1
|
Shen B, Hong B, Guo X, Hu R, Wang L, Jiang Y, Li W, Liu W, Wu Z, Yang P. Facile fabrication of sensing electrode based on CoFe-MOFs/MXene for ultrasensitive detection of picomolar chloramphenicol. Talanta 2025; 286:127552. [PMID: 39788074 DOI: 10.1016/j.talanta.2025.127552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Precise detection of ultralow-level antibiotics, such as picomole, in aqueous environments is significant for human health, however, it presents a great challenge to the adsorption capacity and electrocatalytic ability of sensing materials. Here, we used a one-step hydrothermal method to in situ grow spindle-like CoFe-based metal-organic frameworks (MOFs) with a size of about 50 nm in the region of hydrophilic MXene-loading hydrophobic carbon paper. By combining MOFs with abundant adsorption sites and MXene with high conductivity, the problems of adsorption and electrons transfer of ultralow-level antibiotics have been solved, and achieving precise detection of picomole-level antibiotics. As a result, the CoFe-MOFs/MXene/HCP sensing electrode exhibits the ultralow limit of detection with 33 pM and a wide detection range with 0.1 nm-2.0 mM for chloramphenicol (CAP) detection, as well as the designed sensor has excellent anti-interference, reproducibility, and stability. Importantly, the prepared sensing electrode exhibits reliable analytical results for CAP in real water samples, such as bottled water, milk, and urine, indicating that the prepared sensors have a great potential for application in the analysis of antibiotics in real samples.
Collapse
Affiliation(s)
- Bowen Shen
- School of Environment Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, 230026, China; Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Biao Hong
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Xinyue Guo
- School of Environment Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, 230026, China; Institute of Intelligent Machines, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Ruonan Hu
- Sino-Canada Concord School of Hefei High Tech Zone, Hefei, 230088, China
| | - Luodi Wang
- Sino-Canada Concord School of Hefei High Tech Zone, Hefei, 230088, China
| | - Yuchuan Jiang
- Sino-Canada Concord School of Hefei High Tech Zone, Hefei, 230088, China
| | - Wei Li
- School of Environment Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, 230026, China; Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Wenqing Liu
- School of Environment Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, 230026, China; Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Zhengyan Wu
- School of Environment Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, 230026, China; Institute of Intelligent Machines, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Pengqi Yang
- School of Environment Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, 230026, China; Institute of Solid State Physics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
2
|
Fringu I, Anghel D, Fratilescu I, Epuran C, Birdeanu M, Fagadar-Cosma E. Nanomaterials Based on 2,7,12,17-Tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine Exhibiting Bifunctional Sensitivity for Monitoring Chloramphenicol and Co 2. Biomedicines 2024; 12:770. [PMID: 38672126 PMCID: PMC11047853 DOI: 10.3390/biomedicines12040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Monitoring antibiotic retention in human body fluids after treatment and controlling heavy metal content in water are important requirements for a healthy society. Therefore, the approach proposed in this study is based on developing new optical sensors using porphyrin or its bifunctional hybrid materials made with AuNPs to accomplish the accurate detection of chloramphenicol and cobalt. To produce the new optical chloramphenicol sensors, 2,7,12,17-tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine (TBAP) was used, both alone in an acid medium and as a hybrid material with AuNPs in a water-DMSO acidified environment. The same hybrid material in the unchanged water-DMSO medium was the sensing material used for Co2+ monitoring. The best results of the hybrid materials were explained by the synergistic effects between the TBAP azaporphyrin and AuNPs. Chloramphenicol was accurately detected in the range of concentrations between 3.58 × 10-6 M and 3.37 × 10-5 M, and the same hybrid material quantified Co2+ in the concentration range of 8.92 × 10-5 M-1.77 × 10-4 M. In addition, we proved that AuNPs can be used for the detection of azaporphyrin (from 2.66 × 10-5 M to 3.29 × 10-4 M), making them a useful tool to monitor porphyrin retention after cancer imaging procedures or in porphyria disease. In conclusion, we harnessed the multifunctionality of this azaporphyrin and of its newly obtained AuNP plasmonic hybrids to detect chloramphenicol and Co2+ quickly, simply, and with high precision.
Collapse
Affiliation(s)
- Ionela Fringu
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| | - Diana Anghel
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| | - Ion Fratilescu
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| | - Camelia Epuran
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| | - Mihaela Birdeanu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, P. Andronescu Street, No. 1, 300224 Timisoara, Romania;
| | - Eugenia Fagadar-Cosma
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| |
Collapse
|
3
|
January JL, Tshobeni ZZ, Ngema NPP, Jijana AN, Iwuoha EI, Mulaudzi T, Douman SF, Ajayi RF. Novel Cytochrome P450-3A4 Enzymatic Nanobiosensor for Lapatinib (a Breast Cancer Drug) Developed on a Poly(anilino-co-4-aminobenzoic Acid-Green-Synthesised Indium Nanoparticle) Platform. BIOSENSORS 2023; 13:897. [PMID: 37754131 PMCID: PMC10527071 DOI: 10.3390/bios13090897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Breast cancer (BC) is one of the most common types of cancer disease worldwide and it accounts for thousands of deaths annually. Lapatinib is among the preferred drugs for the treatment of breast cancer. Possible drug toxicity effects of lapatinib can be controlled by real-time determination of the appropriate dose for a patient at the point of care. In this study, a novel highly sensitive polymeric nanobiosensor for lapatinib is presented. A composite of poly(anilino-co-4-aminobenzoic acid) co-polymer {poly(ANI-co-4-ABA)} and coffee extract-based green-synthesized indium nanoparticles (InNPs) was used to develop the sensor platform on a screen-printed carbon electrode (SPCE), i.e., SPCE||poly(ANI-co-4-ABA-InNPs). Cytochrome P450-3A4 (CYP3A4) enzyme and polyethylene glycol (PEG) were incorporated on the modified platform to produce the SPCE||poly(ANI-co-4-ABA-InNPs)|CYP3A4|PEG lapatinib nanobiosensor. Experiments for the determination of the electrochemical response characteristics of the nanobiosensor were performed with cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The nanobiosensor calibration for 0-100 ng/mL lapatinib was linear and gave limit of detection (LOD) values of 13.21 ng/mL lapatinib and 18.6 ng/mL lapatinib in physiological buffer and human serum, respectively. The LOD values are much lower than the peak plasma concentration (Cmax) of lapatinib (2.43 µg/mL), which is attained 4 h after the administration of a daily dose of 1250 mg lapatinib. The electrochemical nanobiosensor also exhibited excellent anti-interference performance and stability.
Collapse
Affiliation(s)
- Jaymi Leigh January
- SensorLab (UWC Sensor Laboratories), University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Ziyanda Zamaswazi Tshobeni
- SensorLab (UWC Sensor Laboratories), University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Nokwanda Precious Pearl Ngema
- SensorLab (UWC Sensor Laboratories), University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Abongile Nwabisa Jijana
- Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa
| | - Emmanuel Iheanyichukwu Iwuoha
- SensorLab (UWC Sensor Laboratories), University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Takalani Mulaudzi
- Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Samantha Fiona Douman
- Department of Chemistry, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa
| | - Rachel Fanelwa Ajayi
- SensorLab (UWC Sensor Laboratories), University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| |
Collapse
|
4
|
Singh J, Jindal N, Kumar V, Singh K. Role of green chemistry in synthesis and modification of graphene oxide and its application: A review study. CHEMICAL PHYSICS IMPACT 2023; 6:100185. [DOI: 10.1016/j.chphi.2023.100185] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
5
|
Determination of chloramphenicol in food using nanomaterial-based electrochemical and optical sensors-A review. Food Chem 2023; 410:135434. [PMID: 36641911 DOI: 10.1016/j.foodchem.2023.135434] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Chloramphenicol (CAP) is a widely used antibiotic for the treatment of sick animals owing to its potent action and low cost. However, the accumulation of CAP in the human body can cause irreversible aplastic anemia and hematopoietic toxicity. Accordingly, development of various analytical techniques for the rapid detection of CAP in animal products and the related processed foods is necessary. Among these analytical techniques, electrochemical and optical sensors offer many advantages for CAP detection, including high sensitivity, simple operation and fast analysis speed. In this review, we summarize recent application of carbon nanomaterials, metal nanoparticles, metal oxide nanoparticles and metal organic framework in the development of electrochemical and optical sensors for CAP detection (2010-2022). Based on the advantages and disadvantages of nanomaterials, electrochemical and optical sensors are summarized in this review. The preparation and synthesis of electrochemical and optical sensors and nanomaterials in the field of rapid detection are prospected.
Collapse
|
6
|
Feng H, Li J, Liu Y, Xu Z, Cui Y, Liu M, Liu X, He L, Jiang J, Qian D. Cubic MnSe2 nanoparticles dispersed on multi-walled carbon nanotubes: A robust electrochemical sensing platform for chloramphenicol. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
K J A, Reddy S, Acharya S, B L, Deepak K, Naveen CS, Harish KN, Ramakrishna S. A review on nanomaterial-based electrodes for the electrochemical detection of chloramphenicol and furazolidone antibiotics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3228-3249. [PMID: 35997206 DOI: 10.1039/d2ay00941b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To grow food for people, antibiotics were used, and these antibiotics can accumulate in the human body through food metabolism, which may have remarkably harmful effects on human health and safety. Therefore, low-cost sensors are needed for the detection of antibiotic residues in food samples. Recently, nanomaterial-based electrochemical sensors such as carbon nanoparticles, graphene nanoparticles, metal oxide nanoparticles, metal nanoparticles, and metal-organic nanostructures have been successfully used as sensing materials for the detection of chloramphenicol (CP) and furazolidone (FZ) antibiotics. However, additional efforts are still needed to fabricate effective multi-functional nanomaterial-based electrodes for the preparation of portable electrochemical sensor devices. The current review focuses on a quick introduction to CP and FZ antibiotics, followed by an outline of the current electrochemical analytical methods. In addition, we have discussed in-depth different nanoparticle supports for the electrochemical detection of CP and FZ in different matrices such as food, environmental, and biological samples. Finally, a summary of the current problems and future perspectives in this area are also highlighted.
Collapse
Affiliation(s)
- Abhishek K J
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, 560064, India.
| | - Sathish Reddy
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, 560064, India.
| | - Shubha Acharya
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, 560064, India.
| | - Lakshmi B
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, 560064, India.
| | - K Deepak
- Department of Physics, School of Applied Science, REVA University, Bangalore, 560064, India
| | - C S Naveen
- Department of Physics, School of Engineering, Presidency University, Bengaluru-560064, India
| | - K N Harish
- Department of Chemistry, Dayananda Sagar College of Engineering, Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru, 560078, India
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore
| |
Collapse
|
8
|
Sonochemically Prepared GdWNFs/CNFs Nanocomposite as an Electrode Material for the Electrochemical Detection of Antibiotic Drug in Water Bodies. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Tran TTT, Do MN, Dang TNH, Tran QH, Le VT, Dao AQ, Vasseghian Y. A state-of-the-art review on graphene-based nanomaterials to determine antibiotics by electrochemical techniques. ENVIRONMENTAL RESEARCH 2022; 208:112744. [PMID: 35065928 DOI: 10.1016/j.envres.2022.112744] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics might build up into the human body by foodstuff metabolism, posing a serious threat to human health and safety. Establishing simple and sensitive technology for quick antibiotic evaluation is thus extremely important. Nanomaterials (or NMTs) with the advantage of possessing merits such as remarkable optical, thermal, mechanical, and electrical capabilities have been highlighted as a piece of the best promising materials for rising new paths in the creation of the future generation biosensors. This paper presents the most recent advances in the use of graphene NMTs-based biosensors to determine antibiotics. Gr-NMTs (or graphene nanomaterials) have been used in the development of a biosensor for the electrochemical signal-transducing process. The rising issues and potential chances of this field are contained to give a plan for forthcoming research orientations. As a result, this review provides a comprehensive evaluation of the nanostructured electrochemical sensing approach for antibiotic residues in various systems. In this review, various electrochemical techniques such as CV, DPV, Stripping, EIS, LSV, chronoamperometry, SWV were employed to determine antibiotics. Additionally, this also demonstrates how graphene nanomaterials are employed to detect antibiotics.
Collapse
Affiliation(s)
- Thanh Tam Toan Tran
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, 590000, Viet Nam
| | - Mai Nguyen Do
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, 590000, Viet Nam
| | - Thi Ngoc Hoa Dang
- University of Medicine and Pharmacy, Hue University, 49000, Hue, Viet Nam
| | - Quang Huy Tran
- University of Medicine and Pharmacy, Hue University, 49000, Hue, Viet Nam
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 55000, Viet Nam; The Faculty of Environment and Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 55000, Viet Nam
| | - Anh Quang Dao
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, 590000, Viet Nam.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
10
|
David IG, Buleandra M, Popa DE, Cheregi MC, Iorgulescu EE. Past and Present of Electrochemical Sensors and Methods for Amphenicol Antibiotic Analysis. MICROMACHINES 2022; 13:mi13050677. [PMID: 35630144 PMCID: PMC9143398 DOI: 10.3390/mi13050677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 12/30/2022]
Abstract
Amphenicols are broad-spectrum antibiotics. Despite their benefits, they also present toxic effects and therefore their presence in animal-derived food was regulated. Various analytical methods have been reported for their trace analysis in food and environmental samples, as well as in the quality control of pharmaceuticals. Among these methods, the electrochemical ones are simpler, more rapid and cost-effective. The working electrode is the core of any electroanalytical method because the selectivity and sensitivity of the determination depend on its surface activity. Therefore, this review offers a comprehensive overview of the electrochemical sensors and methods along with their performance characteristics for chloramphenicol, thiamphenicol and florfenicol detection, with a focus on those reported in the last five years. Electrode modification procedures and analytical applications of the recently described devices for amphenicol electroanalysis in various matrices (pharmaceuticals, environmental, foods), together with the sample preparation methods were discussed. Therefore, the information and the concepts contained in this review can be a starting point for future new findings in the field of amphenicol electrochemical detection.
Collapse
|
11
|
Herath A, Salehi M, Jansone-Popova S. Production of polyacrylonitrile/ionic covalent organic framework hybrid nanofibers for effective removal of chromium(VI) from water. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128167. [PMID: 34979388 DOI: 10.1016/j.jhazmat.2021.128167] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Hexavalent Cr(VI) found in industrial wastewater is a proven carcinogen which causes serious health issues in humans around the world. This study presents a novel method to enhance the Cr(VI) oxyanion removal from wastewater by polyacrylonitrile (PAN) nanofibers through incorporation of a guanidinium-based ionic covalent organic framework (BT-DG) in the nanofibers structure. Simple electrospinning technique was employed to produce PAN nanofibers and BT-DG was synthesized through condensation between benzene-1,3,5-tricarbaldehyde and N,N'-diaminoguanidine monohydrochloride. In-situ polymerization of BT-DG onto PAN nanofibers resulted in generation of hybrid PAN-BT-DG nanofibers. This modified PAN-BT-DG was characterized by obtaining its point of zero charge (PZC), differential scanning calorimeter (DSC), scanning electron microscopy (SEM) morphology and surface elements and oxidation states by X-ray photoelectron spectroscopy (XPS). PAN-BT-DG exhibited positive surface charge below pH 4, making it an outstanding adsorbent, for Cr(VI) removal. Cr(VI) adsorption onto PAN-BT-DG followed pseudo second order kinetics and adsorption data fitted well to Freundlich isotherm model. Highest Cr(VI) removal was obtained at 55 ℃ with a maximum Langmuir adsorption capacity of 173 mg/g at pH 3. Kinetic studies revealed that Cr(VI) adsorption onto PAN-BT-DG is endothermic and thermodynamically feasible. Desorption studies were conducted on PAN-BT-DG using 1 M NaOH as the stripping solvent and PAN-BT-DG exhibited excellent regeneration after five consecutive cycles.
Collapse
Affiliation(s)
- Amali Herath
- Department of Civil Engineering, The University of Memphis, Memphis, TN 38018, USA
| | - Maryam Salehi
- Department of Civil Engineering, The University of Memphis, Memphis, TN 38018, USA.
| | | |
Collapse
|
12
|
Dao AQ, Thi Thanh Nhi L, Mai Nguyen D, Thanh Tam Toan T. A REVIEW ON DETERMINATION OF THE VETERINARY DRUG RESIDUES IN FOOD PRODUCTS. Biomed Chromatogr 2022; 36:e5364. [PMID: 35274322 DOI: 10.1002/bmc.5364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/06/2022]
Abstract
In this paper, we discuss veterinary medicine and its applications in the food field as well as its risk to the health of humans and animals by the residues. We review how the veterinary residues enter and cause some detrimental effects. We also mention two techniques to determine the residue of veterinary medication that existed in food originating from animals, including classic and advanced techniques. Finally, we discuss the potential of various developed methods compared to some traditional techniques.
Collapse
Affiliation(s)
- Anh Quang Dao
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - Le Thi Thanh Nhi
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Vietnam
| | - Do Mai Nguyen
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - Tran Thanh Tam Toan
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| |
Collapse
|
13
|
Gursu H, Guner Y, Arvas MB, Dermenci KB, Savaci U, Gencten M, Turan S, Sahin Y. Production of chlorine-containing functional group doped graphene powders using Yucel's method as anode materials for Li-ion batteries. RSC Adv 2021; 11:40059-40071. [PMID: 35494157 PMCID: PMC9044658 DOI: 10.1039/d1ra07653a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, the one-step electrochemical preparation of chlorine doped and chlorine-oxygen containing functional group doped graphene-based powders was carried out by Yucel's method, with the resultant materials used as anode materials for lithium (Li)-ion batteries. Cl atoms and ClO x (x = 2, 3 or 4) groups, confirmed by X-ray photoelectron spectroscopy analysis, were covalently doped into the graphene powder network to increase the defect density in the graphene framework and improve the electrochemical performance of Li-ion batteries. The microscopic properties of the Cl-doped graphene powder were investigated by scanning electron microscopy and transmission electron microscopy (TEM) analyses. TEM analysis showed that the one-layer thickness of the graphene was approximately 0.33 nm. Raman spectroscopy analysis was carried out to determine the defect density of the graphene structures. The G peak obtained in the Raman spectra is related to the formation of sp2 hybridized carbons in the graphene-based powders. The 2D peak seen in the spectra shows that the synthesized graphene-based powders have optically transparent structures. In addition, the number of sp2 hybridized carbon rings was calculated to be 22, 19, and 38 for the Cl-GP1, Cl-GP2, and Cl-GOP samples, respectively. As a result of the charge/discharge tests of the electrodes as anodes in Li-ion batteries, Cl-GP2 exhibits the best electrochemical performance of 493 mA h g-1 at a charge/discharge current density of 50 mA g-1.
Collapse
Affiliation(s)
- Hurmus Gursu
- Yildiz Technical University, Faculty of Art and Sciences, Department of Chemistry 34220 Istanbul Turkey +90 212 3834134 +90 212 3834411
| | - Yağmur Guner
- Pamukkale University, Department of Metallurgy and Materials Engineering Denizli 20160 Turkey
| | - Melih Besir Arvas
- Yildiz Technical University, Faculty of Art and Sciences, Department of Chemistry 34220 Istanbul Turkey +90 212 3834134 +90 212 3834411
| | - Kamil Burak Dermenci
- Eskişehir Technical University, Department of Materials Science and Engineering Eskişehir 26555 Turkey
| | - Umut Savaci
- Eskişehir Technical University, Department of Materials Science and Engineering Eskişehir 26555 Turkey
| | - Metin Gencten
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgy and Materials Engineering 34210 Istanbul Turkey
| | - Servet Turan
- Eskişehir Technical University, Department of Materials Science and Engineering Eskişehir 26555 Turkey
| | - Yucel Sahin
- Yildiz Technical University, Faculty of Art and Sciences, Department of Chemistry 34220 Istanbul Turkey +90 212 3834134 +90 212 3834411
| |
Collapse
|
14
|
Wang C, Shou H, Chen S, Wei S, Lin Y, Zhang P, Liu Z, Zhu K, Guo X, Wu X, Ajayan PM, Song L. HCl-Based Hydrothermal Etching Strategy toward Fluoride-Free MXenes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101015. [PMID: 34057261 DOI: 10.1002/adma.202101015] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Due to their ultrathin layered structure and rich elemental variety, MXenes are emerging as a promising electrode candidate in energy generation and storage. MXenes are generally synthesized via hazardous fluoride-containing reagents from robust MAX materials, unfortunately resulting in plenty of inert fluoride functional groups on the surface that noticeably decline their performance. Density functional theory calculations are used to show the etching feasibility of hydrochloric acid (HCl) on various MAX phases. Based on this theoretical guidance, fluoride-free Mo2 C MXenes with high efficiency about 98% are experimentally demonstrated. The Mo2 C electrodes produced by this process exhibit high electrochemical performance in supercapacitors and sodium-ion batteries owing to the chosen surface functional groups created via the HCl etch process. This strategy enables the development of fluoride-free MXenes and opens a new window to explore their potential in energy-storage applications.
Collapse
Affiliation(s)
- Changda Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Hongwei Shou
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Yunxiang Lin
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Pengjun Zhang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Zhanfeng Liu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Kefu Zhu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xin Guo
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xiaojun Wu
- School of Chemistry and Material Sciences, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| |
Collapse
|
15
|
The Application of Nanomaterials for the Electrochemical Detection of Antibiotics: A Review. MICROMACHINES 2021; 12:mi12030308. [PMID: 33804280 PMCID: PMC8000799 DOI: 10.3390/mi12030308] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
Antibiotics can accumulate through food metabolism in the human body which may have a significant effect on human safety and health. It is therefore highly beneficial to establish easy and sensitive approaches for rapid assessment of antibiotic amounts. In the development of next-generation biosensors, nanomaterials (NMs) with outstanding thermal, mechanical, optical, and electrical properties have been identified as one of the most hopeful materials for opening new gates. This study discusses the latest developments in the identification of antibiotics by nanomaterial-constructed biosensors. The construction of biosensors for electrochemical signal-transducing mechanisms has been utilized in various types of nanomaterials, including quantum dots (QDs), metal-organic frameworks (MOFs), magnetic nanoparticles (NPs), metal nanomaterials, and carbon nanomaterials. To provide an outline for future study directions, the existing problems and future opportunities in this area are also included. The current review, therefore, summarizes an in-depth assessment of the nanostructured electrochemical sensing method for residues of antibiotics in different systems.
Collapse
|
16
|
Kaushal S, Kaur M, Kaur N, Kumari V, Singh PP. Heteroatom-doped graphene as sensing materials: a mini review. RSC Adv 2020; 10:28608-28629. [PMID: 35520086 PMCID: PMC9055927 DOI: 10.1039/d0ra04432f] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/14/2020] [Indexed: 11/21/2022] Open
Abstract
Graphene is one of the astounding recent advancements in current science and one of the most encouraging materials for application in cutting-edge electronic gadgets. Graphene and its derivatives like graphene oxide and reduced graphene oxide have emerged as significant nanomaterials in the area of sensors. Furthermore, doping of graphene and its derivatives with heteroatoms (B, N, P, S, I, Br, Cl and F) alters their electronic and chemical properties which are best suited for the construction of economical sensors of practical utility. This review recapitulates the developments in graphene materials as emerging electrochemical, ultrasensitive explosive, gas, glucose and biological sensors for various molecules with greater sensitivity, selectivity and a low limit of detection. Apart from the most important turn of events, the properties and incipient utilization of the ever evolving family of heteroatom-doped graphene are also discussed. This review article encompasses a wide range of heteroatom-doped graphene materials as sensors for the detection of NH3, NO2, H2O2, heavy metal ions, dopamine, bleomycinsulphate, acetaminophen, caffeic acid, chloramphenicol and trinitrotoluene. In addition, heteroatom-doped graphene materials were also explored for sensitivity and selectivity with respect to interfering analytes present in the system. Finally, the review article concludes with future perspectives for the advancement of heteroatom-doped graphene materials. Graphene is one of the astounding recent advancements in current science and one of the most encouraging materials for application in cutting-edge electronic gadgets.![]()
Collapse
Affiliation(s)
- Sandeep Kaushal
- Department of Chemistry
- Sri Guru Granth Sahib World University
- India
| | - Manpreet Kaur
- Department of Chemistry
- Sri Guru Granth Sahib World University
- India
| | - Navdeep Kaur
- Department of Chemistry
- Sri Guru Granth Sahib World University
- India
| | - Vanita Kumari
- Department of Chemistry
- Sri Guru Granth Sahib World University
- India
| | - Prit Pal Singh
- Department of Chemistry
- Sri Guru Granth Sahib World University
- India
| |
Collapse
|