1
|
Bighi NMS, Fonseca ÉL, Freitas FS, Morgado SM, Vicente ACP. Pandemic ST131 Escherichia coli presenting the UPEC/EAEC and ExPEC/EAEC hybrid pathotypes recovered from extraintestinal infections in a clinical setting of the Brazilian Amazon region. Mem Inst Oswaldo Cruz 2025; 120:e240204. [PMID: 40243867 PMCID: PMC11984961 DOI: 10.1590/0074-02760240204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/06/2024] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Escherichia coli is a commensal organism but may become pathogenic by the acquisition of virulence factors involved with intestinal (IPEC) or extraintestinal (ExPEC) infections. Some strains, known as hybrids, may harbour virulence determinants of both IPEC and ExPEC pathotypes, increasing their virulence potential. Reports of hybrid E. coli in Brazil are rare, and the associated lineages were poorly explored. OBJECTIVES This study characterised ExPEC E. coli strains focusing on the occurrence of hybrid pathotypes. METHODS Fifteen clinical ExPEC strains were submitted to multilocus sequence typing (MLST), susceptibility test, and polymerase chain reaction (PCR) targeting IEC/ExPEC virulence markers. FINDINGS All strains were multidrug-resistant, and 11 STs were determined among the 15 ExPEC strains, including local/new and pandemic lineages, such as ST69 and ST131. Twelve/15 isolates were classified as hybrids, due to the presence of virulence markers of both Enteroaggregative E. coli (EAEC) and ExPEC or UPEC pathotypes. These UPEC/EAEC (n = 10) and ExPEC/EAEC (n = 2) hybrid strains were found among distinct phylogroups and lineages, including new STs. Interestingly, most hybrids belonged to the pandemic ST131 lineage, and this genotype had never been previously reported in the ST131 circulating in Brazil. MAIN CONCLUSIONS Therefore, this study provides new information on the epidemiological scenario of hybrid E. coli, contributing to a better understanding of the occurrence and pathogenic potential of these organisms.
Collapse
Affiliation(s)
- Nathália MS Bighi
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| | - Érica Lourenço Fonseca
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| | - Fernanda S Freitas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| | - Sergio Mascarenhas Morgado
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| | - Ana Carolina Paulo Vicente
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
2
|
Lee W, Ha J, Choi J, Jung Y, Kim E, An ES, Kim SH, Shin H, Ryu S, Kim SH, Kim HY. Genetic and virulence characteristics of hybrid Shiga toxin-producing and atypical enteropathogenic Escherichia coli strains isolated in South Korea. Front Microbiol 2024; 15:1398262. [PMID: 38812694 PMCID: PMC11133561 DOI: 10.3389/fmicb.2024.1398262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction The predominant hybrid pathogenic E. coli, enterohemorrhagic E. coli (EHEC), combines characteristics of Shiga toxin-producing E. coli (STEC) and enteropathogenic E. coli (EPEC), contributing to global outbreaks with severe symptoms including fatal consequences. Since EHEC infection was designated as a notifiable disease in 2000 in South Korea, around 2000 cases have been reported, averaging approximately 90 cases annually. Aim In this work, genome-based characteristic analysis and cell-based assay of hybrid STEC/aEPEC strains isolated from livestock feces, animal source foods, and water in South Korea was performed. Methods To identify the virulence and antimicrobial resistance genes, determining the phylogenetic position of hybrid STEC/aEPEC strains isolated in South Korea, a combination of real-time PCR and whole-genome sequencing (WGS) was used. Additionally, to assess the virulence of the hybrid strains and compare them with genomic characterization, we performed a cell cytotoxicity and invasion assays. Results The hybrid STEC/aEPEC strains harbored stx and eae genes, encoding Shiga toxins and E. coli attachment/effacement related protein of STEC and EPEC, respectively. Furthermore, all hybrid strains harbored plasmid-carried enterohemolysin(ehxCABD), a key virulence factor in prevalent pathogenic E. coli infections, such as diarrheal disease and hemolytic-uremic syndrome (HUS). Genome-wide phylogenetic analysis revealed a close association between all hybrid strains and specific EPEC strains, suggesting the potential acquisition of Stx phages during STEC/aEPEC hybrid formation. Some hybrid strains showed cytotoxic activity against HeLa cells and invasive properties against epithelial cells. Notably, all STEC/aEPEC hybrids with sequence type (ST) 1,034 (n = 11) exhibited higher invasiveness than those with E2348/69. This highlights the importance of investigating potential correlations between STs and virulence characteristics of E. coli hybrid strains. Conclusion Through genome-based characterization, we confirmed that the hybrid STEC/aEPEC strains are likely EPEC strains that have acquired STEC virulence genes via phage. Furthermore, our results emphasize the potential increased danger to humans posed by hybrid STEC/aEPEC strains isolated in South Korea, containing both stx and eaeA, compared to STEC or EPEC alone.
Collapse
Affiliation(s)
- Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Jina Ha
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Jaehyun Choi
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Yewon Jung
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Eun Sook An
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Seung Hwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Hakdong Shin
- Department of Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Soon Han Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
3
|
Akinlabi OC, Nwoko ESQ, Dada RA, Ekpo S, Omotuyi A, Nwimo CC, Adepoju A, Popoola O, Dougan G, Thomson NR, Okeke IN. Epidemiology and Risk Factors for Diarrheagenic Escherichia coli Carriage among Children in Northern Ibadan, Nigeria. Am J Trop Med Hyg 2023; 109:1223-1232. [PMID: 37903436 PMCID: PMC10793065 DOI: 10.4269/ajtmh.22-0618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/14/2023] [Indexed: 11/01/2023] Open
Abstract
Diarrhea is a leading cause of childhood morbidity in Africa, but few studies, focus on bacterial diarrheal etiology including multicountry studies that typically excluded Nigeria. We collected stool specimens from 477 children under 5 years of age, 120 with diarrhea, who were enrolled in our prospective case-control study between November 2015 and August 2019. All were attending primary health clinics on the northern outskirts of Ibadan. Up to 10 Escherichia coli isolates were obtained per specimen, and at least three of them were sequenced using Illumina whole-genome sequence technology. Genomes were assembled using SPAdes and evaluated for quality using QUAST. VirulenceFinder was used to identify virulence genes. The microbiological quality of water from 14 wells within the study area was assessed using total and coliform counts. Diarrheagenic E. coli (DEC) were isolated from 79 (65.8%) cases and 217 (60.8%) control children. A number of hybrid DEC pathotypes, Salmonella spp., Yersinia spp., and all DEC pathotypes except Shiga toxin-producing E. coli were detected, but no pathogen showed association with disease (P > 0.05). Enterotoxigenic E. coli were more commonly recovered from children without diarrhea aged below 6 months but exclusively detected in children with diarrhea aged over 9 months. Temporally linked, genetically similar enteroaggregative E. coli were isolated from children in different households in eight instances. No well water sample drawn in the study was potable. Children in northern Ibadan were commonly colonized with DEC. Access to water, proper sanitation, and vaccination against the prevailing pathogens may be critical for protecting children from the less overt consequences of enteric pathogen carriage.
Collapse
Affiliation(s)
- Olabisi C. Akinlabi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo, Nigeria
| | - El-shama Q. Nwoko
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo, Nigeria
| | - Rotimi A. Dada
- Medical Laboratory Science Program, College of Health Sciences, Bowen University, Iwo, Nigeria
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ahmadu Bello University, Zaria, Nigeria
| | - Stella Ekpo
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo, Nigeria
| | - Adeola Omotuyi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo, Nigeria
| | - Chukwuemeka C. Nwimo
- Department of Clinical Medicine, College of Medicine, University of Ibadan, Oyo, Nigeria
| | - Akinlolu Adepoju
- Department of Pediatrics, College of Medicine, University of Ibadan, Oyo, Nigeria
| | - Oluwafemi Popoola
- Department of Community Medicine, Faculty of Public Health, College of Medicine, University of Ibadan, Oyo, Nigeria
| | - Gordon Dougan
- Wellcome Sanger Institute, Saffron Walden, United Kingdom
- Department of Medicine, University of Cambridge, United Kingdom
| | | | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo, Nigeria
| |
Collapse
|
4
|
Zelelie TZ, Eguale T, Yitayew B, Abeje D, Alemu A, Seman A, Jass J, Mihret A, Abebe T. Molecular epidemiology and antimicrobial susceptibility of diarrheagenic Escherichia coli isolated from children under age five with and without diarrhea in Central Ethiopia. PLoS One 2023; 18:e0288517. [PMID: 37450423 PMCID: PMC10348587 DOI: 10.1371/journal.pone.0288517] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Diarrhea is a serious health problem in children, with the highest mortality rate in sub-Saharan Africa. Diarrheagenic Escherichia coli (DEC) is among the major bacterial causes of diarrhea in children under age five. The present study aims to determine molecular epidemiology and antimicrobial resistance profiles of DEC and identify contributing factors for acquisition among children under age five in Central Ethiopia. METHODS A health facility-centered cross-sectional study was conducted in Addis Ababa and Debre Berhan, Ethiopia, from December 2020 to August 2021. A total of 476 specimens, 391 from diarrheic and 85 from non-diarrheic children under age five were collected. Bacterial isolation and identification, antimicrobial susceptibility, and pathotype determination using polymerase chain reaction (PCR) were done. RESULTS Of the 476 specimens analyzed, 89.9% (428/476) were positive for E. coli, of which 183 were positive for one or more genes coding DEC pathotypes. The overall prevalence of the DEC pathotype was 38.2% (183/476). The predominant DEC pathotype was enteroaggregative E. coli (EAEC) (41.5%, 76/183), followed by enterotoxigenic E. coli (21.3%, 39/183), enteropathogenic E. coli (15.3%, 28/183), enteroinvasive E. coli (12.6%, 23/183), hybrid strains (7.1%, 13/183), Shiga toxin-producing E. coli (1.6%, 3/183), and diffusely-adherent E. coli (0.6%, 1/183). DEC was detected in 40.7% (159/391) of diarrheic and 28.2% (24/85) in non-diarrheic children (p = 0.020). The majority of the DEC pathotypes were resistant to ampicillin (95.1%, 174/183) and tetracycline (91.3%, 167/183). A higher rate of resistance to trimethoprim-sulfamethoxazole (58%, 44/76), ciprofloxacin (22%, 17/76), ceftazidime and cefotaxime (20%, 15/76) was seen among EAEC pathotypes. Multidrug resistance (MDR) was detected in 43.2% (79/183) of the pathotypes, whereas extended spectrum ß-lactamase and carbapenemase producers were 16.4% (30/183) and 2.2% (4/183), respectively. CONCLUSION All six common DEC pathotypes that have the potential to cause severe diarrheal outbreaks were found in children in the study area; the dominant one being EAEC with a high rate of MDR.
Collapse
Affiliation(s)
- Tizazu Zenebe Zelelie
- Department of Medical Laboratory Science, Debre Berhan University, Debre Birhan, Ethiopia
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
- Armeur Hansen Research Institue (AHRI), Addis Ababa, Ethiopia
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ohio State University Global One Health LLC, Addis Ababa, Ethiopia
| | - Berhanu Yitayew
- Department of Medical Laboratory Science, Debre Berhan University, Debre Birhan, Ethiopia
| | - Dessalegn Abeje
- Armeur Hansen Research Institue (AHRI), Addis Ababa, Ethiopia
| | - Ashenafi Alemu
- Armeur Hansen Research Institue (AHRI), Addis Ababa, Ethiopia
| | - Aminu Seman
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jana Jass
- The Life Science Centre—Biology, School of Science and Technology, Orebro University, Örebro, Sweden
| | - Adane Mihret
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
- Armeur Hansen Research Institue (AHRI), Addis Ababa, Ethiopia
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Huan YW, Fa-Arun J, Wang B. The Role of O-antigen in P1 Transduction of Shigella flexneri and Escherichia coli with its Alternative S' Tail Fibre. J Mol Biol 2022; 434:167829. [PMID: 36116540 DOI: 10.1016/j.jmb.2022.167829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Enterobacteria phage P1 expresses two types of tail fibre, S and S'. Despite the wide usage of phage P1 for transduction, the host range and the receptor for its alternative S' tail fibre was never determined. Here, a ΔS-cin Δpac E. coli P1 lysogenic strain was generated to allow packaging of phagemid DNA into P1 phage having either S or S' tail fibre. P1(S') could transduce phagemid DNA into Shigella flexneri 2a 2457O, Shigella flexneri 5a M90T and Escherichia coli O3 efficiently. Mutational analysis of the O-antigen assembly genes and LPS inhibition assays indicated that P1(S') transduction requires at least one O-antigen unit. E. coli O111:B4 LPS produced a high neutralising effect against P1(S') transduction, indicating that this E. coli strain could be susceptible to P1(S')-mediated transduction. Mutations in the O-antigen modification genes of S. flexneri 2a 2457O and S. flexneri 5a M90T did not cause significant changes to P1(S') transduction efficiency. A higher transduction efficiency of P1(S') improved the delivery of a cas9 antimicrobial phagemid into both S. flexneri 2457O and M90T. These findings provide novel insights into P1 tropism-switching, by identifying the bacterial strains which are susceptible to P1(S')-mediated transduction, as well as demonstrating its potential for delivering a DNA sequence-specific Cas9 antimicrobial into clinically relevant S. flexneri.
Collapse
Affiliation(s)
- Yang W Huan
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Jidapha Fa-Arun
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China; Research Centre of Biological Computation, Zhejiang Laboratory, Hangzhou 311100, China.
| |
Collapse
|
6
|
Tanabe RHS, Dias RCB, Orsi H, de Lira DRP, Vieira MA, dos Santos LF, Ferreira AM, Rall VLM, Mondelli AL, Gomes TAT, Camargo CH, Hernandes RT. Characterization of Uropathogenic Escherichia coli Reveals Hybrid Isolates of Uropathogenic and Diarrheagenic (UPEC/DEC) E. coli. Microorganisms 2022; 10:microorganisms10030645. [PMID: 35336220 PMCID: PMC8950336 DOI: 10.3390/microorganisms10030645] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Pathogenic Escherichia coli are divided into two groups: diarrheagenic (DEC) and extraintestinal pathogenic (ExPEC) E. coli. ExPEC causing urinary tract infections (UTIs) are termed uropathogenic E. coli (UPEC) and are the most common cause of UTIs worldwide. (2) Methods: Here, we characterized 112 UPEC in terms of phylogroup, serotype, the presence of virulence factor-encoding genes, and antimicrobial resistance. (3) Results: The majority of the isolates were assigned into the phylogroup B2 (41.07%), and the serogroups O6 (12.5%) and O25 (8.9%) were the most frequent. Five hybrid UPEC (4.5%), with markers from two DEC pathotypes, i.e., atypical enteropathogenic (aEPEC) and enteroaggregative (EAEC) E. coli, were identified, and designated UPEC/aEPEC (one isolate) and UPEC/EAEC (four isolates), respectively. Three UPEC/EAEC harbored genes from the pap operon, and the UPEC/aEPEC carried ibeA. The highest resistance rates were observed for ampicillin (46.4%) and trimethoprim/sulfamethoxazole (34.8%), while 99.1% of the isolates were susceptible to nitrofurantoin and/or fosfomycin. Moreover, 9.8% of the isolates were identified as Extended Spectrum β-Lactamase producers, including one hybrid UPEC/EAEC. (4) Conclusion: Our data reinforce that hybrid UPEC/DEC are circulating in the city of Botucatu, Brazil, as uropathogens. However, how and whether these combinations of genes influence their pathogenicity is a question that remains to be elucidated.
Collapse
Affiliation(s)
- Rodrigo H. S. Tanabe
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Regiane C. B. Dias
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Henrique Orsi
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Daiany R. P. de Lira
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Melissa A. Vieira
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Luís F. dos Santos
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo 01246-902, SP, Brazil; (L.F.d.S.); (C.H.C.)
| | - Adriano M. Ferreira
- Hospital das Clínicas da Faculdade de Medicina de Botucatu, Botucatu 18607-741, SP, Brazil;
| | - Vera L. M. Rall
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Alessandro L. Mondelli
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Estadual Paulista (UNESP), Botucatu 18618-970, SP, Brazil;
| | - Tânia A. T. Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina (UNIFESP-EPM), São Paulo 04023-062, SP, Brazil;
| | - Carlos H. Camargo
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo 01246-902, SP, Brazil; (L.F.d.S.); (C.H.C.)
| | - Rodrigo T. Hernandes
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
- Correspondence: ; Tel.: +55-14-3880-0446
| |
Collapse
|