1
|
Legese MH, Asrat D, Mihret A, Hasan B, Aseffa A, Swedberg G. Genomic characterizations of Klebsiella variicola: emerging pathogens identified from sepsis patients in Ethiopian referral hospitals. Emerg Microbes Infect 2025; 14:2440494. [PMID: 39648897 DOI: 10.1080/22221751.2024.2440494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Healthcare in low- and middle-income countries is becoming problematic due to the emergence of multidrug-resistant bacteria causing serious morbidity and mortality. Klebsiella variicola carrying multiple antimicrobial resistance (AMR) genes were found significantly among sepsis patients in a study done between October 2019 and September 2020 at four Ethiopian hospitals located in the central (Tikur Anbessa and Yekatit 12), southern (Hawassa), and northern (Dessie) parts. Among 1416 sepsis patients, 74 K. variicola isolates were identified using MALDI-TOF, most of them at Dessie (n = 44) and Hawassa (n = 28) hospitals. Whole genome sequencing showed that K. variicola strains identified at Dessie Hospital displayed phylogenetic clonality, carried an IncM1 plasmid and the majority were ST3924. Many K. variicola identified at Hawassa Hospital were clonally clustered and the majority belonged to novel STs and carried IncFIB(K) and IncFII(K) plasmids concurrently. Fifty K. variicola carried ESBL genes while 2 isolates harboured AmpC. Other frequently found genes were aac(3)-lla, blaCTX-M-15, blaTEM-1B, blaLEN2, blaOXA-1, blaSCO-1, catB3, dfrA14, QnrB1, aac(6')-lb-cr and sul2. Virulence genes detected at both sites were mrk operons for biofilm formation and siderophore ABC transporter operons for iron uptake. Capsular alleles varied, with wzi 269 at Dessie and wzi 582 at Hawassa. The isolation of multidrug-resistant K. variicola as an emerging sepsis pathogen calls for strong infection prevention strategies and antimicrobial stewardship supported by advanced bacterial identification techniques.
Collapse
Affiliation(s)
- Melese Hailu Legese
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Asrat
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Badrul Hasan
- Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Göte Swedberg
- Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Siddiqui JA, Fan R, Liu Y, Syed AH, Benlin Y, Chu Q, Ding Z, Ghani MI, Liu X, Wakil W, Liu DD, Chen X, Cernava T, Smagghe G. The larval gut of Spodoptera frugiperda harbours culturable bacteria with metabolic versatility after insecticide exposure. INSECT MOLECULAR BIOLOGY 2025; 34:452-469. [PMID: 39952648 DOI: 10.1111/imb.12983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/02/2025] [Indexed: 02/17/2025]
Abstract
Spodoptera frugiperda (fall armyworm) poses a substantial risk to crops worldwide, resulting in considerable economic damage. The gut microbiota of insects plays crucial roles in digestion, nutrition, immunity, growth and, sometimes, the degradation of insecticides. The current study examines the effect of synthetic insecticides on the gut microbiome of third instar S. frugiperda larvae using both culture-dependent techniques and 16S rRNA gene sequencing for bacterial community profiling and diversity analysis. In untreated larvae, the sequencing approach revealed a diverse microbiome dominated by the phyla Firmicutes, Proteobacteria and Bacteroidota, with key genera including Bacteroides, Faecalibacterium and Pelomonas. In parallel, 323 bacterial strains were isolated and assigned to the orders Bacillales, Burkholderiales, Enterobacterales, Flavobacteriales, Lactobacillales, Micrococcales, Neisseriaies, Pseudomonadales, Sphingobacteriales and Xanthomonadales. The prevailing culturable species included Serratia marcescens, Klebsiella variicola and Enterobacter quasiroggenkampii. Treatment with sublethal concentrations of three insecticides (broflanilide, spinosad and indoxacarb) caused significant changes in gut microbiome diversity and composition. Treated larvae showed a shift towards increased Proteobacteria abundance and decreased Firmicutes. Specifically, Acinetobacter and Rhodococcus were dominant in treated samples. Functional predictions highlighted significant metabolic versatility involving nutrient processing, immune response, detoxification, xenobiotic metabolism, and stress response, suggesting microbial adaptation to insecticide exposure. Network correlation analysis highlighted disrupted microbial interactions and altered community structures under insecticide treatment. These findings enhance our understanding of how insecticides impact the gut microbiota in S. frugiperda and may inform future strategies for managing pest resistance through microbiome-based approaches.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
| | - Ruidong Fan
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Yanjiang Liu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Ali Hassan Syed
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Yi Benlin
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
| | - Qingshuai Chu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Zeyang Ding
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Muhammad Imran Ghani
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
| | - Xuemi Liu
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
| | - Waqas Wakil
- Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Dong-Dong Liu
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Xiaoyulong Chen
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Tomislav Cernava
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Guy Smagghe
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Institute of Entomology, Guizhou University, Guiyang, China
- Department of Plants and Crops, Ghent University, Ghent, Belgium
- Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
3
|
Cai Y, Jiang W, Wang Q, Sun S, Wang W, Bian X, Liu T, Tišma M, Wang D, Hao J. Mechanism of metabolites distribution between 2,3-butanediol and branched-chain amino acid synthesis pathways in Klebsiella pneumoniae. J Biotechnol 2025; 404:175-185. [PMID: 40311808 DOI: 10.1016/j.jbiotec.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/12/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
Klebsiella pneumoniae is a commonly known 2,3-butanediol producer. 2,3-Butanediol synthesis and branched-chain amino acid (BCAA) synthesis pathways share the same step of α-acetolactate synthesis from pyruvate. Those two pathways do not interfere with each other in the wild-type strain. Knocking out budA (encoding α-acetolactate decarboxylase) blocks the 2,3-butanediol synthesis pathway. Meanwhile, metabolites of the BCAA synthesis pathway (valine, 2-ketoisovalerate, 2,3-dihydroxyisovalerate and 2-hydroxyisovalerate) are accumulated. However, the mechanism underlying the metabolite changes resulting from the inactivation of budA remains unclear. In this study, both ex vivo and in vitro experiments were conducted to elucidate this mechanism. Kinetic parameters of BudA and acetohydroxy acid isomeroreductase (IlvC) were determined. BudA has a higher affinity toward α-acetolactate and has a higher catalytic constant (Km = 3.66 mM, kcat = 7.8 s-1) compared to IlvC (Km = 17.98 mM, kcat = 0.68 s-1). ex vivo experiments showed that IlvC activities were not influenced by knocking out budA and vice versa. IlvC activities were improved in the cells in which ilvC was overexpressed, but this did not lead to the accumulation of metabolites of the BCAA synthesis pathway. The activities of IlvC in the cell were not affected by the accumulation of 2,3-dihydroxyisovalerate, 2-ketoisovalerate, or valine in the broth. These results indicated that the competitiveness of BudA and IlvC in the cell determines the metabolites distribution between those two pathways. The inactivation of BudA and intact IlvC led to the exceeded α-acetolactate flow into the BCAA synthesis pathway, which caused the accumulation of metabolites of the BCAA synthesis pathway.
Collapse
Affiliation(s)
- Yaoyu Cai
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weiyan Jiang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qinghui Wang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, PR China
| | - Shaoqi Sun
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wenqi Wang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xinjie Bian
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Taiyu Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, PR China
| | - Marina Tišma
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, Osijek HR-31000, Croatia
| | - Dexin Wang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, PR China.
| | - Jian Hao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
4
|
Eckerstorfer MF, Dolezel M, Miklau M, Greiter A, Heissenberger A, Kastenhofer K, Schulz F, Hagen K, Otto M, Engelhard M. Environmental Applications of GM Microorganisms: Tiny Critters Posing Huge Challenges for Risk Assessment and Governance. Int J Mol Sci 2025; 26:3174. [PMID: 40243930 PMCID: PMC11989004 DOI: 10.3390/ijms26073174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
In recent years, the interest in developing genetically modified microorganisms (GMMs), including GMMs developed by genome editing, for use in the environment has significantly increased. However, the scientific knowledge on the ecology of such GMMs is severely limited. There is also little experience at the hands of regulators on how to evaluate the environmental safety of GMMs and on how to assess whether they provide sustainable alternatives to current (agricultural) production systems. This review analyzes two different GMM applications, GM microalgae for biofuel production and nitrogen-fixing GM soil bacteria for use as biofertilizers. We assess the challenges posed by such GMMs for regulatory environmental risk assessment (ERA) against the background of the GMO legislation existing in the European Union (EU). Based on our analysis, we present recommendations for ERA and the monitoring of GMM applications, and in particular for the improvement of the existing EU guidance. We also explore whether existing approaches for technology assessment can provide a framework for the broader assessment of GMM applications. To this end, we recommend developing and implementing an evidence-based sustainability analysis and other methods of technology assessment to support decision making and to address broader societal concerns linked to the use of GMM applications in the environment.
Collapse
Affiliation(s)
- Michael F. Eckerstorfer
- Team Landuse & Biosafety Unit, Umweltbundesamt–Environment Agency Austria, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Marion Dolezel
- Team Landuse & Biosafety Unit, Umweltbundesamt–Environment Agency Austria, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Marianne Miklau
- Team Landuse & Biosafety Unit, Umweltbundesamt–Environment Agency Austria, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Anita Greiter
- Team Landuse & Biosafety Unit, Umweltbundesamt–Environment Agency Austria, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Andreas Heissenberger
- Team Landuse & Biosafety Unit, Umweltbundesamt–Environment Agency Austria, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Karen Kastenhofer
- Institute of Technology Assessment, Austrian Academy of Sciences, Bäckerstraße 13, 1010 Vienna, Austria; (K.K.); (F.S.)
| | - Freya Schulz
- Institute of Technology Assessment, Austrian Academy of Sciences, Bäckerstraße 13, 1010 Vienna, Austria; (K.K.); (F.S.)
| | - Kristin Hagen
- Division Assessment Synthetic Biology, Enforcement Genetic Engineering Act, Federal Agency for Nature Conservation, Konstantinstrasse 110, 53179 Bonn, Germany; (K.H.); (M.O.); (M.E.)
| | - Mathias Otto
- Division Assessment Synthetic Biology, Enforcement Genetic Engineering Act, Federal Agency for Nature Conservation, Konstantinstrasse 110, 53179 Bonn, Germany; (K.H.); (M.O.); (M.E.)
| | - Margret Engelhard
- Division Assessment Synthetic Biology, Enforcement Genetic Engineering Act, Federal Agency for Nature Conservation, Konstantinstrasse 110, 53179 Bonn, Germany; (K.H.); (M.O.); (M.E.)
| |
Collapse
|
5
|
da Silva Bandeira ON, da Silva Bandeira R, de Souza CRB. Systematic review and meta-analysis of the potential effects of endophytic bacteria Klebsiella on plant growth promotion and biocontrol of pathogens. World J Microbiol Biotechnol 2025; 41:89. [PMID: 40021542 DOI: 10.1007/s11274-025-04300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Klebsiella is a bacterial genus widely recognized in the medical field but with underexplored potential in agriculture. This study employed a systematic review and meta-analysis to investigate scientific articles on plant growth promotion effects associated with endophytic bacteria Klebsiella species. A total of 39 relevant studies, published between 2012 and 2024, were identified based on strict inclusion and exclusion criteria. The analysis revealed that Klebsiella sp., K. pneumoniae, and K. variicola are cosmopolitan species that have functional versatility in phytohormone production, nutrient solubilization, and pathogen control in agricultural systems in both tropical and temperate zones. The data showed a significant correlation between the use of Klebsiella sp. and plant growth, highlighting the positive impact of these species in controlling aggressive pathogens. These findings underscore the potential of Klebsiella as a biotechnological tool for sustainable agricultural practices, enhancing plant growth and reducing the reliance on chemical inputs. The study further emphasizes the need for future research to deepen genomic characterization and expand the agricultural applications of these bacteria.
Collapse
|
6
|
Mo Z, Lin S, Li T, Yu G, Sun Y, Zhou J, Xu Z. Native CRISPR-Cas-based programmable multiplex gene repression in Klebsiella variicola. Biotechnol Lett 2024; 46:973-982. [PMID: 39066958 DOI: 10.1007/s10529-024-03516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Klebsiella variicola is a Gram-negative bacterium that is frequently isolated from a wide variety of natural niches. It is a ubiquitous opportunistic pathogen that can cause diverse infections in plants, animals, and humans. It also has significant biotechnological potential. However, due to the lack of efficient genetic tools, the molecular basis contributing to the pathogenesis and beneficial activities of K. variicola remains poorly understood. In this study, we found and characterized a native type I-E CRISPR-Cas system in a recently isolated K. variicola strain KV-1. The system cannot cleave target DNA sequences due to the inactivation of the Cas3 nuclease by a transposable element but retains the activity of the crRNA-guided Cascade binding to the target DNA sequence. A targeting plasmid carrying a mini-CRISPR to encode a crRNA was designed and introduced into the KV-1 strain, which successfully repurposed the native type I-E CRISPR-Cas system to inhibit the expression of the target gene efficiently and specifically. Moreover, by creating a mini-CRISPR to encode multiple crRNAs, multiplex gene repression was achieved by providing a single targeting plasmid. This work provides the first native CRISPR-Cas-based tool for programmable multiplex gene repression in K. variicola, which will facilitate studying the pathogenic mechanism of K. variicola and enable metabolic engineering to produce valuable bioproducts.
Collapse
Affiliation(s)
- Zhifeng Mo
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Siying Lin
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ting Li
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Guohui Yu
- Key Laboratory of Green Prevention and Control On Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510225, China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yunhao Sun
- Key Laboratory of Green Prevention and Control On Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510225, China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jianuan Zhou
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.
| | - Zeling Xu
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
7
|
Martinez-Feria R, Simmonds MB, Ozaydin B, Lewis S, Schwartz A, Pluchino A, McKellar M, Gottlieb SS, Kayatsky T, Vital R, Mehlman SE, Caron Z, Colaianni NR, Ané JM, Maeda J, Infante V, Karlsson BH, McLimans C, Vyn T, Hanson B, Verhagen G, Nevins C, Reese L, Otyama P, Robinson A, Learmonth T, Miller CMF, Havens K, Tamsir A, Temme K. Genetic remodeling of soil diazotrophs enables partial replacement of synthetic nitrogen fertilizer with biological nitrogen fixation in maize. Sci Rep 2024; 14:27754. [PMID: 39532958 PMCID: PMC11557888 DOI: 10.1038/s41598-024-78243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Increasing biological nitrogen (N) fixation (BNF) in maize production could reduce the environmental impacts of N fertilizer use, but reactive N in the rhizosphere of maize limits the BNF process. Using non-transgenic methods, we developed gene-edited strains of Klebsiella variicola (Kv137-2253) and Kosakonia sacchari (Ks6-5687) bacteria optimized for root-associated BNF and ammonium excretion in N-rich conditions. The aim of this research was to elucidate the mechanism of action of these strains. We present evidence from in vitro, in planta and field experiments that confirms that our genetic remodeling strategy derepresses BNF activity in N-rich systems and increases ammonium excretion by orders of magnitude above the respective wildtype strains. BNF is demonstrated in controlled environments by the transfer of labeled 15N2 gas from the rhizosphere to the chlorophyll of inoculated maize plants. This was corroborated in several 15N isotope tracer field experiments where inoculation with the formulated, commercial-grade product derived from the gene-edited strains (PIVOT BIO PROVEN® 40) provided on average 21 kg N ha-1 to the plant by the VT-R1 growth stages. Data from small-plot and on-farm trials suggest that this technology can improve crop N status pre-flowering and has potential to mitigate the risk of yield loss associated with a reduction in synthetic N fertilizer inputs.
Collapse
Affiliation(s)
| | - Maegen B Simmonds
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
- Regrow Agriculture, Inc. , Durham , NH, 03824, USA
| | - Bilge Ozaydin
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | - Stacey Lewis
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | | | - Alex Pluchino
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | - Megan McKellar
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | | | - Tasha Kayatsky
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | - Richelle Vital
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | | | - Zoe Caron
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | | | - Jean-Michel Ané
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Junko Maeda
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Valentina Infante
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Bjorn H Karlsson
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Caitlin McLimans
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Tony Vyn
- Department of Agronomy, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN, 479074, USA
| | - Brendan Hanson
- Department of Agronomy, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN, 479074, USA
| | - Garrett Verhagen
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
- Department of Agronomy, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN, 479074, USA
| | - Clayton Nevins
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | - Lori Reese
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | - Paul Otyama
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | - Alice Robinson
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | | | | | - Keira Havens
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | - Alvin Tamsir
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | - Karsten Temme
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| |
Collapse
|
8
|
Arimuthu DA, Fuah KW, Lim CTS. Clinical course of Klebsiella variicola peritonitis in end-stage kidney disease patients receiving peritoneal dialysis. BMJ Case Rep 2024; 17:e262696. [PMID: 39510614 DOI: 10.1136/bcr-2024-262696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Klebsiella variicola is part of the K. pneumoniae complex and has been recently identified to have pathogenic properties. Emerging reports show that it can cause bloodstream, respiratory and urinary tract infections. It has been shown to be an important causative agent in immunocompromised individuals. We report here three cases of K. variicola peritonitis encountered in our peritoneal dialysis patients.
Collapse
Affiliation(s)
| | - Kar Wah Fuah
- Department of Nephrology, Hospital Sultan Idris Shah Serdang, Kajang, Selangor, Malaysia
| | - Christopher Thiam Seong Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Lekota KE, Mabeo RO, Ramatla T, Van Wyk DAB, Thekisoe O, Molale-Tom LG, Bezuidenhout CC. Genomic insight on Klebsiella variicola isolated from wastewater treatment plant has uncovered a novel bacteriophage. BMC Genomics 2024; 25:986. [PMID: 39438783 PMCID: PMC11494819 DOI: 10.1186/s12864-024-10906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Klebsiella variicola is considered an emerging pathogen, which may colonize a variety of hosts, including environmental sources. Klebsiella variicola investigated in this study was obtained from an influent wastewater treatment plant in the North-West Province, South Africa. Whole genome sequencing was conducted to unravel the genetic diversity and antibiotic resistance patterns of K. variicola. Whole genome core SNP phylogeny was employed on publicly available 170 genomes. Furthermore, capsule types and antibiotic resistance genes, particularly beta-lactamase and carbapenems genes were investigated from the compared genomes. A 38 099 bp bacteriophage was uncovered alongside with K. variicola genome. Whole genome sequencing revealed that the extended beta-lactamase blaLEN (75.3%) of the beta-lactamase is dominant among compared K. variicola strains. The identified IncF plasmid AA035 confers resistance genes of metal and heat element subtypes, i.e., silver, copper, and tellurium. The capsule type KL107-D1 is a predominant capsule type present in 88.2% of the compared K. variicola genomes. The phage was determined to be integrase-deficient consisting of a fosB gene associated with fosfomycin resistance and clusters with the Wbeta genus Bacillus phage group. In silico analysis showed that the phage genome interacts with B. cereus as opposed to K. variicola strain T2. The phage has anti-repressor proteins involved in the lysis-lysogeny decision. This phage will enhance our understanding of its impact on bacterial dissemination and how it may affect disease development and antibiotic resistance mechanisms in wastewater treatment plants. This study highlights the need for ongoing genomic epidemiological surveillance of environmental K. variicola isolates.
Collapse
Affiliation(s)
- Kgaugelo E Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - Refilwe O Mabeo
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Deidre A B Van Wyk
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Lesego G Molale-Tom
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Cornelius C Bezuidenhout
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
10
|
Wang Q, Jiang W, Cai Y, Tišma M, Baganz F, Shi J, Lye GJ, Xiang W, Hao J. 2-Hydroxyisovalerate production by Klebsiella pneumoniae. Enzyme Microb Technol 2024; 172:110330. [PMID: 37866134 DOI: 10.1016/j.enzmictec.2023.110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023]
Abstract
2-Hydroxyisovalerate is a valuable chemical that can be used in the production of biodegradable polyesters. In nature, it was only produced at a very low level by Lactococcus lactis. 2-Ketoisovalerate is an intermediate metabolite of the branched-chain amino acid biosynthesis pathway, and Klebsiella pneumoniae ΔbudAΔldhA (Kp ΔbudAΔldhA) was a 2-ketoisovalerate producing strain. In this research, 2-hydroxyisovalerate was identified as a metabolite of Kp ΔbudAΔldhA, and its synthesis pathway was revealed. It was found that 2-ketoisovalerate and 2-hydroxyisovalerate were produced by Kp ΔbudA and Kp ΔbudAΔldhA, but not by Kp ΔbudAΔldhAΔilvD in which the 2-ketoisovalerate synthesis was blocked. budA, ldhA, and ilvD encode α-acetolactate decarboxylase, lactate dehydrogenase, and dihydroxy acid dehydratase, respectively. Thus, it was deduced that 2-hydroxyisovalerate was synthesized from 2-ketoisovalerate. Isoenzymes of ketopantoate reductase PanE, PanE2, and IlvC were suspected of being responsible for this reaction. Kinetic parameters of these enzymes were detected, and they all hold the 2-ketoisovalerate reductase activities. PanE and PanE2 use both NADH and NADPH as co-factors. While IlvC only uses NADH as a co-factor. Over-expression of panE, panE2, or ilvC in Kp ΔbudAΔldhA all enhanced the production of 2-hydroxyisovalerate. Accordingly, 2-hydroxyisovalerate levels were reduced by knocking out panE or panE2. In fed-batch fermentation, 14.41 g/L of 2-hydroxyisovalerate was produced by Kp ΔbudAΔldhA-panE, with a substrate conversion ratio of 0.13 g/g glucose.
Collapse
Affiliation(s)
- Qinghui Wang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China; Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, People's Republic of China
| | - Weiyan Jiang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yaoyu Cai
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Marina Tišma
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, Osijek HR-31000, Croatia
| | - Frank Baganz
- Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China
| | - Gary J Lye
- Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, People's Republic of China
| | - Jian Hao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China; Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
11
|
Duran-Bedolla J, Rodríguez-Medina N, Dunn M, Mosqueda-García D, Barrios-Camacho H, Aguilar-Vera A, Aguilar-Vera E, Suárez-Rodríguez R, Ramírez-Trujillo JA, Garza-Ramos U. Plasmids of the incompatibility group FIB K occur in Klebsiella variicola from diverse ecological niches. Int Microbiol 2023; 26:917-927. [PMID: 36971854 DOI: 10.1007/s10123-023-00346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Plasmids play a fundamental role in the evolution of bacteria by allowing them to adapt to different environments and acquire, through horizontal transfer, genes that confer resistance to different classes of antibiotics. Using the available in vitro and in silico plasmid typing systems, we analyzed a set of isolates and public genomes of K. variicola to study its plasmid diversity. The resistome, the plasmid multilocus sequence typing (pMLST), and molecular epidemiology using the MLST system were also studied. A high frequency of IncF plasmids from human isolates but lower frequency from plant isolates were found in our strain collection. In silico detection revealed 297 incompatibility (Inc) groups, but the IncFIBK (216/297) predominated in plasmids from human and environmental samples, followed by IncFIIK (89/297) and IncFIA/FIA(HI1) (75/297). These Inc groups were associated with clinically important ESBL (CTX-M-15), carbapenemases (KPC-2 and NDM-1), and colistin-resistant genes which were associated with major sequence types (ST): ST60, ST20, and ST10. In silico MOB typing showed 76% (311/404) of the genomes contained one or more of the six relaxase families with MOBF being most abundant. We identified untypeable plasmids carrying blaKPC-2, blaIMP-1, and blaSHV-187 but for which a relaxase was found; this may suggest that novel plasmid structures could be emerging in this bacterial species. The plasmid content in K. variicola has limited diversity, predominantly composed of IncFIBK plasmids dispersed in different STs. Plasmid detection using the replicon and MOB typing scheme provide a broader context of the plasmids in K. variicola. This study showed that whole-sequence-based typing provides current insights of the prevalence of plasmid types and their association with antimicrobial resistant genes in K. variicola obtained from humans and environmental niches.
Collapse
Affiliation(s)
- Josefina Duran-Bedolla
- Laboratorio de Resistencia Bacteriana, Centro de InvestigaciónSobreEnfermedadesInfecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad #655, Col. Sta. Ma. Ahuacatitlán., C.P. 62100, Cuernavaca, Morelos, México
| | - Nadia Rodríguez-Medina
- Laboratorio de Resistencia Bacteriana, Centro de InvestigaciónSobreEnfermedadesInfecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad #655, Col. Sta. Ma. Ahuacatitlán., C.P. 62100, Cuernavaca, Morelos, México
| | - Michael Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Dalila Mosqueda-García
- Laboratorio de Resistencia Bacteriana, Centro de InvestigaciónSobreEnfermedadesInfecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad #655, Col. Sta. Ma. Ahuacatitlán., C.P. 62100, Cuernavaca, Morelos, México
| | - Humberto Barrios-Camacho
- Laboratorio de Resistencia Bacteriana, Centro de InvestigaciónSobreEnfermedadesInfecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad #655, Col. Sta. Ma. Ahuacatitlán., C.P. 62100, Cuernavaca, Morelos, México
| | - Alejandro Aguilar-Vera
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Edgar Aguilar-Vera
- Laboratorio de Resistencia Bacteriana, Centro de InvestigaciónSobreEnfermedadesInfecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad #655, Col. Sta. Ma. Ahuacatitlán., C.P. 62100, Cuernavaca, Morelos, México
| | - Ramón Suárez-Rodríguez
- Laboratorio de Fisiología Molecular de Plantas, Centro de Investigación en Biotecnología (CEIB), Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - José Augusto Ramírez-Trujillo
- Laboratorio de Fisiología Molecular de Plantas, Centro de Investigación en Biotecnología (CEIB), Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Ulises Garza-Ramos
- Laboratorio de Resistencia Bacteriana, Centro de InvestigaciónSobreEnfermedadesInfecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad #655, Col. Sta. Ma. Ahuacatitlán., C.P. 62100, Cuernavaca, Morelos, México.
| |
Collapse
|
12
|
Rodriguez KND, Santos RT, Nagpala MJM, Opulencia RB. Metataxonomic Characterization of Enriched Consortia Derived from Oil Spill-Contaminated Sites in Guimaras, Philippines, Reveals Major Role of Klebsiella sp. in Hydrocarbon Degradation. Int J Microbiol 2023; 2023:3247448. [PMID: 37790200 PMCID: PMC10545452 DOI: 10.1155/2023/3247448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023] Open
Abstract
Oil spills are major anthropogenic disasters that cause serious harm to marine environments. In the Philippines, traditional methods of rehabilitating oil-polluted areas were proven to be less efficient and cause further damage to the environment. Microbial degradation has poised itself to be a promising alternative to those traditional methods in remediating oil spills. Hence, the present study aimed to enrich and characterize hydrocarbon-degrading microbial consortia from oil-contaminated regions in Guimaras Island for potential use in bioremediation. A total of 75 soil samples were obtained and used as inoculum for the enrichment for hydrocarbon degraders. Afterwards, 32 consortia were recovered and subjected to the 2,6-DCPIP assay for biodegradation ability on four types of hydrocarbons: diesel, xylene, hexane, and hexadecane. The consortia that obtained the highest percent degradation for each of the four hydrocarbons were "B2" (92.34% diesel degraded), "A5" (85.55% hexadecane degraded), "B1" (74.33% hexane degraded), and "B7" (63.38% xylene degraded). Illumina MiSeq 16S rRNA gene amplicon sequencing revealed that the dominant phyla in all consortia are Pseudomonadota (previously Proteobacteria), followed by Bacillota (previously Firmicutes). Overall, the amplicon sequence variants (ASVs) retrieved were mainly from the Gammaproteobacteria class, in which many hydrocarbon-degrading bacteria are found. Predictive functional profiling of the consortium showed the presence of genes involved in the degradation of recalcitrant hydrocarbon pollutants. Fatty acid metabolism, which includes alkB (alkane-1-monooxygenase) and genes for beta oxidation, was inferred to be the most abundant amongst all hydrocarbon degradation pathways. Klebsiella sp. is the predominant ASV in all the sequenced consortia as well as the major contributor of hydrocarbon degradation genes. The findings of the study can serve as groundwork for the development of hydrocarbon-degrading bacterial consortia for the bioremediation of oil spill-affected areas in the Philippines. Likewise, this paper provides a basis for further investigation into the role of Klebsiella sp. in the bioremediation of hydrocarbon pollutants.
Collapse
Affiliation(s)
| | - Russel T. Santos
- Genetics and Molecular Biology Division, Institute of Biological Sciences, University of the Philippines Los Baños, College, Laguna 4031, Los Baños, Philippines
| | - Michael Joseph M. Nagpala
- Microbiology Division, Institute of Biological Sciences, University of the Philippines Los Baños, College, Laguna 4031, Los Baños, Philippines
| | - Rina B. Opulencia
- Microbiology Division, Institute of Biological Sciences, University of the Philippines Los Baños, College, Laguna 4031, Los Baños, Philippines
| |
Collapse
|
13
|
Sun Y, Zheng C, Zhou J, Zhen M, Wei X, Yan X, Guo X, Zheng L, Shao M, Li C, Qin D, Zhang J, Xiong L, Xing J, Huang B, Dong Z, Cheng P, Yu G. Pathogen Profile of Klebsiella variicola, the Causative Agent of Banana Sheath Rot. PLANT DISEASE 2023; 107:2325-2334. [PMID: 37596715 DOI: 10.1094/pdis-09-22-2018-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Banana (Musa spp.) is an important fruit and food crop worldwide. In recent years, banana sheath rot has become a major problem in banana cultivation, causing plant death and substantial economic losses. Nevertheless, the pathogen profile of this disease has not been fully characterized. Klebsiella variicola is a versatile bacterium capable of colonizing different hosts, such as plants, humans, insects, and animals, and is recognized as an emerging pathogen in various hosts. In this study, we obtained 12 bacterial isolates from 12 different banana samples showing banana sheath rot in Guangdong and Guangxi Provinces, China. Phylogenetic analysis based on 16S rRNA sequences confirmed that all 12 isolates were K. variicola strains. We sequenced the genomes of these strains, performed comparative genomic analysis with other sequenced K. variicola strains, and found a lack of consistency in accessory gene content among these K. variicola strains. However, prediction based on the pan-genome of K. variicola revealed 22 unique virulence factors carried by the 12 pathogenic K. variicola isolates. Microbiome and microbial interaction network analysis of endophytes between the healthy tissues of diseased plants and healthy plants of two cultivars showed that Methanobacterium negatively interacts with Klebsiella in banana plants and that Herbaspirillum might indirectly inhibit Methanobacterium to promote Klebsiella growth. These results suggest that banana sheath rot is caused by the imbalance of plant endophytes and opportunistic pathogenic bacteria, providing an important basis for research and control of this disease.[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yunhao Sun
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chuanyuan Zheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Meng Zhen
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xingying Wei
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xun Yan
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaojian Guo
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Li Zheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Mingwei Shao
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chunji Li
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Di Qin
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jie Zhang
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lina Xiong
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Juejun Xing
- Laboratory and Equipment Management Department, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Bingzhi Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510000, China
| | - Zhangyong Dong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
| | - Guohui Yu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
14
|
Dunn MF, Becerra-Rivera VA. The Biosynthesis and Functions of Polyamines in the Interaction of Plant Growth-Promoting Rhizobacteria with Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2671. [PMID: 37514285 PMCID: PMC10385936 DOI: 10.3390/plants12142671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are members of the plant rhizomicrobiome that enhance plant growth and stress resistance by increasing nutrient availability to the plant, producing phytohormones or other secondary metabolites, stimulating plant defense responses against abiotic stresses and pathogens, or fixing nitrogen. The use of PGPR to increase crop yield with minimal environmental impact is a sustainable and readily applicable replacement for a portion of chemical fertilizer and pesticides required for the growth of high-yielding varieties. Increased plant health and productivity have long been gained by applying PGPR as commercial inoculants to crops, although with uneven results. The establishment of plant-PGPR relationships requires the exchange of chemical signals and nutrients between the partners, and polyamines (PAs) are an important class of compounds that act as physiological effectors and signal molecules in plant-microbe interactions. In this review, we focus on the role of PAs in interactions between PGPR and plants. We describe the basic ecology of PGPR and the production and function of PAs in them and the plants with which they interact. We examine the metabolism and the roles of PAs in PGPR and plants individually and during their interaction with one another. Lastly, we describe some directions for future research.
Collapse
Affiliation(s)
- Michael F Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Víctor A Becerra-Rivera
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| |
Collapse
|
15
|
Dynamic Analysis of the Bacterial Community and Determination of Antioxidant Capacity during the Fermentation of Sour Tea. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The imbalance of the redox state caused by extra reactive oxygen species is closely related to many diseases. Therefore, it is necessary for people to ingest antioxidants through food. The safety of some synthetic antioxidants has been questioned. In this context, it is worth exploring natural and safe antioxidants from biological sources. Tea has good antioxidant activity, and the antioxidant activity of fermented sour tea is better than that of other types. It is necessary to clarify the antioxidant capacity of sour tea during fermentation, as well as the microbial community and its sources. Nonculture and culture-dependent methods were adopted to track the changes in the microbial population and community structure during the fermentation of sour tea. Sequence analysis of 16S rRNA gene amplification revealed significant differences in community complexity and structure at different fermentation times. The highest proportion of operational taxonomic units (OTU s) in all samples was Latilactobacillus, which was determined to be Lactiplantibacillus plantarum by further analysis. The second highest proportion of OTUs was Enterobacter. With the fermentation of sour tea, the antioxidant capacity increased, and all isolated Lb. plantarum had good DPPH clearance rates. Our findings suggest that Lb. plantarum plays a crucial role in the fermentation process of sour tea. The possibility of discovering new antioxidants was provided by the determination of the antioxidant capacity and bacterial community during the fermentation of sour tea.
Collapse
|
16
|
Pan Z, Wu Y, Zhai Q, Tang Y, Liu X, Xu X, Liang S, Zhang H. Immobilization of bacterial mixture of Klebsiella variicola FH-1 and Arthrobacter sp. NJ-1 enhances the bioremediation of atrazine-polluted soil environments. Front Microbiol 2023; 14:1056264. [PMID: 36819060 PMCID: PMC9937183 DOI: 10.3389/fmicb.2023.1056264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
In this study, the effects of the immobilized bacterial mixture (IM-FN) of Arthrobacter sp. NJ-1 and Klebsiella variicola strain FH-1 using sodium alginate-CaCl2 on the degradation of atrazine were investigated. The results showed that the optimal ratio of three types of carrier materials (i.e., rice straw powder, rice husk, and wheat bran) was 1:1:1 with the highest adsorption capacity for atrazine (i.e., 3774.47 mg/kg) obtained at 30°C. On day 9, the degradation efficiency of atrazine (50 mg/L) reached 98.23% with cell concentration of 1.6 × 108 cfu/ml at pH 9 and 30°C. The Box-Behnken method was used to further optimize the culture conditions for the degradation of atrazine by the immobilized bacterial mixture. The IM-FN could be reused for 2-3 times with the degradation efficiency of atrazine maintained at 73.0% after being stored for 80 days at 25°C. The population dynamics of IM-FN was explored with the total soil DNA samples specifically analyzed by real-time PCR. In 7 days, the copy numbers of both PydC and estD genes in the IM-FN were significantly higher than those of bacterial suspensions in the soil. Compared with bacterial suspensions, the IM-FN significantly accelerated the degradation of atrazine (20 mg/kg) in soil with the half-life shortened from 19.80 to 7.96 days. The plant heights of two atrazine-sensitive crops (wheat and soybean) were increased by 14.99 and 64.74%, respectively, in the soil restored by immobilized bacterial mixture, indicating that the IM-FN significantly reduced the phytotoxicity of atrazine on the plants. Our study evidently demonstrated that the IM-FN could significantly increase the degradation of atrazine, providing a potentially effective bioremediation technique for the treatment of atrazine-polluted soil environment and providing experimental support for the wide application of immobilized microorganism technology in agriculture.
Collapse
Affiliation(s)
- Zequn Pan
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Yulin Wu
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Qianhang Zhai
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Yanan Tang
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Xuewei Liu
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Xuanwei Xu
- Ginseng and Antler Products Testing Center of the Ministry of Agricultural PRC, Jilin Agricultural University, Changchun, China
| | - Shuang Liang
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Hao Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
17
|
Dominic D, Baidurah S. Recent Developments in Biological Processing Technology for Palm Oil Mill Effluent Treatment-A Review. BIOLOGY 2022; 11:525. [PMID: 35453724 PMCID: PMC9031994 DOI: 10.3390/biology11040525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
POME is the most voluminous waste generated from palm oil milling activities. The discharge of POME into the environment without any treatment processing could inflict an undesirable hazard to humans and the environment due to its high amount of toxins, organic, and inorganic materials. The treatment of POME prior to discharge into the environment is utmost required to protect the liability for human health and the environment. Biological treatments are preferable due to eco-friendly attributes that are technically and economically feasible. The goal of this review article is to highlight the current state of development in the biological processing technologies for POME treatment. These biological processing technologies are conducted in the presence of fungi, bacteria, microalgae, and a consortium of microorganisms. Numerous microbes are listed to identify the most efficient strain by monitoring the BOD, COD, working volume of the reactor, and treatment time. The most effective processing technology for POME treatment uses an upflow anaerobic sludge blanket reactor with the COD value of 99%, hydraulic retention time of 7.2 days, and a working volume of 4.7 litres. Biological processing technologies are mooted as an efficient and sustainable management practice of POME waste.
Collapse
Affiliation(s)
| | - Siti Baidurah
- School of Industrial Technology, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia;
| |
Collapse
|
18
|
Barrios-Camacho H, Silva-Sánchez J, Cercas-Ayala E, Lozano-Aguirre L, Duran-Bedolla J, Aguilar-Vera A, Garza-González E, Bocanegra-Ibarias P, Morfín-Otero R, Hernández-Castro R, Garza-Ramos U. PCR system for the correct differentiation of the main bacterial species of the Klebsiella pneumoniae complex. Arch Microbiol 2021; 204:73. [PMID: 34951665 DOI: 10.1007/s00203-021-02668-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/27/2022]
Abstract
Accurate recognition of the closely related species Klebsiella pneumoniae, Klebsiella quasipneumoniae and Klebsiella variicola by phenotypic, biochemical and automated tests is notoriously unreliable in hospitals' diagnostic laboratories. A comparative genomics approach was conducted for the correct differentiation of the main bacterial species in the K. pneumoniae complex. Analysis of the deduced proteomes of 87 unique genomes of the Klebsiella in public databases, was used for the identification of unique protein family members. This allowed the design of a multiplex-PCR assay for the correct differentiation of these three species from different origins. This system allowed us to determine the prevalence of K. pneumoniae, K. quasipneumoniae and K. variicola among a collection of 552 clinical isolates. Of these, 87.3% (482/552) isolates corresponded to K. pneumoniae, 6.7% (33/552) to K. quasipneumoniae and 5.9% (33/552) to K. variicola. The multiplex-PCR results showed a 100% accuracy for the correct identification of the three species evaluated, which was validated with rpoB phylogenetic sequence analysis.
Collapse
Affiliation(s)
- Humberto Barrios-Camacho
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Jesús Silva-Sánchez
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Elena Cercas-Ayala
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Luis Lozano-Aguirre
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Josefina Duran-Bedolla
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Alejandro Aguilar-Vera
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Elvira Garza-González
- Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Paola Bocanegra-Ibarias
- Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Rayo Morfín-Otero
- Hospital Civil de Guadalajara Fray Antonio Alcalde, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | - Ulises Garza-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico.
| |
Collapse
|