1
|
Subramaniam H, Lim CK, Tey LH, Wong LS, Djearamane S. Oxidative stress-induced cytotoxicity of HCC2998 colon carcinoma cells by ZnO nanoparticles synthesized from Calophyllum teysmannii. Sci Rep 2024; 14:30198. [PMID: 39632962 PMCID: PMC11618351 DOI: 10.1038/s41598-024-81384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The field of green synthesis, namely using plant extracts for the production of metal nanoparticles, is rapidly gaining traction. Therefore, this study investigated the process of producing zinc oxide nanoparticles (ZnO NPs) using a water-based extract derived from the stem bark of Calophyllum teysmannii. Notably, this is the first documented utilization of this particular plant source. The presence of a distinct Ultraviolet-Visible (UV-Vis) absorption peak at 372 nm provided evidence for the creation of ZnO nanoparticles. The X-ray Diffractometer (XRD) and Field Emission Scanning Electron Microscopy (FESEM) investigations indicated that the nanoparticles exhibited sizes ranging from 31.5 to 59.9 nm and had spherical morphologies. Energy Dispersive X-ray Diffractometer (EDX) analysis verified the elemental composition of the ZnO nanoparticles, whereas the Fourier Transform Infrared (FTIR) spectra showed clear peaks, demonstrating their production. The FTIR examination of the C. teysmannii extract revealed peaks at around 3370 cm- 1, indicating the presence of phenolic compounds. These chemicals are likely responsible for the reduction and stabilization of the ZnO NPs. The high-resolution X-ray Photoelectron Spectroscopy (XPS) spectra clearly revealed separate peaks corresponding to Zn 2p and O 1s, providing confirmation of the chemical states and bonding contexts. The Raman Spectroscopy analysis revealed a distinct peak at around 425 cm⁻¹, confirming the presence of the wurtzite structure. The harmful effects of ZnO nanoparticles on HCC2998 (a kind of human colon cancer) and Vero (a type of monkey kidney epithelial) cells were evaluated using 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT), dichlorodihydrofluorescein diacetate (DCFH-DA), and boron-Dipyrromethene (BODIPY) assays. The cancer cells underwent cell death due to oxidative stress in a dose-dependent manner, as confirmed by microscopic and flow cytometry investigations.
Collapse
Affiliation(s)
- Hemaroopini Subramaniam
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar, Perak, 31900, Malaysia
| | - Chan Kiang Lim
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar, Perak, 31900, Malaysia
| | - Lai Hock Tey
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar, Perak, 31900, Malaysia
| | - Ling Shing Wong
- Life Science Division, Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Sinouvassane Djearamane
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar, Perak, 31900, Malaysia.
- Biomedical Research Unit and Lab Animal Research Centre, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Saveetha University, Chennai, 602 105, India.
| |
Collapse
|
2
|
Kotb ES, Alhamdi HW, Alfaifi MY, Darweesh O, Shati AA, Elbehairi SEI, Serag WM, Hassan YA, Elshaarawy RFM. Examining the quaternary ammonium chitosan Schiff base-ZnO nanocomposite's potential as protective therapy for rats' cisplatin-induced hepatotoxicity. Int J Biol Macromol 2024; 276:133616. [PMID: 39009258 DOI: 10.1016/j.ijbiomac.2024.133616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Despite cisplatin's long history as a cornerstone in cancer therapy, both acquired chemoresistance and significant impacts on healthy tissues limit its use. Hepatotoxicity is one of its side effects. Adjunct therapies have shown promise in not only attenuating liver damage caused by cisplatin but also in enhancing the efficacy of chemotherapy. In this context, a new quaternary ammonium chitosan Schiff base (QACSB) was synthesized and applied as an encapsulating agent for the in-situ synthesis of QACSB-ZnO nanocomposite. MATERIAL AND METHODS Thirty male albino rats were classified into Group 1 (control) distilled water, Group 2 (Cisplatin-treated) (12 mg/kg, i.p), and Group 3 (QACSB-ZnO NCs/cisplatin-treated) (150 mg/kg/day QACSB-ZnO NCs, i.p) for 14 days + a single dose of cisplatin. Liver functions, tissue TNF-α, MDA, and GSH were measured as well as histopathological and immunohistochemical studies were performed. RESULTS The QACSB-ZnO NCs significantly restore liver functions, tissue TNF-α, MDA, and GSH levels (p < 0.001). Histopathological examination showed patchy necrosis in the cisplatin-treated group versus other groups. The QACSB-ZnO NCs showed a weak TGF-β1 (score = 4) and a moderate Bcl-2 immunohistochemistry expression (score = 6) versus the CP group. CONCLUSIONS QACSB-ZnO NCs have been shown to protect the liver from cisplatin-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ebtesam S Kotb
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt
| | - Heba W Alhamdi
- College of Sciences, Biology Department, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha 9004, Saudi Arabia
| | - Omeed Darweesh
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Kirkuk, Iraq
| | - Ali A Shati
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha 9004, Saudi Arabia
| | - Serag Eldin I Elbehairi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha 9004, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt.
| | - Waleed M Serag
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt
| | - Yasser A Hassan
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Kirkuk, Iraq; Department of pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Reda F M Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
3
|
Singh A, Tomar R, Singh NB. Efficient removal of crystal violet dye from water using zinc ferrite-polyaniline nanocomposites. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:569. [PMID: 38777943 DOI: 10.1007/s10661-024-12686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Nanomaterials are widely employed in wastewater treatment, among which nanoferrites and their composites hold significant prominence. This study adopts a green approach to synthesize zinc ferrite nanoparticles, subsequently integrating them with polyaniline (PANI) to fabricate the ZnFe2O4-PANI nanocomposite. Characterization of the prepared ZnFe2O4-PANI nanocomposite was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopic (SEM) techniques. Using Scherrer's equation, the crystallite size of the synthesized zinc ferrite nanoparticles was found to be 17.67 nm. SEM micrographs of the ZnFe2O4-PANI nanocomposite revealed that in situ polymerization of ZnFe2O4 with polyaniline transforms the amorphous surface morphology of the polymer into a homogeneous nanoparticle structure. The adsorption of crystal violet (CV) dye onto the surface of the ZnFe2O4-PANI nanocomposite depends on pH, adsorbent dosage, temperature, concentration levels and duration. The Langmuir adsorption model fitted the data well, indicating adherence to a pseudo-second-order kinetic pattern. Thermodynamic values ΔG°, ΔH° and ΔS° indicated that the adsorption process occurred spontaneously. Advantages and disadvantages of the technique have also been highlighted. Mechanism of adsorption is discussed. From the obtained results, it is evident that the ZnFe2O4-PANI nanocomposite holds promise as a sorbent for the removal of dye from wastewater.
Collapse
Affiliation(s)
- Alka Singh
- Department of Chemistry & Biochemistry, Sharda University, Greater Noida, India
| | - Richa Tomar
- Department of Chemistry & Biochemistry, Sharda University, Greater Noida, India
| | - N B Singh
- Department of Chemistry & Biochemistry, Sharda University, Greater Noida, India.
- Research Development Centre, Sharda University, Greater Noida, India.
| |
Collapse
|
4
|
Droepenu EK, Amenyogbe E, Boatemaa MA, Opoku E. Study of the antimicrobial activity of zinc oxide nanostructures mediated by two morphological structures of leaf extracts of Eucalyptus radiata. Heliyon 2024; 10:e25590. [PMID: 38370246 PMCID: PMC10869787 DOI: 10.1016/j.heliyon.2024.e25590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
The growing microbial resistance against antibiotics and the development of resistant strains has shifted the interests of many scientists to focus on metallic nanoparticle applications. Although several metal oxide nanoparticles have been synthesized using green route approach to measure their antimicrobial activity, there has been little or no literature on the use of Eucalyptus robusta Smith aqueous leaf extract mediated zinc oxide nanoparticles (ZnONPs). The study therefore examined the effect of two morphological nanostructures of Eucalyptus robusta Sm mediated ZnONPs and their antimicrobial and antifungal potential on some selected pathogens using disc diffusion method. The samples were characterized using Scanning and Transmission Electron Microscopy, Energy-Dispersive Spectroscopy and Fourier Transform Infrared Spectroscopy. From the results, the two ZnO samples were agglomerated with zinc oxide nanocrystalline structure sample calcined at 400 °C (ZnO NS400) been spherical in shape while zinc oxide nanocrystalline structure sample calcined at 60 °C (ZnO NS60) was rod-like. The sample calcined at higher temperature recorded the smallest particle size of 49.16 ± 1.6 nm as compared to the low temperature calcined sample of 51.04 ± 17.5 nm. It is obvious from the results that, ZnO NS400 exhibited better antibacterial and antifungal activity than ZnO NS60. Out of the different bacterial and fungal strains, ZnO NS400 sample showed an enhanced activity against S. aureus (17.2 ± 0.1 mm) bacterial strain and C. albicans (15.7 ± 0.1 mm) fungal strain at 50 mg/ml. Since this sample showed higher antimicrobial and antifungal activity, it may be explored for its applications in some fields including medicine, agriculture, and aquaculture industry in combating some of the pathogens that has been a worry to the sector. Notwithstanding, the study also provides valuable insights for future studies aiming to explore the antimicrobial potential of other plant extracts mediated zinc oxide nanostructures.
Collapse
Affiliation(s)
- Eric Kwabena Droepenu
- Department of Water Resources and Aquaculture Management, School of Sustainable Development, University of Environment and Sustainable Development, Somanya, Eastern Region, Ghana
- Department of Biomedical Engineering, School of Biomedical and Allied Health Sciences, All Nations University, Koforidua, Eastern Region, Ghana
| | - Eric Amenyogbe
- Department of Water Resources and Aquaculture Management, School of Sustainable Development, University of Environment and Sustainable Development, Somanya, Eastern Region, Ghana
| | - Mercy Adusei Boatemaa
- Department of Biomedical Engineering, School of Biomedical and Allied Health Sciences, All Nations University, Koforidua, Eastern Region, Ghana
| | - Evelyn Opoku
- Department of Biomedical Engineering, School of Biomedical and Allied Health Sciences, All Nations University, Koforidua, Eastern Region, Ghana
| |
Collapse
|
5
|
Poojary PV, Sarkar S, Poojary AA, Mallya P, Selvaraj R, Koteshwara A, Aranjani JM, Lewis S. Novel anti-dandruff shampoo incorporated with ketoconazole-coated zinc oxide nanoparticles using green tea extract. J Cosmet Dermatol 2024; 23:563-575. [PMID: 37909853 DOI: 10.1111/jocd.16027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Dandruff caused by Malassezia furfur is a prevailing fungal infection. Although ketoconazole (KTZ) is widely intended for anti-dandruff treatment, poor solubility, and epidermal permeability limits its use and the marketed KTZ shampoo adversely effects scalp and hair. OBJECTIVE To prepare a novel shampoo loaded with KTZ-coated zinc oxide nanoparticles using green tea extract and evaluate its antifungal activity. METHODS The KTZ-coated zinc oxide nanoparticles was prepared by green synthesis and was characterized by UV, FTIR, XRD, and the drug entrapment efficiency was investigated. The antifungal activity of the nanoparticles with respect to standard drug, KTZ was tested against Malassezia furfur. Further, a novel antidandruff shampoo was developed by incorporating the prepared nanoparticles into the shampoo base. RESULTS The formation of KTZ-coated ZnO nanoparticles was confirmed by UV and FTIR analysis. XRD analysis confirmed the amorphous phase of KTZ in nanoparticles. The drug entrapment efficiency was found to be 91.84%. The prepared nanoparticles showed enhanced activity against Malassezia furfur compared to drug of choice, KTZ (1%). The evaluation of shampoo showed an ideal result. CONCLUSION KTZ-coated ZnO nanoparticles loaded novel shampoo in comparison to marketed anti-dandruff shampoo could be an effective alternate for the treatment of dandruff.
Collapse
Affiliation(s)
- Prerana V Poojary
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Swohinee Sarkar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Adithi Ananda Poojary
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Pooja Mallya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ananthamurthy Koteshwara
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
6
|
Kaplan Ince O, Aydogdu B, Ince M. Development of new generation cakes fortified with zinc oxide nanoparticles. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:290-299. [PMID: 38196716 PMCID: PMC10772050 DOI: 10.1007/s13197-023-05840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 01/11/2024]
Abstract
This study aimed to develop new generation cakes that were fortified with calcined ZnO nanoparticles (CZnO), uncalcined ZnO nanoparticles (UCZnO), beads (B(CZnO)) synthesized by encapsulating the CZnO with sodium alginate (SA), and the beads (B(UCZnO)) synthesized by encapsulating the UCZnO with sodium alginate (SA) and investigated the zinc (Zn) release in fortified cakes in simulated body fluids (SBF). The present study represents a novel method for increasing intestinal absorption and bioavailability of dietary zinc with zinc nanoparticles for use in the preparation of Zn fortified cakes as a dietary supplement to compensate for zinc deficiency in humans. The results revealed that a rapid increase in the release time and rate in the SGF solution was noted in the UCZnO added cakes. It was attributed to increased intestinal absorption and bioavailability as a result of the ultra-small size of ZnO. Also, ZnO release kinetics in SBF was also studied and data were adjusted into different kinetic models involving zero-order, first-order, Higuchi, and Korsmeyer-Peppas models. The present investigation recommends adding UCZnO to the cakes to control and increase the release from the cakes. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05840-x.
Collapse
Affiliation(s)
- Olcay Kaplan Ince
- Faculty of Fine Arts, Department of Gastronomy and Culinary Arts, Munzur University, 62000 Tunceli, Turkey
| | - Burcu Aydogdu
- Faculty of Engineering, Department of Mechanical Engineering, Munzur University, 62000 Tunceli, Turkey
| | - Muharrem Ince
- Tunceli Vocational School, Department of Food Process, Munzur University, 62000 Tunceli, Turkey
| |
Collapse
|
7
|
Phyto-mediated synthesis of Ag nanoparticles/attapulgite nanocomposites using olive leaf extract: Characterization, antibacterial activities and cytotoxicity. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
8
|
Bio-fabricated zinc oxide and cry protein nanocomposites: Synthesis, characterization, potentiality against Zika, malaria and West Nile virus vector's larvae and their impact on non-target organisms. Int J Biol Macromol 2022; 224:699-712. [DOI: 10.1016/j.ijbiomac.2022.10.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
9
|
Boopasiri S, Thaptong P, Sae‐Oui P, Siriwong C. Fabrication of zinc oxide‐coated microcrystalline cellulose and its application in truck tire tread compounds. J Appl Polym Sci 2022. [DOI: 10.1002/app.52701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Supparoek Boopasiri
- Materials Chemistry Research Center (MCRC), Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH‐CIC), Faculty of Science Khon Kaen University Khon Kaen Thailand
| | - Puchong Thaptong
- National Metal and Materials Technology Center (MTEC) National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
| | - Pongdhorn Sae‐Oui
- National Metal and Materials Technology Center (MTEC) National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
| | - Chomsri Siriwong
- Materials Chemistry Research Center (MCRC), Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH‐CIC), Faculty of Science Khon Kaen University Khon Kaen Thailand
| |
Collapse
|
10
|
Perveen S, Nadeem R, Rehman SU, Afzal N, Anjum S, Noreen S, Saeed R, Amami M, Al-Mijalli SH, Iqbal M. Green synthesis of iron (Fe) nanoparticles using Plumeria obtusa extract as a reducing and stabilizing agent: Antimicrobial, antioxidant and biocompatibility studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
11
|
Bagheri-Josheghani S, Bakhshi B. Formulation of selenium nanoparticles encapsulated by alginate-chitosan for controlled delivery of Vibrio Cholerae LPS: A novel delivery system candidate for nanovaccine. Int J Biol Macromol 2022; 208:494-508. [PMID: 35337913 DOI: 10.1016/j.ijbiomac.2022.03.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/22/2022]
Abstract
The lipopolysaccharide (LPS) of Vibrio cholerae plays a significant role in stimulating primary protection and immune responses. LPS delivery has been limited by the stimulation of inflammatory cytokines. This work aimed to report the synthesis and performance of this formulation in modulating immune responses and protecting LPS against acidic gastric medium. Alg-Cs-LPS-SeNPs composite was fabricated by an ionic cross-linking/in situ reduction method. Cytokines TNF-α, IL-6, IL-10, and TGF-β were assessed after cells were incubated with different compounds of the system. The main outcomes revealed that encapsulation of LPS-loaded SeNPs in the alginate-chitosan complex was associated with a high entrapment efficiency and could effectively protect LPS against acidic GIT medium. Kinetic profiling revealed that LPS was more slowly released from LPS-loaded Alg-Cs-LPS-SeNPs at pH 1.2, 7.4, and 6.8. These results indicated that Alg-Cs-LPS-SeNPs composite was able to significantly increase anti-inflammatory cytokines and reduce the release of pro-inflammatory cytokines. Thus, these findings show that this system for LPS delivery could be easily biosynthesized and encapsulated for use in the pharmaceutical industry. This study provides proof of the potential for future use of oral LPS vaccines, concomitantly inducing immunomodulatory effects.
Collapse
Affiliation(s)
- Sareh Bagheri-Josheghani
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|