1
|
El-Gbily S, Eldokmak MM, Diabb R, Abas OM, Ata EB, Kamal S, Hassan SMH. Severe lamb diarrhea outbreak: Clinical features, identification of the causative agent, and a prophylactic approach. Comp Immunol Microbiol Infect Dis 2025; 118:102318. [PMID: 39933285 DOI: 10.1016/j.cimid.2025.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Lamb diarrhea is an important problem and has a significance impact on the ovine sector productivity. This study aimed to identify the causative agent related to a severe diarrhea outbreak in neonatal lambs in Egypt. A total number of 30 lambs representing different farms were investigated. Faecal samples were obtained for parasitological, bacteriological, and virological examination. Tissue samples were obtained for histopathology. While blood was obtained for measuring haematological parameters and humeral immune response against the used Entero-3 vaccine®, respectively. The obtained results cleared presence of significant clinical symptoms of diarrhea, dehydration and inflammation of the large intestine which was filled with watery fluid content. Parasitological causative agents were not recorded. Enterococcus sp. was successfully isolated from 30 % of the samples (seven isolates E. faecium and two E. gallinarum) with detection of the Asa and Esp virulence genes. While E. coli was detected in 26.6 % of the cases, they were identified as O124:K72, O111:K58, O78:K80, O26:K60 with successful amplification of the Sta and F5 (K99) virulence genes. The obtained isolates were susceptible to the Amikacin . Using vaccination as a prophylactic approach resulted in decreasing mortality rates with presence of a protective seroconversion rate in the vaccinated animals. The haematological parameters showed presence of neutrophilia and lymphocytosis. Histopathologically, desquamations of the villi' enterocytes were the most common lesion. In conclusion, this study highlights the roles of bacterial and viral infection in causing severe lamb enteritis and high mortalities which necessitate establishing of ewe's vaccination programs.
Collapse
Affiliation(s)
- Shaimaa El-Gbily
- Virology Department. Alexandria Regional Lab., Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Egypt
| | - Marwa M Eldokmak
- Bacteriology Department. Alexandria Regional Lab., Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Egypt
| | - Rasha Diabb
- Immunity Department. Alexandria Regional Lab., Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Egypt
| | - Osama M Abas
- Animal Medicine Department, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Emad Beshir Ata
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Egypt.
| | - Safwat Kamal
- Veterinary Serum and Vaccine Research Institute (VSVRI), Egypt
| | - Shahenaz M H Hassan
- Clinical Pathology Department. Alexandria Regional Lab., Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Egypt
| |
Collapse
|
2
|
Zhu J, Liu Z, Wang S, Gao T, Liu W, Yang K, Yuan F, Wu Q, Li C, Guo R, Tian Y, Zhou D. Prevalence, Molecular Characterization, and Antimicrobial Resistance Profile of Enterotoxigenic Escherichia coli Isolates from Pig Farms in China. Foods 2025; 14:1188. [PMID: 40238372 PMCID: PMC11989071 DOI: 10.3390/foods14071188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) poses a critical threat to livestock health and food safety, particularly in regard to misuse of antimicrobial agents, which have accelerated the evolution of multidrug-resistant (MDR) ETEC strains, reshaping their virulence landscapes and epidemiological trajectories. In this study, 24 ETEC isolates from porcine diarrheal samples undergo genomic and phenotypic profiling, including virulence genotyping, bacterial adhesion, and antimicrobial resistance (AMR) analysis. Results show that multi-locus sequence typing (MLST) outputs (ST88, ST100) and serotypes (O9:H19, O116:H11, O149:H10) exhibited enhanced virulence, with F18ab-fimbriated strains carrying Shiga toxin genes (stx2A) demonstrating higher cytotoxicity than non-stx strains. There exists a significant negative correlation between bacterial growth rates and intestinal epithelial adhesion, with the expression of ETEC adhesion and virulence genes being growth-time-dependent. These relationships suggest evolutionary trade-offs favoring either rapid proliferation or virulence. Among these isolates, 95.8% were MDR, with alarming resistance to quinolones and aminoglycosides. Geospatial analysis identified region-specific AMR gene clusters, notably oqxB-aac(3) co-occurrence networks in 79% of ETEC isolates. These results highlight the urgent need for precision interventions, including vaccines targeting epidemic serotypes and AMR monitoring systems to disrupt resistance propagation across swine production networks. By underscoring the importance of current virulence and AMR profiles, this study provides actionable strategies to mitigate ETEC-associated threats to both animal welfare and meat safety ecosystems.
Collapse
Affiliation(s)
- Jiajia Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (J.Z.); (Z.L.); (S.W.); (T.G.); (W.L.); (K.Y.); (F.Y.); (Q.W.); (C.L.); (R.G.); (Y.T.)
| | - Zewen Liu
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (J.Z.); (Z.L.); (S.W.); (T.G.); (W.L.); (K.Y.); (F.Y.); (Q.W.); (C.L.); (R.G.); (Y.T.)
| | - Siyi Wang
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (J.Z.); (Z.L.); (S.W.); (T.G.); (W.L.); (K.Y.); (F.Y.); (Q.W.); (C.L.); (R.G.); (Y.T.)
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Ting Gao
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (J.Z.); (Z.L.); (S.W.); (T.G.); (W.L.); (K.Y.); (F.Y.); (Q.W.); (C.L.); (R.G.); (Y.T.)
| | - Wei Liu
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (J.Z.); (Z.L.); (S.W.); (T.G.); (W.L.); (K.Y.); (F.Y.); (Q.W.); (C.L.); (R.G.); (Y.T.)
| | - Keli Yang
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (J.Z.); (Z.L.); (S.W.); (T.G.); (W.L.); (K.Y.); (F.Y.); (Q.W.); (C.L.); (R.G.); (Y.T.)
| | - Fangyan Yuan
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (J.Z.); (Z.L.); (S.W.); (T.G.); (W.L.); (K.Y.); (F.Y.); (Q.W.); (C.L.); (R.G.); (Y.T.)
| | - Qiong Wu
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (J.Z.); (Z.L.); (S.W.); (T.G.); (W.L.); (K.Y.); (F.Y.); (Q.W.); (C.L.); (R.G.); (Y.T.)
| | - Chang Li
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (J.Z.); (Z.L.); (S.W.); (T.G.); (W.L.); (K.Y.); (F.Y.); (Q.W.); (C.L.); (R.G.); (Y.T.)
| | - Rui Guo
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (J.Z.); (Z.L.); (S.W.); (T.G.); (W.L.); (K.Y.); (F.Y.); (Q.W.); (C.L.); (R.G.); (Y.T.)
| | - Yongxiang Tian
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (J.Z.); (Z.L.); (S.W.); (T.G.); (W.L.); (K.Y.); (F.Y.); (Q.W.); (C.L.); (R.G.); (Y.T.)
| | - Danna Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (J.Z.); (Z.L.); (S.W.); (T.G.); (W.L.); (K.Y.); (F.Y.); (Q.W.); (C.L.); (R.G.); (Y.T.)
| |
Collapse
|
3
|
Rodríguez-Martínez R, Ochoa SA, Valle-Rios R, Jaimes-Ortega GA, Hernández-Castro R, Mancilla-Rojano J, Castro-Escarpulli G, López-Saucedo C, Estrada-García T, Cruz-Córdova A, Xicohtencatl-Cortes J. Genome Sequencing and Assembly of Enterotoxigenic Escherichia coli E9034A: Role of LngA, CstH, and FliC in Intestinal Cell Colonization and the Release of the Proinflammatory Cytokine IL-8. Microorganisms 2025; 13:374. [PMID: 40005742 PMCID: PMC11858209 DOI: 10.3390/microorganisms13020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) produces two types of enterotoxins, LTs and STs, as well as several colonization factors (CFs), including CS21, CS3 fimbriae, and flagellar structures. This study investigated how these structures contribute to ETEC colonization and the immune response in HT-29 and HuTu-80 intestinal cells. ETEC strains with single, double, and triple mutations in the lngA, cstH, and fliC genes were generated and confirmed using PCR and Western blotting. The colonization of HT-29 and HuTu-80 intestinal cells by the ETEC E9034A strain, which was fully sequenced using a hybrid approach involving both Illumina and Oxford Nanopore technologies, was used to generate the mutant and recombinant proteins. The colonization and adherence of E9034A and its mutants were assessed through colony-forming unit (CFU) counts. Cytokine levels were assessed using flow cytometry and analyzed via FlowJo 7.6.1. Quantitative analysis revealed that the absence of the lngA, cstH, and fliC genes significantly (p < 0.01) reduced ETEC adherence to HT-29 and HutU-80 cells. In addition, only ETEC strains expressing the FliC protein induced IL-8 secretion. These findings suggest that LngA, CstH, and FliC in ETEC E9034A enhance adherence to intestinal cells and trigger the release of IL-8.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Martínez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (R.R.-M.); (G.C.-E.)
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (S.A.O.); (J.M.-R.)
| | - Sara A. Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (S.A.O.); (J.M.-R.)
| | - Ricardo Valle-Rios
- Unidad Universitaria de Investigación en Cáncer e Inmunología, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.V.-R.); (G.A.J.-O.)
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Gustavo A. Jaimes-Ortega
- Unidad Universitaria de Investigación en Cáncer e Inmunología, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.V.-R.); (G.A.J.-O.)
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
- Posgrado en Biología Experimental, Departamento de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 09310, Mexico
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General Dr. Manuel Gea González, Mexico City 14080, Mexico;
| | - Jetsi Mancilla-Rojano
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (S.A.O.); (J.M.-R.)
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Graciela Castro-Escarpulli
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (R.R.-M.); (G.C.-E.)
| | - Catalina López-Saucedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados CINVESTAV-IPN, Mexico City 07360, Mexico; (C.L.-S.); (T.E.-G.)
| | - Teresa Estrada-García
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados CINVESTAV-IPN, Mexico City 07360, Mexico; (C.L.-S.); (T.E.-G.)
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Inmunoquímica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (S.A.O.); (J.M.-R.)
| |
Collapse
|
4
|
Ma X, Li M, Zhang Y, Xu T, Zhou X, Qian M, Yang Z, Han X. Akkermansia muciniphila identified as key strain to alleviate gut barrier injury through Wnt signaling pathway. eLife 2025; 12:RP92906. [PMID: 39912727 PMCID: PMC11801796 DOI: 10.7554/elife.92906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
As the largest mucosal surface, the gut has built a physical, chemical, microbial, and immune barrier to protect the body against pathogen invasion. The disturbance of gut microbiota aggravates pathogenic bacteria invasion and gut barrier injury. Fecal microbiota transplantation (FMT) is a promising treatment for microbiome-related disorders, where beneficial strain engraftment is a significant factor influencing FMT outcomes. The aim of this research was to explore the effect of FMT on antibiotic-induced microbiome-disordered (AIMD) models infected with enterotoxigenic Escherichia coli (ETEC). We used piglet, mouse, and intestinal organoid models to explore the protective effects and mechanisms of FMT on ETEC infection. The results showed that FMT regulated gut microbiota and enhanced the protection of AIMD piglets against ETEC K88 challenge, as demonstrated by reduced intestinal pathogen colonization and alleviated gut barrier injury. Akkermansia muciniphila (A. muciniphila) and Bacteroides fragilis (B. fragilis) were identified as two strains that may play key roles in FMT. We further investigated the alleviatory effects of these two strains on ETEC infection in the AIMD mice model, which revealed that A. muciniphila and B. fragilis relieved ETEC-induced intestinal inflammation by maintaining the proportion of Treg/Th17 cells and epithelial damage by moderately activating the Wnt/β-catenin signaling pathway, while the effect of A. muciniphila was better than B. fragilis. We, therefore, identified whether A. muciniphila protected against ETEC infection using basal-out and apical-out intestinal organoid models. A. muciniphila did protect the intestinal stem cells and stimulate the proliferation and differentiation of intestinal epithelium, and the protective effects of A. muciniphila were reversed by Wnt inhibitor. FMT alleviated ETEC-induced gut barrier injury and intestinal inflammation in the AIMD model. A. muciniphila was identified as a key strain in FMT to promote the proliferation and differentiation of intestinal stem cells by mediating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xin Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Meng Li
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Yuanyuan Zhang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
| | - Tingting Xu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
| | - Xinchen Zhou
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Mengqi Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
| | - Zhiren Yang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Xinyan Han
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| |
Collapse
|
5
|
Hu D, Li X, Duan X, Yang L, Luo B, Wang L, Hu Z, Zhou Y, Qian P. Recombinant Saccharomyces cerevisiae EBY100/pYD1-FaeG: a candidate for an oral subunit vaccine against F4+ ETEC infection. Appl Environ Microbiol 2025; 91:e0181724. [PMID: 39601541 PMCID: PMC11784076 DOI: 10.1128/aem.01817-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Diarrheal diseases attributable to multidrug-resistant F4+ enterotoxigenic Escherichia coli (ETEC) are escalating in severity, posing significant risks to the health and safety of both humans and animals. This study used Saccharomyces cerevisiae EBY100 to display the FaeG subunit of F4 colonizing factor as an oral vaccine against F4+ ETEC infection. Mice were orally immunized twice with 108 CFU of EBY100/pYD1-FaeG, followed by a challenge with F4+ ETEC EC6 on day 7 post-immunization. The results showed that the recombinant strain EBY100/pYD1-FaeG orally enhanced the growth of the small intestine villi, significantly boosted the expression of tight junction proteins (ZO-1, Occludin, MUC2, and Claudin) (P < 0.05), and modulated the gut microbiota composition. Additionally, immunization with EBY100/pYD1-FaeG also upregulated the levels of IL-2, IL-4, and IFN-γ in the intestines of mice (P < 0.01), while serum IgG and fecal sIgA titer significantly increased (P < 0.05). These immune responses enhanced the capacity to fight against ETEC, leading to an increased survival rate of mice and relieved damage to tissues and organs of mice infection. In summary, the study suggested that the recombinant Saccharomyces cerevisiae EBY100/pYD1-FaeG could effectively stimulate the immune response and generate specific antibodies against F4+ ETEC, showing its potential to serve as a subunit oral vaccine candidate for preventing F4+ ETEC infection.IMPORTANCEThe multidrug-resistant F4+ enterotoxigenic Escherichia coli (ETEC) strains are the primary clinical pathogens responsible for post-weaning diarrhea in piglets, resulting in substantial economic losses in the pig farming industry. In the study, we developed an oral vaccine candidate, Saccharomyces cerevisiae EBY100/pYD1-FaeG, to prevent diarrhea caused by multidrug-resistant F4+ ETEC. Oral administration of EBY100/pYD1-FaeG significantly enhanced immune responses, improved intestinal health, and provided protection against F4+ ETEC infection in mice. This approach offers a potential application prospect for preventing F4+ ETEC infections that lead to post-weaning diarrhea in clinical settings and provides a promising solution for addressing the growing threat of antibiotic resistance in bacterial pathogens.
Collapse
Affiliation(s)
- Dayue Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaochao Duan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liuyue Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Baizhi Luo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Linkang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zihui Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Ma X, Zhang K, Yang N, Hao Y, Mao R, Teng D, Wang J. Treatment of lactoferrin and antimicrobial peptide N6 on bacterial enteritis caused by Escherichia coli in mice. Biochem Cell Biol 2025; 103:1-12. [PMID: 39393088 DOI: 10.1139/bcb-2024-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in humans and animals. The study aimed to evaluate the efficacy of bovine lactoferrin (bLf) as an adjuvant combined with AMP (N6) in the treatment of E. coli-induced bacterial enteritis. Firstly, 40 female ICR mice were randomly divided into four groups. The ETEC-A, ETEC-B, and ETEC-C groups were gavaged with 0.2 mL of ETEC K88 at 5 × 109, 5 × 108, and 5 × 107 CFU/mL for three consecutive days, respectively, the CK control group was given PBS. Based on the clinical symptoms and intestinal changes, the optimal model dose of ETEC K88 was determined to be 5 × 108 CFU/mL. Sixty female ICR mice were randomly divided into six groups: CK group (uninfected), NC group (infected and untreated), N6 treatment group (20 mg/kg), bLf treatment group (100 mg/kg), bLf + N6-A treatment group (10 mg/kg N6+100 mg/kg bLf), and bLf + N6-B group (20 mg/kg N6+100 mg/kg bLf). The clinical symptoms, intestinal morphology, inflammatory response and serum metabolites were monitored. The results showed that compared with the NC group, the bLf-N6-A and bLf-N6-B treatment groups had significant reductions in TNF-α and IL-6, significant increases in IL-10, and significant reductions in endotoxin and DAO in plasma (p < 0.05). Meanwhile, the bLf-N6-A and bLf-N6-B treatment groups significantly increased the expression of ZO-1, claudin-1 and occludin, increased the height of small intestinal mucosal villi and VH/CD after ETEC K88-induced intestinal injury (p < 0.05). The combination of bLf and N6 relieved enteritis by balancing intestinal mucosal immunity, improving intestinal morphology and barrier function. BLf combined with N6 can be used as an effective therapeutic strategy for the treatment of bacterial enteritis.
Collapse
Affiliation(s)
- Xuanxuan Ma
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Kun Zhang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ruoyu Mao
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jianhua Wang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
7
|
Xiong Y, Xia L, Zhang Y, Zhao G, Zhang S, Ma J, Cheng Y, Wang H, Sun J, Yan Y, Wang Z. Pharmacodynamic Evaluation of Phage Therapy in Ameliorating ETEC-Induced Diarrhea in Mice Models. Microorganisms 2024; 12:2532. [PMID: 39770735 PMCID: PMC11678793 DOI: 10.3390/microorganisms12122532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major pathogen causing diarrhea in humans and animals, with increasing antimicrobial resistance posing a growing challenge in recent years. Lytic bacteriophages (phages) offer a targeted and environmentally sustainable approach to combating bacterial infections, particularly in eliminating drug-resistant strains. In this study, ETEC strains were utilized as indicators, and a stable, high-efficiency phage, designated vB_EcoM_JE01 (JE01), was isolated from pig farm manure. The genome of JE01 was a dsDNA molecule, measuring 168.9 kb, and a transmission electron microscope revealed its characteristic T4-like Myoviridae morphology. JE01 effectively lysed multi-drug-resistant ETEC isolates. Stability assays demonstrated that JE01 retained its activity across a temperature range of 20 °C to 50 °C and a pH range of 3-11, showing resilience to ultraviolet radiation and chloroform exposure. Furthermore, JE01 effectively suppressed ETEC adhesion to porcine intestinal epithelial cells (IPEC-J2), mitigating the inflammatory response triggered by ETEC. To investigate the in vivo antibacterial efficacy of phage JE01 preparations, a diarrhea model was established using germ-free mice infected with a drug-resistant ETEC strain. The findings indicated that 12 h post-ETEC inoculation, intragastric administration of phage JE01 significantly reduced mortality, alleviated gastrointestinal lesions, decreased ETEC colonization in the jejunum, and suppressed the expression of the cytokines IL-6 and IL-8. These results demonstrate a therapeutic benefit of JE01 in treating ETEC-induced diarrhea in mice. Additionally, a fluorescent phage incorporating red fluorescent protein (RFP) was engineered, and the pharmacokinetics of phage therapy were preliminarily assessed through intestinal fluorescence imaging in mice. The results showed that the phage localized to ETEC in the jejunum rapidly, within 45 min. Moreover, the pharmacokinetics of the phage were markedly slowed in the presence of its bacterial target in the gut, suggesting sustained bacteriolytic activity in the ETEC-infected intestine. In conclusion, this study establishes a foundation for the development of phage-based therapies against ETEC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| |
Collapse
|
8
|
Tew HX, Subramani P, Chan YY, Nik Mohd Noor NZ, Guruswamy P. Challenges and Considerations in Selecting Animal Models for Evaluating a Live, Cold-Chain-Free, Dual-Use Vaccine (MyChol) for Diarrhoeal Diseases: A Comprehensive Review. Malays J Med Sci 2024; 31:41-55. [PMID: 39416734 PMCID: PMC11477463 DOI: 10.21315/mjms2024.31.5.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/07/2024] [Indexed: 10/19/2024] Open
Abstract
Diarrhoeal diseases are the second leading cause of death for children under 5 years old in 69 low- and middle-income countries, with an annual economic burden of US$ 4 billion and over 525,000 lives lost. Cholera and enterotoxigenic Escherichia coli (ETEC) traveller's diarrhoea are major diarrhoeal diseases caused by Vibrio cholerae (O1 and O139 serogroups) and ETEC, which have similar pathogeneses and can co-infect. There is no exclusive vaccine for ETEC, but cholera vaccines containing the cholera toxin B (CT-B) component offer short-term cross-protection. However, licensed oral cholera vaccines are expensive due to cold-chain supplies and the need for multiple doses. A cost-effective, dual-protection, live, cold-chain-free vaccine is, therefore, required for vaccination campaigns in low-resource settings, and MyChol - a prototype cold-chain-free live attenuated cholera vaccine, targeting V. cholerae O139 and ETEC H10407 - was developed in this context. The vaccine was evaluated in three animal models (Sprague Dawley [SD] rats, BALB/c mice and New Zealand white rabbits) for safety, colonisation capacity, reactogenicity and immunogenicity against challenge strains. In suckling mice, MyChol displayed high colonisation potential compared to unformulated VCUSM14P (the vaccine candidate) and wild-type O139. In the acute toxicity assessment, the SD rats with the highest MyChol dose (1 × 107 colony-forming unit [CFU]/kg) demonstrated no adverse effects or mortality. Mice vaccinated with MyChol exhibited elevated antibody levels, including anti-CT, anti-heat-labile enterotoxin (LT), anti-CT-B and anti-LT-B. Anti-CT antibodies neutralised LT toxin in ETEC H10407 in challenge studies and cross-protected against ETEC H10407 in both mice and rabbits, preventing weight loss and diarrhoea. Ileal loop experiments in rabbits and BALB/c mice showed no reactogenicity. This review, based on our previous research, therefore provides valuable insights into improving the selection of animal models to advance preclinical evaluations of diarrhoeal vaccines.
Collapse
Affiliation(s)
- Hui Xian Tew
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | | | - Yean Yean Chan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nik Zuraina Nik Mohd Noor
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Prabhakaran Guruswamy
- Centre of Excellence for Vaccine Development (CoEVD), AIMST University, Kedah, Malaysia
| |
Collapse
|
9
|
El Riz A, Tchoumi Neree A, Mousavifar L, Roy R, Chorfi Y, Mateescu MA. Metallo-Glycodendrimeric Materials against Enterotoxigenic Escherichia coli. Microorganisms 2024; 12:966. [PMID: 38792795 PMCID: PMC11124148 DOI: 10.3390/microorganisms12050966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Conjugation of carbohydrates to nanomaterials has been extensively studied and recognized as an alternative in the biomedical field. Dendrimers synthesized with mannose at the end group and with entrapped zero-valent copper/silver could be a potential candidate against bacterial proliferation. This study is aimed at investigating the bactericidal activity of metal-glycodendrimers. The Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction was used to synthesize a new mannosylated dendrimer containing 12 mannopyranoside residues in the periphery. The enterotoxigenic Escherichia coli fimbriae 4 (ETEC:F4) viability, measured at 600 nm, showed the half-inhibitory concentration (IC50) of metal-free glycodendrimers (D), copper-loaded glycodendrimers (D:Cu) and silver-loaded glycodendrimers (D:Ag) closed to 4.5 × 101, 3.5 × 101 and to 1.0 × 10-2 µg/mL, respectively, and minimum inhibitory concentration (MIC) of D, D:Cu and D:Ag of 2.0, 1.5 and 1.0 × 10-4 µg/mL, respectively. The release of bacteria contents onto broth and the inhibition of ETEC:F4 biofilm formation increased with the number of metallo-glycodendrimer materials, with a special interest in silver-containing nanomaterial, which had the highest activity, suggesting that glycodendrimer-based materials interfered with bacteria-bacteria or bacteria-polystyrene interactions, with bacteria metabolism and can disrupt bacteria cell walls. Our findings identify metal-mannose-dendrimers as potent bactericidal agents and emphasize the effect of entrapped zero-valent metal against ETEC:F4.
Collapse
Affiliation(s)
- Aly El Riz
- Department of Chemistry, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada; (A.E.R.); (L.M.); (R.R.)
| | - Armelle Tchoumi Neree
- Department of Veterinary Biomedicine Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada; (A.T.N.); (Y.C.)
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Leila Mousavifar
- Department of Chemistry, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada; (A.E.R.); (L.M.); (R.R.)
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada; (A.E.R.); (L.M.); (R.R.)
| | - Younes Chorfi
- Department of Veterinary Biomedicine Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada; (A.T.N.); (Y.C.)
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Mircea Alexandru Mateescu
- Department of Chemistry, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada; (A.E.R.); (L.M.); (R.R.)
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
10
|
von Mentzer A, Svennerholm AM. Colonization factors of human and animal-specific enterotoxigenic Escherichia coli (ETEC). Trends Microbiol 2024; 32:448-464. [PMID: 38052687 DOI: 10.1016/j.tim.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Colonization factors (CFs) are major virulence factors of enterotoxigenic Escherichia coli (ETEC). This pathogen is among the most common causes of bacterial diarrhea in children in low- and middle-income countries, travelers, and livestock. CFs are major candidate antigens in vaccines under development as preventive measures against ETEC infections in humans and livestock. Recent molecular studies have indicated that newly identified CFs on human ETEC are closely related to animal ETEC CFs. Increased knowledge of pathogenic mechanisms, immunogenicity, regulation, and expression of ETEC CFs, as well as the possible spread of animal ETEC to humans, may facilitate the future development of ETEC vaccines for humans and animals. Here, we present an updated review of CFs in ETEC.
Collapse
Affiliation(s)
- Astrid von Mentzer
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Sweden; Wellcome Sanger Institute, Hinxton, UK.
| | - Ann-Mari Svennerholm
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
11
|
Arnold M, Echtermann T, Nathues H. Infectious Enteric Diseasses in Pigs. PRODUCTION DISEASES IN FARM ANIMALS 2024:223-269. [DOI: 10.1007/978-3-031-51788-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Zentek J, Vahjen W, Grześkowiak Ł, Martínez-Vallespín B, Holthausen JS, Saliu EM. The Gut Microbiome in Pigs and Its Impact on Animal Health. PRODUCTION DISEASES IN FARM ANIMALS 2024:157-177. [DOI: 10.1007/978-3-031-51788-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Xu C, Fu F, She Y, Yang D, Peng K, Lin Y, Xu C. Development of a new candidate vaccine against piglet diarrhea caused by Escherichia coli. Open Life Sci 2023; 18:20220804. [PMID: 38196514 PMCID: PMC10775170 DOI: 10.1515/biol-2022-0804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important type of pathogenic bacteria that causes diarrhea in humans and young livestock. The pathogen has a high morbidity and mortality rate, resulting in significant economic losses in the pig industry. To effectively prevent piglet diarrhea, we developed a new tetravalent genetically engineered vaccine that specifically targets ETEC. To eliminate the natural toxin activity of ST1 enterotoxin and enhance the preventive effect of the vaccine, the mutated ST 1, K88ac, K99, and LT B genes were amplified by PCR and site-specific mutation techniques. The recombinant strain BL21(DE3)(pXKK3SL) was constructed and achieved high expression. Animal experiments showed that the inactivated vaccine had eliminated the natural toxin activity of ST1. The immune protection test demonstrated that the inclusion body and inactivated vaccine exhibited a positive immune effect. The protection rates of the inclusion body group and inactivated vaccine group were 96 and 98%, respectively, when challenged with 1 minimum lethal dose, indicating that the constructed K88ac-K99-3ST1-LTB vaccine achieved a strong immune effect. Additionally, the minimum immune doses for mice and pregnant sows were determined to be 0.2 and 2 mL, respectively. This study suggests that the novel K88ac-K99-3ST1-LTB vaccine has a wide immune spectrum and can prevent diarrhea caused by ETEC through enterotoxin and fimbrial pathways. The aforementioned research demonstrates that the K88ac-K99-3ST1-LTB vaccine offers a new genetically engineered vaccine that shows potential for preventing diarrhea in newborn piglets.
Collapse
Affiliation(s)
- Chongli Xu
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing401331, PR China
| | - Fengyang Fu
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing401331, PR China
| | - Yuhan She
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing401331, PR China
| | - Danni Yang
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing401331, PR China
| | - Kun Peng
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing401331, PR China
| | - Yimin Lin
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing400030, PR China
| | - ChongBo Xu
- School of Biology and Agriculture, Shaoguan University, Shaoguan512005, PR China
| |
Collapse
|
14
|
Qin D, Li Y, Chen X, Li L, Wang G, Hou X, Yu L. Secretory IgA-ETEC F5 Immune Complexes Promote Dendritic Cell Differentiation and Prime T Cell Proliferation in the Mouse Intestine. Life (Basel) 2023; 13:1936. [PMID: 37763339 PMCID: PMC10532461 DOI: 10.3390/life13091936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Although secretory IgA (SIgA) is the dominant antibody in mucosal secretions, the capacity of the SIgA-antigen complex to prime the activation of dendritic cells (DCs) and T cells in the intestinal epithelium is not well understood. To this end, the SIgA-ETEC F5 immune complexes (ICs) were prepared via Ni-NTA pull-down. After injecting the ICs into the intestines of SPF BALB/c mice, most ICs were observed in the Peyer's patch (PP). We established a microfold (M) cell culture model in vitro for transport experiments and the inhibition test. To evaluate the priming effect of mucosal immunity, we employed the DC2.4 stimulation test, T lymphocyte proliferation assays, and cytokine detection assays. We found that the ICs were taken up via clathrin-dependent endocytosis through M cells. The high expression of costimulatory molecules CD86, CD80, and CD40 indicated that the ICs promoted the differentiation and maturation of DC2.4 cells. The stimulation index (SI) in the complex group was significantly higher than in the control group, suggesting that the ICs stimulated the proliferation of primed T cells. The secretion of some cytokines, namely TNF-α, IFN-γ, IL-2, IL-4, IL-5, and IL-6, in spleen cells from the immunized mice was upregulated. These results indicate that ETEC F5 delivery mediated by SIgA in PPs initiates mucosal immune responses.
Collapse
Affiliation(s)
- Da Qin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (D.Q.); (Y.L.); (X.C.); (L.L.); (G.W.)
| | - Ying Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (D.Q.); (Y.L.); (X.C.); (L.L.); (G.W.)
| | - Xiaoyan Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (D.Q.); (Y.L.); (X.C.); (L.L.); (G.W.)
| | - Liyang Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (D.Q.); (Y.L.); (X.C.); (L.L.); (G.W.)
| | - Guihua Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (D.Q.); (Y.L.); (X.C.); (L.L.); (G.W.)
| | - Xilin Hou
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China;
| | - Liyun Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (D.Q.); (Y.L.); (X.C.); (L.L.); (G.W.)
| |
Collapse
|
15
|
Tsekouras N, Meletis E, Kostoulas P, Labronikou G, Athanasakopoulou Z, Christodoulopoulos G, Billinis C, Papatsiros VG. Detection of Enterotoxigenic Escherichia coli and Clostridia in the Aetiology of Neonatal Piglet Diarrhoea: Important Factors for Their Prevention. Life (Basel) 2023; 13:life13051092. [PMID: 37240738 DOI: 10.3390/life13051092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to research the involvement of enterotoxigenic E. coli (ETEC) and C. difficile or C. perfringens type C in the aetiology of neonatal piglet diarrhoea in Greece and to identify preventive factors for them. A total of 78 pooled faecal samples were collected randomly from 234 suckling piglets (1-4 days of age) with diarrhoea from 26 pig farms (3 piglets × 3 litters × 26 farms = 234 piglets = 78 faecal pool samples). The collected samples were initially screened for the presence of E. coli and C. difficile or C. perfringens via cultivation on MacConkey and anaerobic blood agar, respectively. Subsequently, the samples were pooled on ELUTE cards. From samples tested, 69.23% of those in the farms were ETEC F4-positive, 30.77% were ETEC F5-positive, 61.54% ETEC were F6-positive, 42.31% were ETEC F4- and E. coli enterotoxin LT-positive, 19.23% were ETEC F5- and LT-positive, 42.31% were ETEC F6- and LT-positive, while LT was found in 57.69% of those in the farms. C. difficile was involved in many cases and identified as an emerging neonatal diarrhoea etiological agent. Specifically, Toxin A of C. difficile was found in 84.62% and Toxin B in 88.46% of those in the farms. Antibiotic administration to sows in combination with probiotics or acidifiers was revealed to reduce the detection of antigens of ETEC and the enterotoxin LT of E. coli.
Collapse
Affiliation(s)
- Nikolaos Tsekouras
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece
| | - Eleftherios Meletis
- Faculty of Public and Integrated Health, University of Thessaly, 43100 Karditsa, Greece
| | - Polychronis Kostoulas
- Faculty of Public and Integrated Health, University of Thessaly, 43100 Karditsa, Greece
| | | | - Zoi Athanasakopoulou
- Department of Microbiology and Parasitology, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece
| | - Georgios Christodoulopoulos
- Department of Animal Science, Agricultural University of Athens, 75 Iera Odos Street, Botanikos, 11855 Athens, Greece
| | - Charalambos Billinis
- Faculty of Public and Integrated Health, University of Thessaly, 43100 Karditsa, Greece
- Department of Microbiology and Parasitology, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece
| | - Vasileios G Papatsiros
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece
| |
Collapse
|
16
|
Rossi L, Dell’Anno M, Turin L, Reggi S, Lombardi A, Alborali GL, Filipe J, Riva F, Riccaboni P, Scanziani E, Dall’Ara P, Demartini E, Baldi A. Tobacco Seed-Based Oral Vaccination against Verocytotoxic O138 Escherichia coli as Alternative Approach to Antibiotics in Weaned Piglets. Antibiotics (Basel) 2023; 12:antibiotics12040715. [PMID: 37107076 PMCID: PMC10134994 DOI: 10.3390/antibiotics12040715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Post-weaning diarrhoea and enterotoxaemia caused by Escherichia coli are serious threats in the pig (Sus scrofa domesticus) livestock industry and are responsible for economic losses related to mortality, morbidity and stunted growth. The aim of this study was to evaluate the effect of an engineered tobacco seeds-based edible vaccine in O138 Escherichia coli-challenged piglets throughout a multidisciplinary approach. Thirty-six weaned piglets were enrolled and randomly divided into two experimental groups, a control (C; n = 18) group and a tobacco edible vaccination group (T, n = 18), for 29 days of trial. At days 0, 1, 2, 5 and 14, piglets of the T group were fed with 10 g of the engineered tobacco seeds line expressing F18 and VT2eB antigens, while the C group received wild-type tobacco seeds. After 20 days, 6 piglets/group were orally challenged with the Escherichia coli O138 strain (creating four subgroups: UC = unchallenged control, CC = challenged control, UT = unchallenged tobacco, CT = challenged tobacco) and fed with a high protein diet for 3 consecutive days. Zootechnical, clinical, microbiological, histological and immunological parameters were assayed and registered during the 9 days of post-challenge follow up. At 29 days post-challenge, the CT group displayed a lower average of the sum of clinical scores compared to the CC group (p < 0.05), while the CC group showed a higher average sum of the faecal score (diarrhoea) (p < 0.05) than the CT group. A decreased number of days of shedding of the pathogenic strain was observed in the CT compared to the CC group (p < 0.05). Specific anti-F18 IgA molecules were significantly higher in the CT group compared to the CC group’s faecal samples during the post-challenge period (p < 0.01). In conclusion, edible vaccination with engineered tobacco seeds showed a protective effect on clinical symptoms and diarrhoea incidence during the post-challenge period, characterized by a limited time of pathogenic strain shedding in faeces.
Collapse
Affiliation(s)
- Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Matteo Dell’Anno
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Lauretta Turin
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Serena Reggi
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Angela Lombardi
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Giovanni Loris Alborali
- Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna (IZSLER), 25124 Brescia, Italy
| | - Joel Filipe
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Federica Riva
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Pietro Riccaboni
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Eugenio Scanziani
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Paola Dall’Ara
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Eugenio Demartini
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Antonella Baldi
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| |
Collapse
|
17
|
Zhao H, Xu Y, Li X, Yin J, Li G, Zhao H, Li S, Li J, Wang L. Protective efficacy of a recombinant enterotoxin antigen in a maternal immunization model and the inhibition of specific maternal antibodies to neonatal oral vaccination. J Reprod Immunol 2023; 157:103946. [PMID: 37031607 DOI: 10.1016/j.jri.2023.103946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/19/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
ETEC (enterotoxigenic Escherichia coli) infection is the leading cause of profuse watery diarrhea in mammals, especially among pre-weaning and post-weaning piglets in swine industry. Maternal immunization is a current rational strategy for providing protection to susceptive piglets and reducing the incidence of ETEC-associated diarrhea. Here we evaluated the protective efficiency of a recombinant antigen (MBP-SLS) fused by major enterotoxin subunits (STa-LTB-STb) via a maternal immunization model, and the impacts of maternal antibodies to neonatal oral vaccination were also investigated in the neonates. The high titers of specific IgG and sIgA in pups shown that the maternal antibodies could be transferred passively. Furthermore, the increases of IL-6 and IL-10 cytokines in breast milk and pup serum indicated that immunization on mother could effectively boost the immune system of neonates. Newborn rats from immunized mothers showed a 70% survival rate after ETEC infection. However, the mucosal immune responses of neonates were inhibited by the high level of maternal specific antibodies. Among the oral-vaccinated neonates, born from mock-immunized rats reached the highest survival after ETEC challenge. Collectively, the fusion MBP-SLS antigen could effectively induce strong immune responses in rats during pregnancy and the pups could receive passive protection through specific antibodies transferred via milk and placenta. However, the specific maternal antibodies exhibited an inhibition effect on the mucosal immune responses in offspring.
Collapse
Affiliation(s)
- Hong Zhao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jiajun Yin
- Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Haofei Zhao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Shuying Li
- Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China
| | - Jibin Li
- Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
18
|
Skin-Based Vaccination: A Systematic Mapping Review of the Types of Vaccines and Methods Used and Immunity and Protection Elicited in Pigs. Vaccines (Basel) 2023; 11:vaccines11020450. [PMID: 36851328 PMCID: PMC9962282 DOI: 10.3390/vaccines11020450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The advantages of skin-based vaccination include induction of strong immunity, dose-sparing, and ease of administration. Several technologies for skin-based immunisation in humans are being developed to maximise these key advantages. This route is more conventionally used in veterinary medicine. Skin-based vaccination of pigs is of high relevance due to their anatomical, physiological, and immunological similarities to humans, as well as being a source of zoonotic diseases and their livestock value. We conducted a systematic mapping review, focusing on vaccine-induced immunity and safety after the skin immunisation of pigs. Veterinary vaccines, specifically anti-viral vaccines, predominated in the literature. The safe and potent skin administration to pigs of adjuvanted vaccines, particularly emulsions, are frequently documented. Multiple methods of skin immunisation exist; however, there is a lack of consistent terminology and accurate descriptions of the route and device. Antibody responses, compared to other immune correlates, are most frequently reported. There is a lack of research on the underlying mechanisms of action and breadth of responses. Nevertheless, encouraging results, both in safety and immunogenicity, were observed after skin vaccination that were often comparable to or superior the intramuscular route. Further research in this area will underlie the development of enhanced skin vaccine strategies for pigs, other animals and humans.
Collapse
|
19
|
Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023; 11:344. [PMID: 36838308 PMCID: PMC9965155 DOI: 10.3390/microorganisms11020344] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Collapse
Affiliation(s)
- Pravil Pokharel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sabin Dhakal
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pasteur Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
20
|
Guo P, Wang Z, Lv X, Wang X, Yu J, Tian X, Shan H, Qin Z. Changyanning regulates gut microbiota and metabolism to ameliorate intestinal injury induced by ETEC K88. Front Microbiol 2023; 14:1098818. [PMID: 36778862 PMCID: PMC9909429 DOI: 10.3389/fmicb.2023.1098818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a common pathogen of swine colibacillosis, which can causing a variety of diseases initiate serious economic losses to the animal husbandry industry. The traditional Chinese medicine Changyanning (CYN) often used for diarrhea caused by the accumulation of damp heat in the gastrointestinal tract, has anti-bacterial, anti-inflammatory and anti-oxidation effects. This study investigated the effect of CYN on gut microbiota and metabolism in mice infected with ETEC K88. A total of 60 Kunming mices were divided into Control group, ETEC K88 group, CYN.L group (2.5 g/kg), CYN.M group (5 g/kg), CYN.H group (10 g/kg) and BTW group (10 g/kg), determined clinical symptoms, intestinal morphology, inflammatory responses, gut microbiota as well as serum metabolites. CYN administration elevated ETEC K88-induced body weight loss, ameliorated duodenum, ilem, colon pathological injury, and reduced the increase of spleen index caused by ETEC. CYN also reduced the levels of pro-inflammatory cytokines (IL-6, TNE-α) in the serum. 16s rRNA gene sequencing results showed that CYN increased the abundance of beneficial bacteria Lactobacillus but decreased the abundance of pathogenic bacteria Escherichia in the feces of mice. Moreover, CYN participates in amino acid biosynthesis and metabolism in the process of serum metabolism to regulates ameliorate intestinal injury induced by ETEC K88. In conclusion, CYN regulates gut microbiota and metabolism to ameliorate intestinal injury induced by ETEC K88.
Collapse
Affiliation(s)
- Pei Guo
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zongke Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiaojing Lv
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xin Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jiaying Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xuelei Tian
- QingDao Xnoba Biological Technology Co., Ltd., Qingdao, Shandong, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhihua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China,*Correspondence: Zhihua Qin, ✉
| |
Collapse
|
21
|
Oral and Parenteral Vaccination against Escherichia coli in Piglets Results in Different Responses. Animals (Basel) 2022; 12:ani12202758. [PMID: 36290144 PMCID: PMC9597725 DOI: 10.3390/ani12202758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
The available E. coli vaccines involve two main types (inactivated and live non-pathogenic) and two routes of administration (oral and parenteral) but the mechanism by which both vaccines and routes of administration work is not yet fully elucidated. The influence of a parenteral vaccine (PV) and an oral one (OV) was studied by analyzing the gene expression of biomarkers indicating cellular infiltration (calprotectin, CAL), tight junction proteins (occludin OCL, and zonulin ZON) that maintain intestinal paracellular integration and two proinflammatory (IFN-γ) and anti-inflammatory (TGF-β) mediator cytokines, as well as histomorphology and IgA production cell density. Differences were observed in CAL, more infiltrated in orally vaccinated animals; OCL also increased in orally vaccinated animals, and higher density of IgA-producing cells in ileum for orally vaccinated groups. Cytokine expression is also different; and there is a lower mRNA for IFN-γ in the parenteral than in the oral vaccinated animals. Finally, the villus height-to-crypt depth ratio was higher in the orally vaccinated groups. The data collectively show clear and different effects derived from the use of each type of vaccine, route of administration and regimen. The results suggest a more rapid and direct effect of oral vaccination and a state of suppression in the absence of a second oral stimulus by the pathogen.
Collapse
|
22
|
Ntakiyisumba E, Lee S, Won G. Evidence-Based Approaches for Determining Effective Target Antigens to Develop Vaccines against Post-Weaning Diarrhea Caused by Enterotoxigenic Escherichia coli in Pigs: A Systematic Review and Network Meta-Analysis. Animals (Basel) 2022; 12:2136. [PMID: 36009725 PMCID: PMC9405027 DOI: 10.3390/ani12162136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, we conducted a meta-analysis (MA) and systematic review to evaluate the effectiveness of vaccines against post-weaning diarrhea (PWD), caused by enterotoxigenic Escherichia coli (ETEC), in piglets. A Bayesian network meta-analysis (NMA) was also performed to compare the effects of combining different target antigens on vaccine efficacy. Relevant electronic databases were searched using pre-specified search terms, and 17 studies were selected based on three outcomes: diarrhea, mortality, and average daily weight gain (ADWG). In pairwise MA, the vaccinated group showed a significant decrease in diarrhea (OR = 0.124 [0.056, 0.275]) and mortality (OR = 0.273 [0.165, 0.451]), and a significant increase in ADWG (SMD = 0.699 [0.107, 1.290]) compared with those in controls. Furthermore, NMA results showed that all vaccine groups, except for group D (LT enterotoxin), were effective against PWD. Rank probabilities indicated that the F4 + F18 + LT combination was the best regimen for preventing diarrhea (SUCRA score = 0.92) and mortality (SUCRA score = 0.89). NMA also demonstrated that, among the vaccine groups, those inducing simultaneous anti-adhesion and antitoxin immunity had the highest efficacy. Our results provide evidence-based information on the efficacy of vaccines in reducing PWD incidence in pigs and may serve as guidelines for antigen selection for commercial vaccine development in the future.
Collapse
Affiliation(s)
| | | | - Gayeon Won
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Gobong-ro 79, Iksan 54596, Korea
| |
Collapse
|