G.B.); (J.G.)
| |
Collapse
|
3
|
Poddar D, Srivastava RK, Pattanayek SK, Goel G. Structure-property relationships in shellac-coated paper: impact of coating parameters on high-barrier bio-based packaging applications. Int J Biol Macromol 2025; 310:143172. [PMID: 40250643 DOI: 10.1016/j.ijbiomac.2025.143172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Paper coated with bio-based materials has attracted significant interest as an alternative to plastic-based materials for food packaging, with poor moisture barrier of coated paper posing a challenge to broader applications. Shellac is a promising biopolymer because of its low cost, biodegradability, and wide approval as a food additive and food contact material. In this work, we have systematically studied the role of shellac concentration in butanol and the number of coatings on coated paper's moisture and oil barrier properties. We investigated surface, physicochemical, and thermal properties of coated paper to elucidate specific interactions between shellac and paper substrate and characterize coating morphology, and their effect on barrier properties of coated paper. We found that every layer of coating resulted in an improvement in surface properties, with porosity decreasing by 90 % and surface roughness decreasing by 80 % in a single coat of 15 % (w/w) shellac solution. A low concentration of shellac (7.5 % (w/w)) was found to be less effective in improving barrier properties compared to the highest shellac concentration of 15 % (w/w) used in our study, but still caused a significant increase in the GSM (change in coated weight (g.m-2)). Four coatings of the 15 % (w/w) shellac solution resulted in a water vapor transmittance rate (WVTR) of 56 g m-2 day-1, a water barrier (COBB 180) of 1 g m-2, and an oil barrier (KIT) of 12. These results meet the strictest requirements for very high-barrier packaging applications.
Collapse
Affiliation(s)
- Deepak Poddar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India
| | - Rajiv K Srivastava
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, India
| | | | - Gaurav Goel
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
4
|
Maddirala S, Tadepalli SP, Lakshiakanthan E, Ganesan JJ, Issac R, Basavegowda N, Baek KH, Haldar D. Biodegradable composite films of barley fibers for food packaging applications: A review. Int J Biol Macromol 2025; 295:139611. [PMID: 39788235 DOI: 10.1016/j.ijbiomac.2025.139611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
The conventional food packaging is creating a significant cause of environmental hazards, posing challenges in disposal and recycling. Lignocellulose fibers possess remarkable biodegradable properties and can be modified or blended with other polymers. Thus, using lignocellulose biocomposite films derived from barley, a renewable source can mitigate and potentially transform into sustainable, innovative packaging material in the food sectors. Hence, this review focuses on barley lignocellulose fibers incorporated into different film matrix phases, showing promising enhanced mechanical, and functional properties. Barley biocomposites provide the necessary protective functions to replace traditional plastic for food packaging applications and that could reduce the negative effects on the environment. In addition, we highlighted various recently developed barley lignocellulose-based biocomposite films for a variety of food packaging applications. Furthermore, an overview of the environmental impact of plastic pollution and its effects on ecological niches has been emphasized. Additionally, aspects of different sustainable goals (SDGs 9, 12, 13) are discussed. Based on the existing research gaps, this article is concluded with the challenges and discussed further perspectives of biocomposites enriched with barley lignocellulose fibers.
Collapse
Affiliation(s)
- Samuel Maddirala
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Sai Prabhat Tadepalli
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Emisha Lakshiakanthan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Janet Joshiba Ganesan
- Railway Technical Centre, Department of Electronic Engineering, National Kaohsiung University of Science and Technology (First campus), No 1, Daxue road, Yanchao District, Kaohsiung City 82445, Taiwan
| | - Reya Issac
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India.
| |
Collapse
|
5
|
Palanisamy S, Kumar BKS, Senthilkumar D, Ajith SJ, Sreedharan S, Pathrose JM, Pitchumani GL, Ganesan N, Venkatachalam S, Saravanan B, Lee J, Bharathi D. Enhancing tomato shelf life using isolated cellulose fibers from Asian Palmyra palm coated with garlic oil. Food Chem 2025; 466:142163. [PMID: 39612835 DOI: 10.1016/j.foodchem.2024.142163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
In this study, garlic-oil-combined cellulose fibers were prepared by using Borassus flabellifer (Asian Palmyra palm) to enhance the post-harvest shelf life of tomatoes. The physicochemical properties of the prepared cellulose fibers were characterized by using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM). The B. flabellifer cellulose fibers combined with garlic oil (BCF/GO) coatings exhibited significant antifungal properties against Aspergillus flavus. In addition, the BCF/GO coating resulted in a notable extension in the shelf life of tomatoes regarding parameters such as weight loss, firmness, pH, ascorbic acid content, lycopene level, moisture content, and titratable acidity after 25 days of storage at 25-29 °C with 85 % relative humidity. The synergistic combination of BCF and GO presents a natural and sustainable solution for extending the shelf life of tomatoes with the potential to significantly reduce post-harvest losses in the food industry.
Collapse
Affiliation(s)
- Senthilkumar Palanisamy
- School of Biotechnology, Dr. G R Damodaran College of Science, Coimbatore 641014, Tamil Nadu, India.
| | | | - Deepanjali Senthilkumar
- Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India
| | - Shamitha Joseph Ajith
- Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India
| | - Sreevarshini Sreedharan
- Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India
| | - Jennifer Mariya Pathrose
- Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India
| | | | - Nitheeshwaran Ganesan
- Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India
| | - Shanmugam Venkatachalam
- Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India
| | - Boomika Saravanan
- Department of Biotechnology, Sri Krishna Arts and Science College, Coimbatore 641008, Tamil Nadu, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
6
|
Culqui-Arce C, Mori-Mestanza D, Fernández-Jeri AB, Cruzalegui RJ, Mori Zabarburú RC, Vergara AJ, Cayo-Colca IS, da Silva JG, Araujo NMP, Castro-Alayo EM, Balcázar-Zumaeta CR. Polymers Derived from Agro-Industrial Waste in the Development of Bioactive Films in Food. Polymers (Basel) 2025; 17:408. [PMID: 39940610 PMCID: PMC11819695 DOI: 10.3390/polym17030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
This review explores the potential of biopolymers as sustainable alternatives to conventional plastics in food packaging. Biopolymers derived from plant or animal sources are crucial in extending food shelf life, minimizing degradation, and protecting against oxidative and microbial agents. Their physical and chemical properties, influenced by the raw materials used, determine their suitability for specific applications. Biopolymers have been successfully used in fruits, vegetables, meats, and dairy products, offering antimicrobial and antioxidant benefits. Consequently, they represent a functional and eco-friendly solution for the packaging industry, contributing to sustainability while maintaining product quality.
Collapse
Affiliation(s)
- Carlos Culqui-Arce
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Diner Mori-Mestanza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Armstrong B. Fernández-Jeri
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Robert J. Cruzalegui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Roberto Carlos Mori Zabarburú
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Alex J. Vergara
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Ilse S. Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru;
| | - Juliana Guimarães da Silva
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (J.G.d.S.); (N.M.P.A.)
| | - Nayara Macêdo Peixoto Araujo
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (J.G.d.S.); (N.M.P.A.)
| | - Efraín M. Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - César R. Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| |
Collapse
|
7
|
Lestido-Cardama A, Barbosa-Pereira L, Sendón R, Bustos J, Paseiro Losada P, Rodríguez Bernaldo de Quirós A. Chemical safety and risk assessment of bio-based and/or biodegradable polymers for food contact: A review. Food Res Int 2025; 202:115737. [PMID: 39967183 DOI: 10.1016/j.foodres.2025.115737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
Bio-based and/or biodegradable polymers are being developed and applied as a sustainable and innovative alternative to conventional petroleum-based materials for food packaging applications. From the chemical standpoint, bio-based and/or biodegradable polymers present a complex chemical composition that includes additives, monomers, and other starting substances, but also, oligomers, impurities, degradation products, etc. All these compounds may migrate into the food and can be a hazard to the consumers' health. Thus, identifying potential migrants is crucial to assess the safety of these materials. The analytical methods applied to investigate migrants in bio-based and/or biodegradable polymers are reviewed and commented on. Mostly, gas chromatography or liquid chromatography coupled to mass spectrometry and specifically high-resolution mass spectrometry are the techniques of choice. In addition, a summary of recently published migration studies of chemicals from bio-based and/or biodegradable polymers into food simulants and food is provided. Moreover, current approaches to risk assessment of packaging materials are presented and illustrated with examples. Therefore, this review aims to highlight the chemical safety issues raised by biopolymers for food contact applications, that are often overlooked.
Collapse
Affiliation(s)
- Antía Lestido-Cardama
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Instituto de Materiales (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Letricia Barbosa-Pereira
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Instituto de Materiales (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Raquel Sendón
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Instituto de Materiales (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juana Bustos
- National Food Centre, Spanish Agency of Food Safety and Nutrition, Majadahonda, Spain
| | - Perfecto Paseiro Losada
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Rodríguez Bernaldo de Quirós
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Instituto de Materiales (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
8
|
Doğan Ulu Ö, Birhanlı E, Ulu A, Ateş B. Enhanced antioxidant and antimicrobial activities of chitosan/oxidized microcrystalline cellulose blended films with Tribulus terrestris extract for food packaging applications. Int J Biol Macromol 2025; 291:139036. [PMID: 39708868 DOI: 10.1016/j.ijbiomac.2024.139036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Chitosan/oxidized cellulose blended film with Tribulus terrestris (T. terrestris) extract films were successfully produced by casting method. The obtained blend films were characterized by structural, mechanical, optical, permeation, antioxidant, and antimicrobial properties. Finally, these biodegradable blend films were used to prolong the shelf-life of sour cherries. Remarkable physical properties such as water vapor transmission rate, swelling, water solubility, mechanic strength, and UV-vis light transmittance were observed to improve positively. All blend films showed 60-70 % degradation after 30 days of hydrolytic degradation and soil burial. T. terrestris extract increased the tensile strength from 1.1 MPa to a maximum of 2.1 MPa and elongation at break from 16 % to 46 %. Furthermore, blend films with T. terrestris extract showed ~4 and ~ 3.7 times higher ABTS•+ and DPPH• scavenging potential, respectively. Moreover, the findings also revealed that blend films displayed strong antimicrobial activity against S. aureus, E. coli, and C. tropicalis. Most importantly, the shelf life of sour cherries packaged with blend films was effectively extended up to 10 days. Overall, blended films are a promising potential alternative material to petroleum-based synthetic plastics for use in active food packaging, especially in products with short shelf life such as sour cherry.
Collapse
Affiliation(s)
- Öznur Doğan Ulu
- Scientific and Technological Research Center, İnönü University, 44280 Malatya, Türkiye.
| | - Emre Birhanlı
- Department of Biology, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Türkiye
| | - Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Türkiye.
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Türkiye
| |
Collapse
|
9
|
Kumar S, Dubey N, Kumar V, Choi I, Jeon J, Kim M. Combating micro/nano plastic pollution with bioplastic: Sustainable food packaging, challenges, and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125077. [PMID: 39369869 DOI: 10.1016/j.envpol.2024.125077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
The widespread use of plastic in food packaging provides significant challenges due to its non-biodegradability and the risk of hazardous chemicals seeping into food and the environment. This highlights the pressing need to come up with alternatives to traditional plastic that prioritize environmental sustainability, food quality, and safety. The current study presents an up-to-date examination of micro/nano plastic (MP/NP) consumption and their associated toxicity to human health, while also considering bioplastic as safer and eco-friendly alternative materials for packaging. The study contributes to a deeper comprehension of the primary materials utilized for bioplastic manufacturing and their potential for large-scale use. The key findings underscore the distinctive features of bioplastics, such as starch, polyhydroxyalkanoates, polylactic acid, and polybutylene succinate, as well as their blends with active agents, rendering them suitable for innovative food packaging applications. Moreover, the study includes a discussion of insights from various scientific literature, agency reports (governmental and non-governmental), and industry trends in bioplastic production and their potential to combat MP/NP pollution. In essence, the review highlights future research directions for the safe integration of bioplastics in food packaging, addresses outstanding questions, and proposes potential solutions to challenges linked with plastic usage.
Collapse
Affiliation(s)
- Subhash Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Namo Dubey
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Inho Choi
- Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
10
|
Pattnaik R, Panda SK, Biswas S, De S, Satahrada S, Kumar S. Prospects and challenges of nanomaterials in sustainable food preservation and packaging: a review. DISCOVER NANO 2024; 19:178. [PMID: 39532764 PMCID: PMC11557778 DOI: 10.1186/s11671-024-04142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Nanomaterials play a pivotal role in food preservation and its safety, offering ingenious solutions for sustainable food packaging. Nanomaterials enable the creation of packaging materials having unique functional properties. It not only extends the shelf life of the foods by releasing preservatives but also enhances food safety by preventing microbial contamination or food spoilage. In this review, we aim to provide an overview of the various applications of nanotechnology in food packaging, highlighting its key advantages. We also delve into the safety considerations and regulatory issues involved in developing nanotechnology-based food packaging materials. Additionally, advancements in the field of nanotechnology-based packaging have the potential to create safer, more sustainable, and high-quality packaging with greater functionality that delivers essential benefits to manufacturers and consumers.
Collapse
Affiliation(s)
- Ritesh Pattnaik
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | | | - Soumyadeep Biswas
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Sayanti De
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Subhra Satahrada
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Subrat Kumar
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India.
| |
Collapse
|
11
|
dos Santos MR, Durval IJB, de Medeiros ADM, da Silva Júnior CJG, Converti A, Costa AFDS, Sarubbo LA. Biotechnology in Food Packaging Using Bacterial Cellulose. Foods 2024; 13:3327. [PMID: 39456389 PMCID: PMC11507476 DOI: 10.3390/foods13203327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Food packaging, which is typically made of paper/cardboard, glass, metal, and plastic, is essential for protecting and preserving food. However, the impact of conventional food packaging and especially the predominant use of plastics, due to their versatility and low cost, bring serious environmental and health problems such as pollution by micro and nanoplastics. In response to these challenges, biotechnology emerges as a new way for improving packaging by providing biopolymers as sustainable alternatives. In this context, bacterial cellulose (BC), a biodegradable and biocompatible material produced by bacteria, stands out for its mechanical resistance, food preservation capacity, and rapid degradation and is a promising solution for replacing plastics. However, despite its advantages, large-scale application still encounters technical and economic challenges. These include high costs compared to when conventional materials are used, difficulties in standardizing membrane production through microbial methods, and challenges in optimizing cultivation and production processes, so further studies are necessary to ensure food safety and industrial viability. Thus, this review provides an overview of the impacts of conventional packaging. It discusses the development of biodegradable packaging, highlighting BC as a promising biopolymer. Additionally, it explores biotechnological techniques for the development of innovative packaging through structural modifications of BC, as well as ways to optimize its production process. The study also emphasizes the importance of these solutions in promoting a circular economy within the food industry and reducing its environmental impact.
Collapse
Affiliation(s)
- Maryana Rogéria dos Santos
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n-Dois Irmãos, Recife 52171-900, Brazil;
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Italo José Batista Durval
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Alexandre D’Lamare Maia de Medeiros
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Cláudio José Galdino da Silva Júnior
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Attilio Converti
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa (UNIGE), Via Opera Pia, 15, 16145 Genoa, Italy
| | - Andréa Fernanda de Santana Costa
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Centro de Comunicação e Desing, Centro Acadêmico da Região Agreste, Universidade Federal de Pernambuco (UFPE), BR 104, Km 59, s/n—Nova Caruaru, Caruaru 50670-900, Brazil
| | - Leonie Asfora Sarubbo
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Escola de Tecnologia e Comunicação, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, Brazil
| |
Collapse
|
12
|
Pillai ARS, Bhosale YK, Roy S. Extraction of Bioactive Compounds From Centella asiatica and Enlightenment of Its Utilization Into Food Packaging: A Review. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:1249553. [PMID: 39363888 PMCID: PMC11449555 DOI: 10.1155/2024/1249553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/05/2024]
Abstract
Centella asiatica is a medicinal herb, well known for its phytochemical activities because of the presence of terpenoids and polyphenols, which contribute to the bioactivity of herb extract that can be effectively utilized in the packaging industry. Biopolymers infused with C. asiatica extract could be a promising solution in the food sector. The antibacterial and antioxidant qualities of C. asiatica can help preserve the quality and lengthen the freshness of food products, thereby preventing food loss. Selection of a suitable extraction method is essential to retain the yield and properties of the bioactive compounds of C. asiatica extract. Many research has been conducted on the separation of C. asiatica by using conventional and novel extraction techniques and its execution in packaging as a functional component. This review provides an overview of the extraction of phytochemicals from C. asiatica and its utilization in biopolymer film as an active component to modify the packaging film characteristics.
Collapse
Affiliation(s)
- Athira R. S. Pillai
- Department of Food Technology and NutritionSchool of AgricultureLovely Professional University 144411, Phagwara, Punjab, India
| | - Yuvraj Khasherao Bhosale
- Agricultural and Food Engineering DepartmentIndian Institute of Technology Kharagpur 721302, Kharagpur, West Bengal, India
| | - Swarup Roy
- Department of Food Technology and NutritionSchool of AgricultureLovely Professional University 144411, Phagwara, Punjab, India
| |
Collapse
|
13
|
Dey B, Prabhakar MR, Jayaraman S, Gujjala LKS, Venugopal AP, Balasubramanian P. Biopolymer-based solutions for enhanced safety and quality assurance: A review. Food Res Int 2024; 191:114723. [PMID: 39059918 DOI: 10.1016/j.foodres.2024.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
The improper disposal of petroleum-based plastics has been associated with detrimental environmental consequences, such as the proliferation of microplastic pollution and increased emissions of greenhouse gases (GHGs). Consequently, biopolymers have emerged as a highly regarded alternative due to their environmental-friendly attributes and versatile range of applications. In response to consumer demands for safer food options, sustainable packaging, and escalating environmental concerns, the food sector is increasingly adopting biopolymers. Further, in the recent decade, the usage of active or functional biopolymers has evolved into smart biopolymers that can transmit real-time data to consumers. This review covers key topics such as antimicrobial and biodegradable packaging, edible coatings and films, incorporation of scavengers and bioactive substances that prolong the shelf life and guard against moisture and microbial contamination. The paper also discusses the development of edible cutlery as a sustainable substitute for plastic, the encapsulation of bioactive substances within biopolymers, 3-D food printing for regulated nutrition delivery and thickening and gelling agents that improve food texture and stability. It also discusses the integration of smart polymer functions, demonstrating their importance in guaranteeing food safety and quality, such as biosensing, pH and gas detection, antibacterial characteristics, and time-temperature monitoring. By shedding light on market trends, future scope, and potentialities, this review aims to elucidate the prospects of utilizing biopolymers to address sustainability and quality concerns within the food industry effectively.
Collapse
Affiliation(s)
- Baishali Dey
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India
| | - Muhil Raj Prabhakar
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India
| | - Sivaraman Jayaraman
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India
| | | | - Arun Prasath Venugopal
- Department of Food Process Engineering, National Institute of Technology Rourkela, 769 008, India
| | - Paramasivan Balasubramanian
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India.
| |
Collapse
|
14
|
Mahović Poljaček S, Tomašegović T, Strižić Jakovljević M, Jamnicki Hanzer S, Murković Steinberg I, Žuvić I, Leskovac M, Lavrič G, Kavčič U, Karlovits I. Starch-Based Functional Films Enhanced with Bacterial Nanocellulose for Smart Packaging: Physicochemical Properties, pH Sensitivity and Colorimetric Response. Polymers (Basel) 2024; 16:2259. [PMID: 39204480 PMCID: PMC11358998 DOI: 10.3390/polym16162259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Starch-based pH-sensing films with bacterial nanocellulose (BNC) and red cabbage anthocyanins (RCA) as active components were investigated in this research. Their structural, physical, surface and colorimetric properties were analyzed, mainly as a function of BNC concentration. The aim of the research was to relate the changes in the intermolecular interactions between the components of the films (starch, anthocyanins and BNC) to the physical, surface and colorimetric properties that are important for the primary intended application of the produced films as pH indicators in smart packaging. The results showed that maize starch (MS) was more suitable as a matrix for the stabilization of anthocyanins compared to potato starch (PS). PS-based films showed a lower value of water contact angle than MS-based films, indicating stronger hydrophilicity. The swelling behavior results indicate that the concentrations of BNC in MS-based films (cca 10%) and the concentration of about 50% BNC in PS-based films are required if satisfactory properties of the indicator in terms of stability in a wet environment are to be achieved. The surface free energy results of PS-based films with BNC were between 62 and 68 mJ/m2 and with BNC and RCA between 64 and 68 mJ/m2; for MS-based films, the value was about 65 mJ/m2 for all samples with BNC and about 68 mJ/m2 for all samples with BNC and RCA. The visual color changes after immersion in different buffer solutions (pH 2.0-10.5) showed a gradual transition from red/pink to purple, blue and green for the observed samples. Films immersed in different buffers showed lower values of 2 to 10 lightness points (CIE L*) for PS-based films and 10 to 30 lightness points for MS-based films after the addition of BNC. The results of this research can make an important contribution to defining the influence of intermolecular interactions and structural changes on the physical, surface and colorimetric properties of bio-based pH indicators used in smart packaging applications.
Collapse
Affiliation(s)
- Sanja Mahović Poljaček
- Faculty of Graphic Arts, University of Zagreb, Getaldićeva 2, 10000 Zagreb, Croatia; (M.S.J.); (S.J.H.)
| | - Tamara Tomašegović
- Faculty of Graphic Arts, University of Zagreb, Getaldićeva 2, 10000 Zagreb, Croatia; (M.S.J.); (S.J.H.)
| | - Maja Strižić Jakovljević
- Faculty of Graphic Arts, University of Zagreb, Getaldićeva 2, 10000 Zagreb, Croatia; (M.S.J.); (S.J.H.)
| | - Sonja Jamnicki Hanzer
- Faculty of Graphic Arts, University of Zagreb, Getaldićeva 2, 10000 Zagreb, Croatia; (M.S.J.); (S.J.H.)
| | - Ivana Murković Steinberg
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (I.M.S.); (I.Ž.); (M.L.)
| | - Iva Žuvić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (I.M.S.); (I.Ž.); (M.L.)
| | - Mirela Leskovac
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (I.M.S.); (I.Ž.); (M.L.)
| | - Gregor Lavrič
- Pulp and Paper Institute, Bogišićeva ulica 8, 1000 Ljubljana, Slovenia; (G.L.); (U.K.)
| | - Urška Kavčič
- Pulp and Paper Institute, Bogišićeva ulica 8, 1000 Ljubljana, Slovenia; (G.L.); (U.K.)
| | - Igor Karlovits
- Danfoss Trata d.o.o., Jožeta Jame 16, 1210 Šentvid, Slovenia;
| |
Collapse
|
15
|
Kajla P, Chaudhary V, Dewan A, Bangar SP, Ramniwas S, Rustagi S, Pandiselvam R. Seaweed-based biopolymers for food packaging: A sustainable approach for a cleaner tomorrow. Int J Biol Macromol 2024; 274:133166. [PMID: 38908645 DOI: 10.1016/j.ijbiomac.2024.133166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
With the increasing environmental and health consequences of uncontrolled plastic use, the scientific community is progressively gravitating toward biodegradable and ecofriendly packaging alternatives. Seaweed polysaccharides have attracted attention recently because of their biodegradability, nontoxicity, antioxidant properties, and superior film-forming ability. However, it has some limitations for packaging applications, such as low tensile strength, water solubility, and only modest antimicrobial properties. The incorporation of biopolymers, nanoparticles, or organic active ingredients enhances these characteristics. This review encapsulates the contemporary research landscape pivoting around the role of seaweed polysaccharides in the development of bioplastics, active packaging solutions, edible films, and protective coatings. A meticulous collation of existing literature dissects the myriad food application avenues for these marine biopolymers, emphasizing their multifaceted physical, mechanical, thermal, and functional attributes, including antimicrobial and antioxidant. A key facet of this review spotlights environmental ramifications by focusing on their biodegradability, reinforcing their potential as a beacon of sustainable innovation. This article delves into the prevalent challenges that stymie large-scale adoption and commercialization of seaweed-centric packaging, offering a comprehensive perspective on this burgeoning domain.
Collapse
Affiliation(s)
- Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Vandana Chaudhary
- College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India.
| | - Aastha Dewan
- Department of Food Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Sneh Punia Bangar
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, 29634, USA
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Sarvesh Rustagi
- School of Applied and Life sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod 671 124, Kerala, India.
| |
Collapse
|
16
|
Jeong JP, Yoon I, Kim K, Jung S. Structural and Physiochemical Properties of Polyvinyl Alcohol-Succinoglycan Biodegradable Films. Polymers (Basel) 2024; 16:1783. [PMID: 39000639 PMCID: PMC11244272 DOI: 10.3390/polym16131783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Polyvinyl alcohol (PVA)-bacterial succinoglycan (SG) biodegradable films were developed through a solvent-casting method. Effects of the PVA/SG ratio on the thickness, transmittance, water holding capacity, and structural and mechanical properties were investigated by various analytical methods. All the prepared films were transparent and uniform, and XRD and FTIR analyses confirmed that PVA was successfully incorporated into SG. The films also showed excellent UV-blocking ability: up to close to 80% with increasing SG concentration. The formation of effective intermolecular interactions between these polymers was evidenced by their high tensile strength and moisture transport capacity. By measuring the biodegradation rate, it was confirmed that films with high SG content showed the fastest biodegradation rate over 5 days. These results confirm that PVA/SG films are eco-friendly, with both excellent biodegradability and effective UV-blocking ability, suggesting the possibility of industrial applications as a packaging material in various fields in the future.
Collapse
Affiliation(s)
- Jae-Pil Jeong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Inwoo Yoon
- Department of System Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyungho Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- Department of System Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
17
|
Jridi M, Abdelhedi O, Salem A, Zouari N, Nasri M. Food applications of bioactive biomaterials based on gelatin and chitosan. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:399-438. [PMID: 38906591 DOI: 10.1016/bs.afnr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Food packaging must guarantee the products' quality during the different operations including packing and maintenance throughout transportation and storage until to consumption. Thus, it should satisfy, both, food freshness and quality preservation and consumers health safety. Natural bio-sourced polymers have been explored as safe edible materials for several packaging applications, being interestingly carrier of bioactive substances, once added to improve films' properties. Gelatin and chitosan are among the most studied biomaterials for the preparation of edible packaging films due to their excellent characteristics including biodegradability, compatibility and film-forming property. These polymers could be used alone or in combination with other polymers to produce composite films with the desired physicochemical and mechanical properties. When incorporated with bioactive substances (natural extracts, polyphenolic compounds, essential oils), chitosan/gelatin-based films acquired various biological properties, including antioxidant and antimicrobial activities. The emerging bioactive composite films with excellent physical attributes represent excellent packaging alternative to preserve different types of foodstuffs (fruits, meat, fish, dairy products, …) and have shown great achievements. This chapter provides the main techniques used to prepare gelatin- and chitosan- based films, showing some examples of bioactive compounds incorporated into the films' matrix. Also, it illustrates the outstanding advantages given by these biomaterials for food preservation, when used as coating and wrapping agents.
Collapse
Affiliation(s)
- Mourad Jridi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia.
| | - Ola Abdelhedi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia
| | - Ali Salem
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia
| | - Nacim Zouari
- Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, Sfax, Tunisia
| |
Collapse
|
18
|
Abdulla SF, Shams R, Dash KK. Edible packaging as sustainable alternative to synthetic plastic: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32806-z. [PMID: 38462564 DOI: 10.1007/s11356-024-32806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
The choice of an appropriate packaging materials enhances the shelf life and improves quality of food during transportation, storage, and distribution. Development and innovations in food packaging systems have become essential in the food industry. Most widely used packaging materials are non-biodegradable plastics and are harmful to environment and human health. Thus, food industry is replacing non-biodegradable plastics with biodegradable plastics to reduce environmental pollution, health hazards, and food waste. Edible packaging may reduce food waste and keep perishables fresh. This review article compares edible packaging materials to synthetic ones and discusses their pollution-reducing effects. The several types of food packaging discussed in the review include those produced from polysaccharides, proteins, lipids, and composite films. The various characteristics of edible packaging are reviewed, including its barrier qualities, carrier properties, mechanical capabilities, and edibility. The carrier properties describe the capacity to transport and manage the release of active substances, and the edibility indicates acceptance of these items by the customers. Plasticizers, antimicrobials, antioxidants, and emulsifiers were included in the edible packaging to enhance the characteristics of the film. The development and implementation of edible packaging on food products from the laboratory to large-scale industrial levels, as well as their potential industrial applications in the dairy, meat, confectionary, poultry, fish, fruit, and vegetable processing sectors are addressed.
Collapse
Affiliation(s)
- Subhan Farook Abdulla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.
| |
Collapse
|
19
|
Jafarzadeh S, Yildiz Z, Yildiz P, Strachowski P, Forough M, Esmaeili Y, Naebe M, Abdollahi M. Advanced technologies in biodegradable packaging using intelligent sensing to fight food waste. Int J Biol Macromol 2024; 261:129647. [PMID: 38281527 DOI: 10.1016/j.ijbiomac.2024.129647] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
The limitation of conventional packaging in demonstrating accurate and real-time food expiration dates leads to food waste and foodborne diseases. Real-time food quality monitoring via intelligent packaging could be an effective solution to reduce food waste and foodborne illnesses. This review focuses on recent technological advances incorporated into food packaging for monitoring food spoilage, with a major focus on paper-based sensors and their combination with smartphone. This review paper offers a comprehensive exploration of advanced macromolecular technologies in biodegradable packaging, a general overview of paper-based probes and their incorporation into food packaging coupled with intelligent sensing mechanisms for monitoring food freshness. Given the escalating global concerns surrounding food waste, our manuscript serves as a pivotal resource, consolidating current research findings and highlighting the transformative potential of these innovative packaging solutions. We also highlight the current intelligent paper-based food freshness sensors and their various advantages and limitations. Examples of implementation of paper-based sensors/probes for food storage and their accuracy are presented. Finally, we examined how intelligent packaging can be an alternative to reduce food waste. Several technologies discussed here have good potential to be used in food packaging for real-time food monitoring, especially when combined with smartphone diagnosis.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3217, Australia.
| | - Zeynep Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Pelin Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Przemyslaw Strachowski
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Yasaman Esmaeili
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia.
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| |
Collapse
|
20
|
Kumar R, Lalnundiki V, Shelare SD, Abhishek GJ, Sharma S, Sharma D, Kumar A, Abbas M. An investigation of the environmental implications of bioplastics: Recent advancements on the development of environmentally friendly bioplastics solutions. ENVIRONMENTAL RESEARCH 2024; 244:117707. [PMID: 38008206 DOI: 10.1016/j.envres.2023.117707] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/04/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
The production and utilization of plastics may prove beneficial, but the environmental impact suggests the opposite. The single-use plastics (SUP) and conventional plastics are harmful to the environment and need prompt disposal. Bioplastics are increasingly being considered as a viable alternative to conventional plastics due to their potential to alleviate environmental concerns such as greenhouse gas emissions and pollution. However, the previous reviews revealed a lack of consistency in the methodologies used in the Life Cycle Assessments (LCAs), making it difficult to compare the results across studies. The current study provides a systematic review of LCAs that assess the environmental impact of bioplastics. The different mechanical characteristics of bio plastics, like tensile strength, Young's modulus, flexural modulus, and elongation at break are reviewed which suggest that bio plastics are comparatively much better than synthetic plastics. Bioplastics have more efficient mechanical properties compared to synthetic plastics which signifies that bioplastics are more sustainable and reliable than synthetic plastics. The key challenges in bioplastic adoption and production include competition with food production for feedstock, high production costs, uncertainty in end-of-life management, limited biodegradability, lack of standardization, and technical performance limitations. Addressing these challenges requires collaboration among stakeholders to drive innovation, reduce costs, improve end-of-life management, and promote awareness and education. Overall, the study suggests that while bioplastics have the potential to reduce environmental impact, further research is needed to better understand their life cycle and optimize their end-of-life (EoL) management and production to maximize their environmental benefits.
Collapse
Affiliation(s)
- Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - V Lalnundiki
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Sagar D Shelare
- Department of Mechanical Engineering, Priyadarshini College of Engineering, Nagpur, M.S, 440019, India.
| | - Galla John Abhishek
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Shubham Sharma
- Mechanical Engineering Department, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India; School of Mechanical and Automotive Engineering, Qingdao University of Technology, 266520, Qingdao, China; Department of Mechanical Engineering, Lebanese American University, Kraytem, 1102-2801, Beirut, Lebanon; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Deepti Sharma
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun, 248007, India.
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia, Boris Yeltsin, 19 Mira Street, 620002, Ekaterinburg, Russia.
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia.
| |
Collapse
|
21
|
Ramakrishnan R, Kim JT, Roy S, Jayakumar A. Recent advances in carboxymethyl cellulose-based active and intelligent packaging materials: A comprehensive review. Int J Biol Macromol 2024; 259:129194. [PMID: 38184045 DOI: 10.1016/j.ijbiomac.2023.129194] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Researchers have concentrated on innovative approaches to increase the shelf life of perishable food products and monitor their quality during storage and transportation as consumer demand for safe, environmentally friendly, and effective packaging develops. This comprehensive review aims to provide an overview of recent developments in carboxymethyl cellulose (CMC) chemical synthesis and its applications in active and intelligent packaging materials. It explores various methods for modifying cellulose to produce CMC and highlights the unique properties that make it suitable for addressing packaging industry challenges. The integration of CMC into active packaging systems, which helps reduce food waste and enhance food preservation, is discussed in depth. Furthermore, the integration of CMC in smart sensors and indicators for real-time monitoring and quality assurance in intelligent packaging is examined. The chemical synthesis of CMC and strategies to optimise its properties were studied, and the review concluded by examining the challenges and prospects of CMC-based packaging in the industry. This review is intended to serve as a valuable resource for researchers, industry professionals, and policymakers interested in the evolving landscape of CMC and its role in shaping the future of packaging materials.
Collapse
Affiliation(s)
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
22
|
Nobile M, Chiesa LM, Arioli F, Panseri S. Bio-based packaging combined to protective atmosphere to manage shelf life of salami to enhance food safety and product quality. Meat Sci 2024; 207:109366. [PMID: 37857029 DOI: 10.1016/j.meatsci.2023.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/08/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Plastics are currently the most widely used and most suitable packaging material to meet quality and food safety, particularly for meat products, because of their perishable nature. Biopolymers are very interesting from the point of view of sustainability. This study focused on the application of biodegradable packaging (polylactic acid, PLA) for sliced salami in a protective atmosphere, as a potential replacement for the one currently used (polyethylene terephthalate, PET), monitoring the shelf life of the meat product through microbiological, chemical (colorimetric, pH and volatile compound determination) and sensory analysis. The results showed that the PLA-packaged salami maintained the red color throughout the entire shelf life; pH monitoring was essentially constant over time (from 5.63 to 5.70). Only one difference was detected at the end of shelf life regarding the main markers of product alteration (hexanal, 3-hydroxy-2-butanone, ethanol and 3-methyl-1-butanol), that were not sensory perceived remaining appreciated by the consumer panel.
Collapse
Affiliation(s)
- Maria Nobile
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Universita' 6, 26900 Lodi, Italy
| | - Luca Maria Chiesa
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Universita' 6, 26900 Lodi, Italy.
| | - Francesco Arioli
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Universita' 6, 26900 Lodi, Italy
| | - Sara Panseri
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Universita' 6, 26900 Lodi, Italy
| |
Collapse
|
23
|
Rahman S, Gogoi J, Dubey S, Chowdhury D. Animal derived biopolymers for food packaging applications: A review. Int J Biol Macromol 2024; 255:128197. [PMID: 37979757 DOI: 10.1016/j.ijbiomac.2023.128197] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
It is essential to use environment-friendly, non-toxic, biodegradable and sustainable materials for various applications. Biopolymers are derived from renewable sources like plants, microorganisms, and agricultural wastes. Unlike conventional polymers, biopolymer has a lower carbon footprint and contributes less to greenhouse gas emission. All biopolymers are biodegradable, meaning natural processes can break them down into harmless products such as water and biomass. This property is of utmost importance for various sustainable applications. This review discusses different classifications of biopolymers based on origin, including plant-based, animal-based and micro-organism-based biopolymers. The review also discusses the desirable properties that are required in materials for their use as packaging material. It also discusses the different processes used in modifying the biopolymer to improve its properties. Finally, this review shows the recent developments taking place in using specifically animal origin-based biopolymer and its use in packaging material. It was observed that animal-origin-based biopolymers, although they possess unique properties however, are less explored than plant-origin biopolymers. The animal-origin-based biopolymers covered in this review are chitosan, gelatin, collagen, keratin, casein, whey, hyaluronic acid and silk fibroin. This review will help in renewing research interest in animal-origin biopolymers. In summary, biopolymer offers a sustainable and environment-friendly alternative to conventional polymers. Their versatility, biocompatibility will help create a more sustainable future.
Collapse
Affiliation(s)
- Sazzadur Rahman
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India; Department of Chemistry, Gauhati University, G. B. Nagar, Guwahati 781014, Assam, India
| | - Jahnabi Gogoi
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Sonali Dubey
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India; Department of Chemistry, Gauhati University, G. B. Nagar, Guwahati 781014, Assam, India.
| |
Collapse
|
24
|
Gigante V, Aliotta L, Ascrizzi R, Pistelli L, Zinnai A, Batoni G, Coltelli MB, Lazzeri A. Innovative Biobased and Sustainable Polymer Packaging Solutions for Extending Bread Shelf Life: A Review. Polymers (Basel) 2023; 15:4700. [PMID: 38139951 PMCID: PMC10747240 DOI: 10.3390/polym15244700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Sustainable packaging has been steadily gaining prominence within the food industry, with biobased materials emerging as a promising substitute for conventional petroleum-derived plastics. This review is dedicated to the examination of innovative biobased materials in the context of bread packaging. It aims to furnish a comprehensive survey of recent discoveries, fundamental properties, and potential applications. Commencing with an examination of the challenges posed by various bread types and the imperative of extending shelf life, the review underscores the beneficial role of biopolymers as internal coatings or external layers in preserving product freshness while upholding structural integrity. Furthermore, the introduction of biocomposites, resulting from the amalgamation of biopolymers with active biomolecules, fortifies barrier properties, thus shielding bread from moisture, oxygen, and external influences. The review also addresses the associated challenges and opportunities in utilizing biobased materials for bread packaging, accentuating the ongoing requirement for research and innovation to create advanced materials that ensure product integrity while diminishing the environmental footprint.
Collapse
Affiliation(s)
- Vito Gigante
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Roberta Ascrizzi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
| | - Laura Pistelli
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
- Department of Agriculture Food Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Angela Zinnai
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
- Department of Agriculture Food Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy;
| | - Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| |
Collapse
|
25
|
Kumar N, Pratibha, Prasad J, Yadav A, Upadhyay A, Neeraj, Shukla S, Petkoska AT, Heena, Suri S, Gniewosz M, Kieliszek M. Recent Trends in Edible Packaging for Food Applications — Perspective for the Future. FOOD ENGINEERING REVIEWS 2023; 15:718-747. [DOI: 10.1007/s12393-023-09358-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/28/2023] [Indexed: 05/14/2025]
Abstract
AbstractEdible packaging plays an important role in protecting food products from physical, mechanical, chemical, and microbiological damages by creating a barrier against oxidation, water, and controlling enzymatic activation. The employment of active agents such as plant extracts, essential oils, cross-linkers, and nanomaterials in edible packaging promises to improve mechanical, physical, barrier, and other properties of edible materials as well as food products. In the current review, we have compiled information on the recent advances and trends in developing composite (binary and ternary) edible packaging for food application. Several types of active agents such as essential oils, plant extracts, cross-linking agents, and nanomaterials as well as their functions in edible packaging (active composite) have been discussed. The present study provides the collective information about the high- (high-pressure homogenizer, ultrasonication, and microfludizer) and low-energy (phase inversion temperature and composition and spontaneous emulsification) methods for developing nanoformulations. In addition, concepts of comprehensive studies required for developing edible coatings and films for food packaging applications, as well as overcoming challenges like consumer acceptance, regulatory requirements, and non-toxic scaling up to the commercial applications, have also been discussed.
Collapse
|
26
|
Qu CL, Lin SM, Potiyaraj P, Meng L, Wu CS, Yuan L, Luo X, Ge FF, Tsou CH. Polymer Packaging through the Blending of Biowaste Oyster Shell and Low-Density Polyethylene: A Sustainable Approach for Enhanced Food Preservation. Polymers (Basel) 2023; 15:3977. [PMID: 37836026 PMCID: PMC10575309 DOI: 10.3390/polym15193977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 10/15/2023] Open
Abstract
This research delves into the impact of incorporating thermally treated oyster shell powder (TOS), a biowaste filler, into low-density polyethylene (LDPE) to develop a LDPE/TOS blend, aiming at enhancing food packaging materials. The LDPE/TOS blend portrays advantageous characteristics such as augmented mechanical strength, thermostability, crystallinity, water absorption, and improved hydrophobicity with TOS content up to 50%. Microstructure analysis reveals a transition from a sparse to a more interconnected structure, contributing to the amplified tensile strength. The blend demonstrates increased barrier properties against water vapor transmission, which is attributed to elongated diffusion paths induced by the TOS particles. Application of the blend material in vegetable preservation trials manifested a substantial reduction in water loss compared to pure LDPE or no packaging. This biowaste-based blend film extends the shelf-life of chicken significantly when compared to that of pure LDPE. Importantly, the LDPE/TOS blend exhibits excellent antibacterial properties against both Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Chang-Lei Qu
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Shang-Ming Lin
- Department of Materials and Textiles, Asia Eastern University of Science and Technology, New Taipei City 220, Taiwan
| | - Pranut Potiyaraj
- Department of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Lei Meng
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Chin-San Wu
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung 82101, Taiwan
| | - Li Yuan
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Xin Luo
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Fei-Fan Ge
- Department of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chi-Hui Tsou
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
27
|
Muzeza C, Ngole-Jeme V, Msagati TAM. The Mechanisms of Plastic Food-Packaging Monomers' Migration into Food Matrix and the Implications on Human Health. Foods 2023; 12:3364. [PMID: 37761073 PMCID: PMC10529129 DOI: 10.3390/foods12183364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The development of packaging technology has become a crucial part of the food industry in today's modern societies, which are characterized by technological advancements, industrialization, densely populated cities, and scientific advancements that have increased food production over the past 50 years despite the lack of agricultural land. Various types of food-packaging materials are utilized, with plastic being the most versatile. However, there are certain concerns with regards to the usage of plastic packaging because of unreacted monomers' potential migration from the polymer packaging to the food. The magnitude of monomer migration depends on numerous aspects, including the monomer chemistry, type of plastic packaging, physical-chemical parameters such as the temperature and pH, and food chemistry. The major concern for the presence of packaging monomers in food is that some monomers are endocrine-disrupting compounds (EDCs) with a capability to interfere with the functioning of vital hormonal systems in the human body. For this reason, different countries have resolved to enforce guidelines and regulations for packaging monomers in food. Additionally, many countries have introduced migration testing procedures and safe limits for packaging monomer migration into food. However, to date, several research studies have reported levels of monomer migration above the set migration limits due to leaching from the food-packaging materials into the food. This raises concerns regarding possible health effects on consumers. This paper provides a critical review on plastic food-contact materials' monomer migration, including that from biodegradable plastic packaging, the monomer migration mechanisms, the monomer migration chemistry, the key factors that affect the migration process, and the associated potential EDC human health risks linked to monomers' presence in food. The aim is to contribute to the existing knowledge and understanding of plastic food-packaging monomer migration.
Collapse
Affiliation(s)
- Celia Muzeza
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa;
| | - Veronica Ngole-Jeme
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa;
| | - Titus Alfred Makudali Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa
| |
Collapse
|
28
|
Dirpan A, Ainani AF, Djalal M. A Review on Biopolymer-Based Biodegradable Film for Food Packaging: Trends over the Last Decade and Future Research. Polymers (Basel) 2023; 15:2781. [PMID: 37447428 DOI: 10.3390/polym15132781] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
In recent years, much attention has been paid to the use of biopolymers as food packaging materials due to their important characteristics and properties. These include non-toxicity, ease of availability, biocompatibility, and biodegradability, indicating their potential as an alternative to conventional plastic packaging that has long been under environmental scrutiny. Given the current focus on sustainable development, it is imperative to develop studies on biopolymers as eco-friendly and sustainable food packaging materials. Therefore, the aim of this review is to explore trends and characteristics of biopolymer-based biodegradable films for food packaging, analyze the contribution of various journals and cooperation between countries, highlight the most influential authors and articles, and provide an overview of the social, environmental, and economic aspects of biodegradable films for food packaging. To achieve this goal, a bibliometric analysis and systematic review based on the PRISMA method were conducted. Relevant articles were carefully selected from the Scopus database. A bibliometric analysis was also conducted to discuss holistically, comprehensively, and objectively biodegradable films for food packaging. An increasing interest was found in this study, especially in the last 3 years with Brazil and China leading the number of papers on biodegradable films for food packaging, which were responsible for 20.4% and 12.5% of the published papers, respectively. The results of the keyword analysis based on the period revealed that the addition of bioactive compounds into packaging films is very promising because it can increase the quality and safety of packaged food. These results reveal that biodegradable films demonstrate a positive and promising trend as food packaging materials that are environmentally friendly and promote sustainability.
Collapse
Affiliation(s)
- Andi Dirpan
- Department of Agricultural Technology, Faculty of Agriculture, Hasanuddin University, Makassar 90245, Indonesia
- Center of Excellence in Science and Technology on Food Product Diversification, Makassar 90245, Indonesia
| | - Andi Fadiah Ainani
- Research Group for Post-Harvest Technology and Biotechnology, Makassar 90245, Indonesia
| | - Muspirah Djalal
- Department of Agricultural Technology, Faculty of Agriculture, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
29
|
Venkatachalam K, Charoenphun N. Influence of Pomelo ( Citrus maxima) Pericarp Essential Oil on the Physicochemical Properties of HomChaiya Rice ( Oryza sativa L. cv. HomChaiya) Flour-Derived Edible Films. MEMBRANES 2023; 13:435. [PMID: 37103861 PMCID: PMC10143942 DOI: 10.3390/membranes13040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
The food industry is increasingly interested in using active edible packaging to address environmental problems caused by conventional synthetic polymers, such as pollution and degradation. The present study took advantage of this opportunity to develop active edible packaging using Hom-Chaiya rice flour (RF), incorporating pomelo pericarp essential oil (PEO) at varying concentrations (1-3%). Films without PEO were used as controls. Various physicochemical parameters, structural and morphological observations were examined in the tested films. Overall, the results showed that the addition of PEO at varying concentrations significantly improved the qualities of the RF edible films, particularly the film's yellowness (b*) and total color. Furthermore, RF-PEO films with increased concentrations significantly reduced the film's roughness and relative crystallinity, while increasing opacity. The total moisture content in the films did not differ, but water activity was significantly reduced in the RF-PEO films. Water vapor barrier properties also improved in the RF-PEO films. In addition, textural properties, including tensile strength and elongation at break, were better in the RF-PEO films compared with the control. Fourier-transform infrared spectroscopy (FTIR) revealed strong bonding between the PEO and RF in the film. Morphological studies showed that the addition of PEO smoothed the film's surface, and this effect increased with concentration. Overall, the biodegradability of the tested films was effective, despite variations; however, a slight advancement in degradation was found in the control film. Lastly, the antimicrobial properties of the RF-PEO films exhibited excellent inhibitory effects against various pathogens, including Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes), Escherichia coli (E. coli), and Salmonella typhimurium (S. typhimurium). This study demonstrated that RF and PEO could be an effective combination for developing active edible packaging that delivers desirable functional properties and excellent biodegradability.
Collapse
Affiliation(s)
- Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Surat Thani Campus, Prince of Songkla University, Makham Tia, Mueang, Surat Thani 84000, Thailand;
| | - Narin Charoenphun
- Faculty of Science and Arts, Burapha University Chanthaburi Campus, Khamong, Thamai, Chanthaburi 22170, Thailand
| |
Collapse
|
30
|
Elgadir MA, Mariod AA. Gelatin and Chitosan as Meat By-Products and Their Recent Applications. Foods 2022; 12:60. [PMID: 36613275 PMCID: PMC9818858 DOI: 10.3390/foods12010060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
Meat by-products such as bones, skin, horns, hooves, feet, skull, etc., are produced from slaughtered mammals. Innovative solutions are very important to achieving sustainability and obtaining the added value of meat by-products with the least impact on the environment. Gelatin, which is obtained from products high in collagen, such as dried skin and bones, is used in food processing, and pharmaceuticals. Chitosan is derived from chitin and is well recognized as an edible polymer. It is a natural product that is non-toxic and environmentally friendly. Recently, chitosan has attracted researchers' interests due to its biological activities, including antimicrobial, antitumor, and antioxidant properties. In this review, article, we highlighted the recent available information on the application of gelatin and chitosan as antioxidants, antimicrobials, food edible coating, enzyme immobilization, biologically active compound encapsulation, water treatment, and cancer diagnosis.
Collapse
Affiliation(s)
- M. Abd Elgadir
- Department of Food Science & Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdalbasit Adam Mariod
- Department of Biology, College of Science and Arts, Alkamil Branch, University of Jeddah, Alkamil 21931, Saudi Arabia
- Indigenous Knowledge and Heritage Centre, Ghibaish College of Science and Technology, Ghibaish P.O. Box 100, Sudan
| |
Collapse
|
31
|
Gheorghita Puscaselu R, Lobiuc A, Sirbu IO, Covasa M. The Use of Biopolymers as a Natural Matrix for Incorporation of Essential Oils of Medicinal Plants. Gels 2022; 8:756. [PMID: 36421579 PMCID: PMC9690358 DOI: 10.3390/gels8110756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 09/28/2023] Open
Abstract
The benefits of using biopolymers for the development of films and coatings are well known. The enrichment of these material properties through various natural additions has led to their applicability in various fields. Essential oils, which are well-known for their beneficial properties, are widely used as encapsulating agents in films based on biopolymers. In this study, we developed biopolymer-based films and tested their properties following the addition of 7.5% and 15% (w/v) essential oils of lemon, orange, grapefruit, cinnamon, clove, chamomile, ginger, eucalyptus or mint. The samples were tested immediately after development and after one year of storage in order to examine possible long-term property changes. All films showed reductions in mass, thickness and microstructure, as well as mechanical properties. The most considerable variations in physical properties were observed in the 7.5% lemon oil sample and the 15% grapefruit oil sample, with the largest reductions in mass (23.13%), thickness (from 109.67 µm to 81.67 µm) and density (from 0.75 g/cm3 to 0.43 g/cm3). However, the microstructure of the sample was considerably improved. Although the addition of lemon essential oil prevented the reduction in mass during the storage period, it favored the degradation of the microstructure and the loss of elasticity (from 16.7% to 1.51% for the sample with 7.5% lemon EO and from 18.28% to 1.91% for the sample with 15% lemon EO). Although the addition of essential oils of mint and ginger resulted in films with a more homogeneous microstructure, the increase in concentration favored the appearance of pores and modifications of color parameters. With the exception of films with added orange, cinnamon and clove EOs, the antioxidant capacity of the films decreased during storage. The most obvious variations were identified in the samples with lemon, mint and clove EOs. The most unstable samples were those with added ginger (95.01%), lemon (92%) and mint (90.22%).
Collapse
Affiliation(s)
- Roxana Gheorghita Puscaselu
- Department of Biochemistry, Victor Babeş University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Ioan Ovidiu Sirbu
- Department of Biochemistry, Victor Babeş University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Center for Complex Network Science, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Mihai Covasa
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
32
|
Shao L, Xi Y, Weng Y. Recent Advances in PLA-Based Antibacterial Food Packaging and Its Applications. Molecules 2022; 27:molecules27185953. [PMID: 36144687 PMCID: PMC9502505 DOI: 10.3390/molecules27185953] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
In order to reduce environmental pollution and resource waste, food packaging materials should not only have good biodegradable ability but also effective antibacterial properties. Poly(lactic acid) (PLA) is the most commonly used biopolymer for food packaging applications. PLA has good physical properties, mechanical properties, biodegradability, and cell compatibility but does not have inherent antibacterial properties. Therefore, antibacterial packaging materials based on PLA need to add antibacterial agents to the polymer matrix. Natural antibacterial agents are widely used in food packaging materials due to their low toxicity. The high volatility of natural antibacterial agents restricts their application in food packaging materials. Therefore, appropriate processing methods are particularly important. This review introduces PLA-based natural antibacterial food packaging, and the composition and application of natural antibacterial agents are discussed. The properties of natural antibacterial agents, the technology of binding with the matrix, and the effect of inhibiting various bacteria are summarized.
Collapse
Affiliation(s)
- Linying Shao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuewei Xi
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (Y.X.); (Y.W.)
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (Y.X.); (Y.W.)
| |
Collapse
|