1
|
Alsuwaidi RO, Sekar P, Elgamouz A, Patole SP, Alatta A, Kishen A, Nagendrababu V. Antibacterial and Antibiofilm Efficacy of Green Synthesised Haloxylon Capped Silver Nanoparticles Against Enterococcus faecalis. AUST ENDOD J 2025. [PMID: 40405433 DOI: 10.1111/aej.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 04/24/2025] [Accepted: 05/02/2025] [Indexed: 05/24/2025]
Abstract
This study synthesised and characterised Haloxylon-capped silver nanoparticles (Haloxylon-AgNPs) and assessed their antibacterial and antibiofilm activity against Enterococcus faecalis. The study also examined Haloxylon-AgNPs' ability to target E. faecalis biofilms in root canals. Haloxylon salicornicum extract was used to synthesise silver nanoparticles. Physiochemical characterisation of Haloxylon-AgNPs was conducted. Antimicrobial and antibiofilm activity of Haloxylon-AgNPs was studied by agar diffusion method, minimum inhibitory concentration (MIC) determination, time-kill assay, confocal laser scanning microscopy (CLSM) and qPCR for virulence gene attenuation. One hundred and twenty extracted teeth were infected with E. faecalis and treated with either Haloxylon-AgNPs, chlorhexidine, calcium hydroxide or saline. The data were analysed using a one-way ANOVA and Tukey multiple comparison test to investigate the bacterial reduction between groups (p < 0.05, significant; p < 0.001, highly significant). A significant reduction in the thickness of biofilm and expression of cylA virulence gene of Haloxylon-AgNPs treated E. faecalis was observed. No difference was observed between Haloxylon-AgNPs, chlorhexidine and calcium hydroxide in the tooth model.
Collapse
Affiliation(s)
- Rawda O Alsuwaidi
- College of Dental Medicine, Department of Restorative Dentistry, University of Sharjah, Sharjah, UAE
| | - Priyadharshini Sekar
- RIMHS, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Abdelaziz Elgamouz
- Department of Chemistry, Pure and Applied Chemistry Group, College of Sciences, University of Sharjah, Sharjah, UAE
| | - Shashikant P Patole
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | | | - Anil Kishen
- Faculty of Dentistry, University of Toronto, Toronto, Canada
- Department of Dentistry, Mount Sinai Health System, Mount Sinai Hospital, Toronto, Canada
| | | |
Collapse
|
2
|
Almarashi JQM, Gadallah AS, Shaban M, Ellabban MA, Hbaieb K, Kordy MGM, Zayed M, Mohamed AAH. Quick methylene blue dye elimination via SDS-Ag nanoparticles catalysts. Sci Rep 2024; 14:15227. [PMID: 38956146 PMCID: PMC11220135 DOI: 10.1038/s41598-024-65491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Methylene blue dye, being toxic, carcinogenic and non-biodegradable, poses a serious threat for human health and environmental safety. The effective and time-saving removal of such industrial dye necessitates the use of innovative technologies such as silver nanoparticle-based catalysis. Utilizing a pulsed Nd:YAG laser operating at the second harmonic generation of 532 nm with 2.6 J energy per pulse and 10 ns pulse duration, Ag nanoparticles were synthesized via an eco-friendly method with sodium dodecyl sulphate (SDS) as a capping agent. Different exposure times (15, 30, and 45 min) resulted in varying nanoparticle sizes. Characterization was achieved through UV-Vis absorption spectroscopy, scanning electron microscopy (SEM) imaging, and energy dispersive X-ray (EDX). Lorentzian fitting was used to model nanoparticle size, aligning well with SEM results. Mie's theory was applied to evaluate the absorption, scattering, and extinction cross-sectional area spectra. EDX revealed increasing Ag and carbon content with exposure time. The SDS-caped AgNPs nanoparticles were tested as catalyst for methylene blue degradation, achieving up to 92.5% removal in just 12 min with a rate constant of 0.2626 min-1, suggesting efficient and time-saving catalyst compared to previously reported Ag-based nanocatalysts.
Collapse
Affiliation(s)
- Jamal Q M Almarashi
- Physics department, College of Science, Taibah University, 30001, Madina, Saudi Arabia
| | - A-S Gadallah
- Physics department, College of Science, Taibah University, 30001, Madina, Saudi Arabia
- Department of Laser Sciences and Interactions, National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia
| | - M A Ellabban
- Physics department, College of Science, Taibah University, 30001, Madina, Saudi Arabia
- Physics Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Kais Hbaieb
- Mechanical department, College of Engineering, Taibah University, P.O. Box 344, Al-Madinah Al-Munawwara, Kingdom of Saudi Arabia.
| | - Mohamed G M Kordy
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohamed Zayed
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Abdel-Aleam H Mohamed
- Physics department, College of Science, Taibah University, 30001, Madina, Saudi Arabia.
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
3
|
Kumar M, Ambika S, Hassani A, Nidheesh PV. Waste to catalyst: Role of agricultural waste in water and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159762. [PMID: 36306836 DOI: 10.1016/j.scitotenv.2022.159762] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Presently, owing to the rapid development of industrialization and urbanization activities, a huge quantity of wastewater is generated that contain toxic chemical and heavy metals, imposing higher environmental jeopardies and affecting the life of living well-being and the economy of the counties, if not treated appropriately. Subsequently, the advancement in sustainable cost-effective wastewater treatment technology has attracted more attention from policymakers, legislators, and scientific communities. Therefore, the current review intends to highlight the recent development and applications of biochars and/or green nanoparticles (NPs) produced from agricultural waste via green routes in removing the refractory pollutants from water and wastewater. This review also highlights the contemporary application and mechanism of biochar-supported advanced oxidation processes (AOPs) for the removal of organic pollutants in water and wastewater. Although, the fabrication and application of agriculture waste-derived biochar and NPs are considered a greener approach, nevertheless, before scaling up production and application, its toxicological and life-cycle challenges must be taken into account. Furthermore, future efforts should be carried out towards process engineering to enhance the performance of green catalysts to improve the economy of the process.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Selvaraj Ambika
- Faculty, Department of Civil Engineering, Indian Institute of Technology Hyderabad, Telangana, India; Adjunct Faculty, Department of Climate Change, Indian Institute of Technology Hyderabad, Telangana, India; Faculty and Program Coordinator, E-Waste Resources Engineering and Management, Indian Institute of Technology Hyderabad, Telangana, India
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
4
|
Garcinia spp: Products and by-products with potential pharmacological application in cancer. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Balciunaitiene A, Puzeryte V, Radenkovs V, Krasnova I, Memvanga PB, Viskelis P, Streimikyte P, Viskelis J. Sustainable-Green Synthesis of Silver Nanoparticles Using Aqueous Hyssopus officinalis and Calendula officinalis Extracts and Their Antioxidant and Antibacterial Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227700. [PMID: 36431804 PMCID: PMC9696917 DOI: 10.3390/molecules27227700] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Silver nanoparticles (AgNPs) biosynthesized using aqueous medical plant extracts as reducing and capping agents show multiple applicability for bacterial problems. The aim of this study was to expand the boundaries on AgNPs using a novel, low-toxicity, and cost-effective alternative and green approach to the biosynthesis of metallic NPs using Calendula officinalis (Calendula) and Hyssopus officinalis (Hyssopus) aqueous extracts. The formation of AgNPs was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) techniques. The effectiveness of biosynthesized AgNPs in quenching free radicals and inhibiting the growth of Gram-positive and Gram-negative microorganisms was supported by in vitro antioxidant activity assay methods and using the Kirby-Bauer disk diffusion susceptibility test, respectively. The elucidated antimicrobial and antioxidative activities of medical plant extracts were compared with data from the engineered biosynthetic AgNPs. The antimicrobial effect of engineered AgNPs against selected test cultures was found to be substantially stronger than for plant extracts used for their synthesis. The analysis of AgNPs by TEM revealed the presence of spherical-shaped nano-objects. The size distribution of AgNPs was found to be plant-type-dependent. The smaller AgNPs were obtained with Hyssopus extract (with a size range of 16.8 ± 5.8 nm compared to 35.7 ± 4.8 nm from Calendula AgNPs). The AgNPs' presumably inherited biological functions of Hyssopus and Calendula medical plants can provide a platform to combat pathogenic bacteria in the era of multi-drug resistance.
Collapse
Affiliation(s)
- Aiste Balciunaitiene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Kaunas, Lithuania
- Correspondence: (A.B.); (P.V.); Tel.: +370-682-13568 (P.V.)
| | - Viktorija Puzeryte
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Kaunas, Lithuania
| | - Vitalijs Radenkovs
- Processing and Biochemistry Department, Institute of Horticulture, LV-3701 Dobele, Latvia
- Research Laboratory of Biotechnology, Division of Smart Technologies, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Inta Krasnova
- Processing and Biochemistry Department, Institute of Horticulture, LV-3701 Dobele, Latvia
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa 012, Congo
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, B.P. 212, Kisangani 012, Congo
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, B.P. 212, Kinshasa 012, Congo
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Kaunas, Lithuania
- Correspondence: (A.B.); (P.V.); Tel.: +370-682-13568 (P.V.)
| | - Paulina Streimikyte
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Kaunas, Lithuania
| | - Jonas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Kaunas, Lithuania
| |
Collapse
|
6
|
Chan YB, Selvanathan V, Tey LH, Akhtaruzzaman M, Anur FH, Djearamane S, Watanabe A, Aminuzzaman M. Effect of Calcination Temperature on Structural, Morphological and Optical Properties of Copper Oxide Nanostructures Derived from Garcinia mangostana L. Leaf Extract. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3589. [PMID: 36296778 PMCID: PMC9607417 DOI: 10.3390/nano12203589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Synthesis of copper oxide (CuO) nanostructures via biological approach has gained attention to reduce the harmful effects of chemical synthesis. The CuO nanostructures were synthesized through a green approach using the Garcinia mangostana L. leaf extract and copper (II) nitrate trihydrate as a precursor at varying calcination temperatures (200-600 °C). The effect of calcination temperatures on the structural, morphological and optical properties of CuO nanostructures was studied. The red shifting of the green-synthesized CuO nanoparticles' absorption peak was observed in UV-visible spectrum, and the optical energy bandgap was found to decrease from 3.41 eV to 3.19 eV as the calcination temperatures increased. The PL analysis shown that synthesized CuO NPs calcinated at 500 °C has the maximum charge carriers separation. A peak located at 504-536 cm-1 was shown in FTIR spectrum that indicated the presence of a copper-oxygen vibration band and become sharper and more intense when increasing the calcination temperature. The XRD studies revealed that the CuO nanoparticles' crystalline size was found to increase from 12.78 nm to 28.17 nm, and dislocation density decreased from 61.26 × 1014 cm-1 to 12.60 × 1014 cm-1, while micro strain decreased from 3.40 × 10-4 to 1.26 × 10-4. From the XPS measurement, only CuO single phase without impurities was detected for the green-mediated NPs calcinated at 500 °C. The morphologies of CuO nanostructures were examined using FESEM and became more spherical in shape at elevated calcination temperature. More or less spherical nanostructure of green-mediated CuO calcinated at 500 °C were also observed using TEM. The purity of the green-synthesized CuO nanoparticles was evaluated by EDX analysis, and results showed that increasing calcination temperature increases the purity of CuO nanoparticles.
Collapse
Affiliation(s)
- Yu Bin Chan
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia
| | - Vidhya Selvanathan
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Lai-Hock Tey
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia
| | - Md. Akhtaruzzaman
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Farah Hannan Anur
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Sinouvassane Djearamane
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia
| | - Akira Watanabe
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - Mohammod Aminuzzaman
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia
- Centre for Photonics and Advanced Materials Research (CPAMR), Universiti Tunku Abdul Rahman (UTAR), Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia
| |
Collapse
|
7
|
Naganthran A, Verasoundarapandian G, Khalid FE, Masarudin MJ, Zulkharnain A, Nawawi NM, Karim M, Che Abdullah CA, Ahmad SA. Synthesis, Characterization and Biomedical Application of Silver Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:427. [PMID: 35057145 PMCID: PMC8779869 DOI: 10.3390/ma15020427] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Silver nanoparticles (AgNPs) have been employed in various fields of biotechnology due to their proven properties as an antibacterial, antiviral and antifungal agent. AgNPs are generally synthesized through chemical, physical and biological approaches involving a myriad of methods. As each approach confers unique advantages and challenges, a trends analysis of literature for the AgNPs synthesis using different types of synthesis were also reviewed through a bibliometric approach. A sum of 10,278 publications were analyzed on the annual numbers of publication relating to AgNPs and biological, chemical or physical synthesis from 2010 to 2020 using Microsoft Excel applied to the Scopus publication database. Furthermore, another bibliometric clustering and mapping software were used to study the occurrences of author keywords on the biomedical applications of biosynthesized AgNPs and a total collection of 224 documents were found, sourced from articles, reviews, book chapters, conference papers and reviews. AgNPs provides an excellent, dependable, and effective solution for seven major concerns: as antibacterial, antiviral, anticancer, bone healing, bone cement, dental applications and wound healing. In recent years, AgNPs have been employed in biomedical sector due to their antibacterial, antiviral and anticancer properties. This review discussed on the types of synthesis, how AgNPs are characterized and their applications in biomedical field.
Collapse
Affiliation(s)
- Ashwini Naganthran
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
| | - Gayathiri Verasoundarapandian
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
| | - Farah Eryssa Khalid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, Shibaura Institute of Technology, College of Systems Engineering and Science, 307 Fukasaku, Saitama 337-8570, Japan;
| | - Norazah Mohammad Nawawi
- Institute of Bio-IT Selangor, Universiti Selangor, Jalan Zirkon A7/A, Seksyen 7, Shah Alam 40000, Selangor, Malaysia;
- Centre for Foundation and General Studies, Universiti Selangor, Jalan Timur Tambahan, Bestari Jaya 45600, Selangor, Malaysia
| | - Murni Karim
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Laboratory of Sustainable Aquaculture, International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
| | - Che Azurahanim Che Abdullah
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Material Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
8
|
Gangwar J, Sebastian JK. Unlocking the potential of biosynthesized zinc oxide nanoparticles for degradation of synthetic organic dyes as wastewater pollutants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3286-3310. [PMID: 34850728 DOI: 10.2166/wst.2021.430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The azo dyes released into water from different industries are accumulating in the water bodies and bioaccumulating within living systems thereby affecting environmental health. This is a major concern in developing countries where stringent regulations are not followed for the discharge of industrial waste into water bodies. This has led to the accumulation of various pollutants including dyes. As these developing countries also face acute water shortages and due to the lack of cost-effective systems to remove these pollutants, it is essential to remove these toxic dyes from water bodies, eradicate dyes, or generate fewer toxic derivatives. The photocatalysis mechanism of degradation of azo dyes has gained importance due to its eco-friendly and non-toxic roles in the environment. The zinc nanoparticles act as photocatalysts in combination with plant extracts. Plant-based nanoparticles over the years have shown the potential to degrade dyes efficiently. This is carried out by adjusting the dye and nanoparticle concentrations and combinations of nanoparticles. Our review article considers increasing the efficiency of degradation of dyes using zinc oxide (ZnO) nanoparticles and understanding the photocatalytic mechanisms in the degradation of dyes and the toxic effects of these dyes and nanoparticles in different tropic levels.
Collapse
Affiliation(s)
- Jaya Gangwar
- Department of Life Sciences, Christ University, Bangalore, Karnataka, India E-mail:
| | | |
Collapse
|
9
|
Green Synthesis, Structural Characterization and Photocatalytic Applications of ZnO Nanoconjugates Using Heliotropium indicum. Catalysts 2021. [DOI: 10.3390/catal11070831] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In recent years, biosynthesized zinc oxide nanoparticles (ZnO NPs) have been gaining importance due to their unique properties and tremendous applications. This study aimed to fabricate ZnO NPs by using extracts from various parts of the traditional medicinal plant Heliotropium indicum (H. indicum) and evaluate their photocatalytic activity. Further, their potential in photoluminescence and fluorescence resonance energy transfer (FRET) was assessed. The Ultraviolet-Visible spectrum exhibited a hypsochromic shifted absorption band between 350–380 nm. Transmission electron microscopy (TEM) analysis revealed spherical NPs, while X-ray diffraction (XRD) data revealed wurtzite, hexagonal and crystalline nature. The TEM and XRD consistently determined an average particle size range from 19 to 53 nm. The photocatalytic degradation reaches a maximum of 95% for biogenic ZnO NPs by monitoring spectrophotometrically the degradation of methylene blue dye (λmax = 662.8 nm) under solar irradiation. Photoluminescence analysis revealed differentiated spectra with high-intensity emission peaks for biogenic ZnO NPs compared with chemically synthesized ZnO NPs. Eventually, the highest efficiency of FRET (80%) was found in ZnO NPs synthesized from the leaves. This remains the first report highlighting the multifunctional ZnO NPs capabilities mediated by using H. indicum, which could lead to important potential environmental and biomedical applications.
Collapse
|