1
|
Loor-Giler A, Muslin C, Santander-Parra S, Coello D, Robayo-Chico M, Ferreira AP, Nunez L. Simultaneous detection and partial molecular characterization of five RNA viruses associated with enteric disease in chickens: chicken astrovirus, avian nephritis virus, infectious bronchitis virus, avian rotavirus a and avian orthoreovirus, via multiplex RT-qPCR. Front Vet Sci 2025; 12:1536420. [PMID: 40343369 PMCID: PMC12058722 DOI: 10.3389/fvets.2025.1536420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/28/2025] [Indexed: 05/11/2025] Open
Abstract
In the poultry industry, intestinal diseases can lead to significant economic losses due to diarrhea, weight loss and mortality, often linked to viral infections. Chicken astrovirus (CAstV), avian nephritis virus (ANV), infection bronchitis virus (IBV), avian rotavirus A (AvRVA) and avian orthoreovirus (ARV) are key pathogens on this disease including feed malabsorption and runting-stunting syndrome (RSS). This study proposes a multiplex RT-qPCR assay for the simultaneous detection of these five viruses in chickens with enteritis in Ecuador. Primers and hydrolysis probes were designed for the five viruses, along with a synthetic gBlock as a positive control. The method was evaluated for sensitivity, repeatability, and specificity, and 200 jejunal samples were tested. Genome regions of each virus were sequenced, and a phylogenetic analysis confirmed their presence in the samples. The optimized RT-qPCR assay showed efficiency between 98.8-105.9%, with a detection limit of 1 copy/μL. It specifically amplified the five target viruses without cross-reactivity. Among 200 chickens tested, 97% were positive for at least one virus, with ANV (89%) and CAstV (53%) being the most prevalent. Coinfections were common, especially between CAstV and ANV, with three samples positive for all viruses. Sequencing and phylogenetic analysis confirmed the circulation of multiple strains in chickens with enteric disease in Ecuador. This study describes a multiplex RT-qPCR assay for detecting key enteric viruses in Ecuadorian poultry highlighting the high prevalence of astroviruses, emphasizing the impact of coinfections, its possible role in the disease and the importance of improving disease control strategies.
Collapse
Affiliation(s)
- Anthony Loor-Giler
- Laboratorios de Investigación, Dirección General de InvestigaciónUniversidad de las Américas, Quito, Ecuador
- Facultad de Ingeniería y Ciencias Aplicadas, Carrera de Ingeniería en Biotecnología, Universidad de Las Américas, Quito, Ecuador
| | - Claire Muslin
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas, Quito, Ecuador
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Americas, Quito, Ecuador
| | - Silvana Santander-Parra
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas, Quito, Ecuador
| | - Dayana Coello
- Facultad de Ingeniería y Ciencias Aplicadas, Carrera de Ingeniería en Biotecnología, Universidad de Las Américas, Quito, Ecuador
| | - Marcela Robayo-Chico
- Facultad de Ingeniería y Ciencias Aplicadas, Carrera de Ingeniería en Biotecnología, Universidad de Las Américas, Quito, Ecuador
| | - Antonio Piantino Ferreira
- Laboratory of Avian Diseases, School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Luis Nunez
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas, Quito, Ecuador
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Americas, Quito, Ecuador
| |
Collapse
|
2
|
Fujii Y, Masatani T, Nishiyama S, Takahashi T, Okajima M, Izumi F, Sakoda Y, Takada A, Ozawa M, Sugiyama M, Ito N. Molecular characterization of an avian rotavirus a strain detected from a large-billed crow (Corvus macrorhynchos) in Japan. Virology 2024; 596:110114. [PMID: 38781709 DOI: 10.1016/j.virol.2024.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Avian rotaviruses A (RVAs) are occasionally transmitted to animals other than the original hosts across species barriers. Information on RVAs carried by various bird species is important for identifying the origin of such interspecies transmission. In this study, to facilitate an understanding of the ecology of RVAs from wild birds, we characterized all of the genes of an RVA strain, JC-105, that was detected in a fecal sample of a large-billed crow (Corvus macrorhynchos) in Japan. All of the genes of this strain except for the VP4 and VP7 genes, which were classified as novel genotypes (P[56] and G40, respectively), were closely related to those of the avian-like RVA strain detected from a raccoon, indicating the possibility that crows had been involved in the transmission of avian RVAs to raccoons. Our findings highlight the need for further viral investigations in wild birds and mammals to understand the mechanisms of avian-to-mammal RVA transmission.
Collapse
Affiliation(s)
- Yuji Fujii
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Tatsunori Masatani
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Shoko Nishiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Tatsuki Takahashi
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Misuzu Okajima
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Fumiki Izumi
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan; Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Makoto Ozawa
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Makoto Sugiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.
| | - Naoto Ito
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.
| |
Collapse
|
3
|
Dias JBL, Pinheiro MS, Petrucci MP, Travassos CEPF, Mendes GS, Santos N. Rotavirus A and D circulating in commercial chicken flocks in southeastern Brazil. Vet Res Commun 2024; 48:743-748. [PMID: 37878188 DOI: 10.1007/s11259-023-10246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
Rotavirus (RV) outbreaks can cause significant economic losses in the livestock and poultry industries. Stool samples were collected from asymptomatic laying and broiler chickens from commercial poultry farms in the states of Rio de Janeiro and Espírito Santo in southeastern Brazil for detection of RV species A and D (RVA and RVD, respectively) by reverse transcription polymerase chain reaction. RV was detected in 10.5% (34/325) of samples: 22 (64.7%) were positive for RVA and nine (26.5%) for RVD, while three (8.8%) exhibited coinfections with both viruses. Sequence analysis of a VP6 fragment from seven RVA-positive samples identified the I11 genotype in all samples. Information regarding avian RV epidemiology is still scanty, despite the high prevalence of RV infections in several bird species and subsequent economic impact. Consequently, monitoring infections caused by avian RVs, especially in commercial birds, is essential not only to provide new and relevant information regarding the biology, epidemiology, and evolution of these viruses, but also to facilitate the implementation of preventive measures.
Collapse
Affiliation(s)
- Juliana B L Dias
- Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Cidade Universitária, CCS, Bl. I, Ilha do Fundão, Rio de Janeiro, RJ, 21.941-902, Brazil
| | - Mariana S Pinheiro
- Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Cidade Universitária, CCS, Bl. I, Ilha do Fundão, Rio de Janeiro, RJ, 21.941-902, Brazil
| | - Melissa P Petrucci
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Carlos E P F Travassos
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Gabriella S Mendes
- Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Cidade Universitária, CCS, Bl. I, Ilha do Fundão, Rio de Janeiro, RJ, 21.941-902, Brazil
| | - Norma Santos
- Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Cidade Universitária, CCS, Bl. I, Ilha do Fundão, Rio de Janeiro, RJ, 21.941-902, Brazil.
| |
Collapse
|
4
|
Fujii Y, Masatani T, Nishiyama S, Okajima M, Izumi F, Okazaki K, Sakoda Y, Takada A, Ozawa M, Sugiyama M, Ito N. Molecular characterisation of a novel avian rotavirus A strain detected from a gull species ( Larus sp.). J Gen Virol 2022; 103. [PMID: 36223171 DOI: 10.1099/jgv.0.001792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A recent study demonstrated the possibility that migratory birds are responsible for the global spread of avian rotavirus A (RVA). However, little is known about what types of RVAs are retained in migratory birds. In this study, to obtain information on RVA strains in migratory birds, we characterised an RVA strain, Ho374, that was detected in a faecal sample from a gull species (Larus sp.). Genetic analysis revealed that all 11 genes of this strain were classified as new genotypes (G28-P[39]-I21-R14-C14-M13-A24-N14-T16-E21-H16). This clearly indicates that the genetic diversity of avian RVAs is greater than previously recognised. Our findings highlight the need for investigations of RVA strains retained in migratory birds, including gulls.
Collapse
Affiliation(s)
- Yuji Fujii
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Tatsunori Masatani
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Shoko Nishiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Misuzu Okajima
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Fumiki Izumi
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Katsunori Okazaki
- Laboratory of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Makoto Ozawa
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Makoto Sugiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Naoto Ito
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| |
Collapse
|
5
|
Kanda M, Fukuda S, Hamada N, Nishiyama S, Masatani T, Fujii Y, Izumi F, Okajima M, Taniguchi K, Sugiyama M, Komoto S, Ito N. Establishment of a reverse genetics system for avian rotavirus A strain PO-13. J Gen Virol 2022; 103. [PMID: 35749287 DOI: 10.1099/jgv.0.001760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian rotavirus A (RVA) is one of major enteric pathogens that cause diarrhoea in young avian individuals. Importantly, some of the avian RVA strains of G18P[17] genotype are naturally transmitted to and cause clinical diseases in mammalian species, indicating their potential risks to animal health. Although molecular information on the pathogenesis by avian RVA strains will be useful for estimating their risks, the absence of a reverse genetics (RG) system for these strains has hindered the elucidation of their pathogenic mechanisms. In this study, we aimed to establish an RG system for the avian G18P[17] prototype strain PO-13, which was isolated from a pigeon in Japan in 1983 and was experimentally shown to be pathogenic in suckling mice. Transfection with plasmids expressing 11 genomic RNA segments of the strain resulted in rescue of the infectious virus with an artificially introduced genetic marker on its genome, indicating that an RG system for the PO-13 strain was successfully established. The rescued recombinant strain rPO-13 had biological properties almost identical to those of its wild-type strain (wtPO-13). Notably, both rPO-13 and wtPO-13 induced diarrhoea in suckling mice with similar efficiencies. It was thus demonstrated that the RG system will be useful for elucidating the pathogenic mechanisms of the PO-13 strain at the molecular level. This is the first report of the establishment of an RG system for an avian RVA strain.
Collapse
Affiliation(s)
- Marika Kanda
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Nanami Hamada
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Shoko Nishiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Tatsunori Masatani
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Japan
| | - Yuji Fujii
- Joint Graduate School of Veterinary Sciences, Gifu University, Japan
| | - Fumiki Izumi
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Misuzu Okajima
- Joint Graduate School of Veterinary Sciences, Gifu University, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Makoto Sugiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Japan
| |
Collapse
|
6
|
Fujii Y, Hirayama M, Nishiyama S, Takahashi T, Okajima M, Izumi F, Takehara K, Masatani T, Sugiyama M, Ito N. Characterization of an avian rotavirus A strain isolated from a velvet scoter ( Melanitta fusca): implication for the role of migratory birds in global spread of avian rotaviruses. J Gen Virol 2022; 103. [PMID: 35175915 DOI: 10.1099/jgv.0.001722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian G18P[17] rotaviruses with similar complete genome constellation, including strains that showed pathogenicity in mammals, have been detected worldwide. However, it remains unclear how these strains spread geographically. In this study, to investigate the role of migratory birds in the dispersion of avian rotaviruses, we analysed whole genetic characters of the rotavirus strain RK1 that was isolated from a migratory species of birds [velvet scoter (Melanitta fusca)] in Japan in 1989. Genetic analyses revealed that the genotype constellation of the RK1 strain, G18-P[17]-I4-R4-C4-M4-A21-N4-T4-E4-H4, was highly consistent with those of other G18P[17] strains detected in various parts of the world, supporting the possibility that the G18P[17] strains spread via migratory birds that move over a wide area. Furthermore, the RK1 strain induced diarrhoea in suckling mice after oral gastric inoculation, indicating that at least some of the rotaviruses that originated from migratory birds are infectious to and pathogenic in mammals. In conclusion, it was demonstrated that migratory birds may contribute to the global spread of avian rotaviruses that are pathogenic in mammalian species.
Collapse
Affiliation(s)
- Yuji Fujii
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Mihoko Hirayama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Shoko Nishiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Tatsuki Takahashi
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Misuzu Okajima
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Fumiki Izumi
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Kazuaki Takehara
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Tatsunori Masatani
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Makoto Sugiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Naoto Ito
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Gifu Center for Highly Advanced Integration of Nanosciences and Life Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| |
Collapse
|