1
|
Lu K, Wang L, Pei Y, Zhang K, Liu W, Zhu M, Duan Y, Feng Q, Liu M. Different pathways in promoting humic acid formation of multi-source biochar addition between fiber and livestock manure type solid waste composting. Int J Biol Macromol 2025:144592. [PMID: 40414404 DOI: 10.1016/j.ijbiomac.2025.144592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/12/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
This study selected fruit wood biochar (FWB), walnut shell biochar (WSB) and corncob biochar (CB) to compare and explore the humic acid (HA) formation mechanism differences added to the Chinese herbal residue (CHR) and Sheep manure (SM) composting. The results showed that the addition of multi-source biochar could improve carbon stability. Organic matter (OM) loss rates of CK, FWB, WSB and CB during SM composting were 25.3 %, 22.8 %, 20.8 % and 25.3 %, respectively, and that of CK, FWB, WSB and CB during CHR composting were 62.2 %, 47.9 %, 41.0 % and 43.3 %. Meanwhile, biochar addition promoted the HA formation, especially WSB in SM and CB in CHR. Moreover, the prediction results of the random forest model indicated that biochar could enhance the metabolic activity of bacterial communities closely related to HA formation during SM and CHR composting due to its porous structure. Finally, the structural equation model verified that CB with larger total pore volume promoted the conversion of macromolecular OM in CHR to form HA by stimulating microbial activity, while WSB with stronger adsorption capacity formed HA by polymerizing mall molecular components solidified in SM. This study provided theoretical and technical support for biochar to promote humification during different types materials composting.
Collapse
Affiliation(s)
- Ke Lu
- College of Life Sciences, Yulin University, Yulin 719000, China
| | - Liqin Wang
- College of Life Sciences, Yulin University, Yulin 719000, China
| | - Yanwu Pei
- College of Life Sciences, Yulin University, Yulin 719000, China
| | - Kaiyu Zhang
- College of Life Sciences, Yulin University, Yulin 719000, China
| | - Wei Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Meng Zhu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yizhong Duan
- College of Life Sciences, Yulin University, Yulin 719000, China.
| | - Qi Feng
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Mili Liu
- College of Life Sciences, Yulin University, Yulin 719000, China
| |
Collapse
|
2
|
Virú-Vasquez P, Pilco-Nuñez A, Tineo-Cordova F, Madueño-Sulca CT, Quispe-Ojeda TC, Arroyo-Paz A, Alvarez-Arteaga R, Velasquez-Zuñiga Y, Oscanoa-Gamarra LL, Saldivar-Villarroel J, Césare-Coral MF, Nuñez-Bustamante E. Integrated Biochar-Compost Amendment for Zea mays L. Phytoremediation in Soils Contaminated with Mining Tailings of Quiulacocha, Peru. PLANTS (BASEL, SWITZERLAND) 2025; 14:1448. [PMID: 40431013 PMCID: PMC12115018 DOI: 10.3390/plants14101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/24/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025]
Abstract
This study evaluated the phytoremediation of mine tailing-contaminated soils in Quiulacocha, Peru, using the combined application of biochar and compost, with Zea mays L. (maize) serving as the phytoremediator due to its high biomass production and stress tolerance. A factorial experimental design was implemented, varying two main factors: the mining tailings dose (30% and 60% w/w) and the biochar pyrolysis temperature (300 °C and 500 °C). The mine tailings were characterized by high concentrations of heavy metals and unfavourable physico-chemical properties (pH, low organic matter), whereas the biochar, produced from pine forest residues, and the compost, derived from urban organic waste, exhibited attributes that enhance soil quality. During the pot experiment, response variables including the Bioconcentration Factor (BCF) and Translocation Factor (TF) for various metals were evaluated to assess the capacity for contaminant immobilization and their distribution between plant roots and aerial tissues. The results demonstrated that the incorporation of biochar and compost significantly improved soil quality by increasing pH, cation exchange capacity, and nutrient retention, while simultaneously reducing the bioavailability of heavy metals and limiting their translocation to the aerial parts of maize. Factorial analysis further indicated that both the tailings dose and biochar pyrolysis temperature significantly influenced the efficacy of the phytoremediation process. In conclusion, the combined application of biochar and compost presents an effective and sustainable strategy for rehabilitating mine tailing-contaminated soils by stabilizing heavy metals and promoting the safe growth of Zea mays L.
Collapse
Affiliation(s)
- Paul Virú-Vasquez
- Faculty of Environmental Engineering and Natural Resources, Universidad Nacional del Callao, Callao 07011, Peru
| | - Alex Pilco-Nuñez
- Faculty of Chemical and Textile Engineering, Universidad Nacional de Ingeniería, Lima 15024, Peru; (A.P.-N.); (F.T.-C.); (C.T.M.-S.)
| | - Freddy Tineo-Cordova
- Faculty of Chemical and Textile Engineering, Universidad Nacional de Ingeniería, Lima 15024, Peru; (A.P.-N.); (F.T.-C.); (C.T.M.-S.)
| | - César Toribio Madueño-Sulca
- Faculty of Chemical and Textile Engineering, Universidad Nacional de Ingeniería, Lima 15024, Peru; (A.P.-N.); (F.T.-C.); (C.T.M.-S.)
| | | | - Antonio Arroyo-Paz
- Facultad de Ingeniería, Universidad Tecnológica del Perú, Lima 15024, Peru;
| | - Ruby Alvarez-Arteaga
- Facultad de Ingeniería Geológica y Metalúrgica, Universidad Nacional del Altiplano, Puno 21001, Peru;
| | | | | | | | | | - Ever Nuñez-Bustamante
- Faculty of Agricultural Sciences, Universidad Nacional Autónoma de Chota, Chota 06121, Peru;
| |
Collapse
|
3
|
Jiang W, Liu Y, Zhou J, Tang H, Meng G, Tang X, Ma Y, Yi T, Gad Elsaid F. Biochar co-compost increases the productivity of Brassica napus by improving antioxidant activities and soil health and reducing lead uptake. FRONTIERS IN PLANT SCIENCE 2024; 15:1475510. [PMID: 39600904 PMCID: PMC11588462 DOI: 10.3389/fpls.2024.1475510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024]
Abstract
Lead (Pb) is a serious toxic metal without any beneficial role in the biological system. Biochar (BC) has emerged as an excellent soil amendment to mitigate Pb toxicity. The impact of BC co-compost (BCC) in mitigating the toxic impacts of Pb has not been studied yet. Therefore, this study aimed to evaluate the potential of BC and BCC in improving the growth, physiological, and biochemical traits of Brassica napus and soil properties and reducing health risks (HR). The study was comprised of different Pb concentrations (control and 100 mg kg-1) and organic amendments (control, BC, compost, and BCC). The results indicated that Pb stress reduced the growth, photosynthetic pigments, seed yield, and oil contents by increasing hydrogen peroxide (H2O2) production and Pb uptake and accumulation in plant tissues and decreasing photosynthetic pigment and nutrient availability. The application of BCC alleviated the adverse impacts of Pb and improved seed production (40.24%) and oil yield (11.06%) by increasing chlorophyll a (43.18%) and chlorophyll b (25.58%) synthesis, relative water content (23.89%), total soluble protein (TSP: 23.14%), free amino acids (FAA: 26.47%), proline (30.98%), APX (40.90%), CAT (32.79%), POD (24.93%), and SOD (33.30%) activity. Biochar co-compost-mediated increase in seed and oil yield was also linked with a reduced accumulation of Pb in plant parts and soil Pb availability and improved the soil-available phosphorus, potassium, total nitrogen, soil organic carbon (SOC), and microbial biomass carbon (MBC). Furthermore, BCC also reduced the bioaccumulation concentration, daily metal intake, hazard index, and target hazard quotient. In conclusion, application of BCC can increase the growth, yield, and oil contents of Brassica napus by improving the physiological and biochemical traits and soil properties and reducing the Pb uptake.
Collapse
Affiliation(s)
- Wenjie Jiang
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Ying Liu
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Jing Zhou
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Haiying Tang
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Guiyuan Meng
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Xianrui Tang
- Shuangfeng Agriculture and Rural Bureau, Loudi, China
| | - Yulong Ma
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Tuyue Yi
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Fahmy Gad Elsaid
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
4
|
Lataf A, Pecqueur I, Huybrechts M, Carleer R, Rineau F, Yperman J, Cuypers A, Vandamme D. Co-pyrolysis of chicken manure with tree bark for reduced biochar toxicity and enhanced plant growth in Arabidopsis thaliana. Sci Rep 2024; 14:13956. [PMID: 38886397 PMCID: PMC11183055 DOI: 10.1038/s41598-024-62468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Co-pyrolysis of chicken manure with tree bark was investigated to mitigate salinity and potentially toxic element (PTE) concentrations of chicken manure-derived biochar. The effect of tree bark addition (0, 25, 50, 75 and 100 wt%) on the biochar composition, surface functional groups, PTEs and polycyclic aromatic hydrocarbons (PAH) concentration in the biochar was evaluated. Biochar-induced toxicity was assessed using an in-house plant growth assay with Arabidopsis thaliana. This study shows that PTE concentrations can be controlled through co-pyrolysis. More than 50 wt% of tree bark must be added to chicken manure to reduce the concentrations below the European Biochar Certificate-AGRO (EBC-AGRO) threshold. However, the amount of PAH does not show a trend with tree bark addition. Furthermore, co-pyrolysis biochar promotes plant growth at different application concentrations, whereas pure application of 100 wt% tree bark or chicken manure biochar results in decreased growth compared to the reference. In addition, increased plant stress was observed for 100 wt% chicken manure biochar. These data indicate that co-pyrolysis of chicken manure and tree bark produces EBC-AGRO-compliant biochar with the potential to stimulate plant growth. Further studies need to assess the effect of these biochars in long-term growth experiments.
Collapse
Affiliation(s)
- A Lataf
- Analytical and Circular Chemistry, IMO, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - I Pecqueur
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - M Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - R Carleer
- Analytical and Circular Chemistry, IMO, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - F Rineau
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - J Yperman
- Analytical and Circular Chemistry, IMO, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - A Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| | - D Vandamme
- Analytical and Circular Chemistry, IMO, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| |
Collapse
|
5
|
Hou J, Xing C, Zhang J, Wang Z, Liu M, Duan Y, Zhao H. Increase in potato yield by the combined application of biochar and organic fertilizer: key role of rhizosphere microbial diversity. FRONTIERS IN PLANT SCIENCE 2024; 15:1389864. [PMID: 38812734 PMCID: PMC11133632 DOI: 10.3389/fpls.2024.1389864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Purpose The large-scale planting of potatoes leads to soil degradation, thus limiting the potato yield. An effective method of improving soil quality involves the combined application of biochar and organic fertilizer. However, the proportion of biochar and organic fertilizer at which potato yield can be improved, as well as the improvement mechanism, remain unclear. Methods A combined application experiment involving biochar (B) and organic fertilizer (O) with four concentration gradients was conducted using the equal carbon ratio method. On this basis, rhizosphere soil fertility, bacterial community composition, and bacterial diversity in potato crops, as well as the potato yield difference under different combined application ratios, were investigated. Then, the direct and indirect effects of these factors on potato yield were analyzed. Results The results suggest that soil fertility was improved by the combined application of biochar and organic fertilizer, with the best effect being achieved at a ratio of B:O=1:2. The dominant bacterial communities in the potato rhizosphere included Proteobacteria, Actinobacteria, Gemmatimonadetes, Chloroflexi, and Bacteroidetes. When compared to the control, the relative abundance and diversity index of soil bacteria were significantly improved by the treatment at B:O=1:2, which exerted a stronger effect on improving the relative abundance of beneficial bacteria. Soil available phosphorus (AP), soil pH (SpH), and soil organic carbon (SOC) explained 47.52% of the variation in bacterial composition. Among them, the main factor was the content of soil available nutrients, while SpH generated the weakest effect. The bacterial diversity index showed a significant positive correlation with soil AP, SOC, available potassium (AK), total nitrogen (TN), and C/N ratio, and a significant negative correlation with SpH. Bacterial diversity directly affected the potato yield, while soil fertility indirectly affected potato yield by influencing the soil bacterial diversity. Conclusion The combined application of biochar and organic fertilizer elevates potato yield mainly by improving the diversity of bacterial communities in potato rhizosphere soil, especially the combined application of biochar and organic fertilizer at a 1:2 ratio (biochar 0.66 t ha-1+organic fertilizer 4.46 t ha-1), which made the largest contribution to increasing potato yield.
Collapse
Affiliation(s)
- Jianwei Hou
- Institute of Resources, Environment and Sustainable Development, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
- School of Agroforestry Engineering and Planning, Tongren University, Tongren, Guizhou, China
| | - CunFang Xing
- Institute of Resources, Environment and Sustainable Development, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Jun Zhang
- Institute of Resources, Environment and Sustainable Development, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Zuhua Wang
- School of Agroforestry Engineering and Planning, Tongren University, Tongren, Guizhou, China
| | - Min Liu
- School of Agroforestry Engineering and Planning, Tongren University, Tongren, Guizhou, China
| | - Yu Duan
- Institute of Resources, Environment and Sustainable Development, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Hui Zhao
- School of Agroforestry Engineering and Planning, Tongren University, Tongren, Guizhou, China
| |
Collapse
|
6
|
Jiao Z, Ge S, Chen M, Jeyakumar P, Wang H, Xu X, Wang Y. Does livestock-Manure-Derived Biochar Suitable for the Stabilization of Cadmium and Zinc in Contaminated Soil? BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:57. [PMID: 38565676 DOI: 10.1007/s00128-024-03881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
Both livestock-manure and livestock-manure-derived biochar have been used to remediate heavy metal-contaminated soil. However, direct comparisons of the heavy metal stabilization efficiency of livestock-manure and EQC-manure-biochar (derived from an equal quantity of corresponding livestock-manure) are limited. In the present study, the effect of livestock-manures and EQC-manure-biochars on soil properties and heavy metal bioavailability and leachability were compared using two contrasting soils (Ferralsols and Fluvisols). The results showed that both the livestock-manures and EQC-manure-biochars significantly changed soil pH, available phosphorus, available potassium, alkaline nitrogen and organic matter content (p < 0.05), but the trends were variable. In Ferralsols, the DTPA-extractable Cd and Zn decreased by -0.38%~5.70% and - 3.79%~9.98% with livestock-manure application and by -7.99%~7.23% and - 5.67%~7.17% with EQC-manure-biochars application. In Fluvisols, the DTPA-extractable Cd and Zn decreased by 13.39%~17.41% and - 45.26%~14.24% with livestock-manure application and by 10.76%~16.90% and - 36.38%~16.37% with EQC-manure-biochar application. Furthermore, the change in TCLP-extractable Cd and Zn in both soils was similar to that of DTPA-extractable Cd and Zn. Notably, the Cd and Zn stabilization efficiency of the EQC-manure-biochars was no better than that of the corresponding livestock-manures. These results suggest that the use of livestock-manure-derived biochar is not cost-effective for the remediation of heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Zhiqiang Jiao
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, 475004, China
- Henan Engineering Research Center for Control & Remediation of Soil Toxic metals Pollution, Henan University, Kaifeng, 475004, China
| | - Shiji Ge
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Henan Engineering Research Center for Control & Remediation of Soil Toxic metals Pollution, Henan University, Kaifeng, 475004, China
| | - Ming Chen
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Henan Engineering Research Center for Control & Remediation of Soil Toxic metals Pollution, Henan University, Kaifeng, 475004, China
| | - Paramsothy Jeyakumar
- Environmental Science Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Xiaojun Xu
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, 475004, China.
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, 475004, China.
- Henan Engineering Research Center for Control & Remediation of Soil Toxic metals Pollution, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
7
|
Xu W, Xie X, Li Q, Yang X, Ren J, Shi Y, Liu D, Shaheen SM, Rinklebe J. Biochar co-pyrolyzed from peanut shells and maize straw improved soil biochemical properties, rice yield, and reduced cadmium mobilization and accumulation by rice: Biogeochemical investigations. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133486. [PMID: 38244456 DOI: 10.1016/j.jhazmat.2024.133486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/02/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Biochar is an eco-friendly amendment for the remediation of soils contaminated with cadmium (Cd). However, little attention has been paid to the influence and underlying mechanisms of the co-pyrolyzed biochar on the bioavailability and uptake of Cd in paddy soils. The current study explored the effects of biochar co-pyrolyzed from peanut shells (P) and maize straw (M) at different mixing ratios (1:0, 1:1, 1:2, 1:3, 0:1, 2:1 and 3:1, w/w), on the bacterial community and Cd fractionation in paddy soil, and its uptake by rice plant. Biochar addition, particularly P1M3 (P/M 1:3), significantly elevated soil pH and cation exchange capacity, transferred the mobile Cd to the residual fraction, and reduced Cd availability in the rhizosphere soil. P1M3 application decreased the concentration of Cd in different rice tissues (root, stem, leaf, and grain) by 30.0%- 49.4%, compared to the control. Also, P1M3 enhanced the microbial diversity indices and relative abundance of iron-oxidizing bacteria in the rhizosphere soil. Moreover, P1M3 was more effective in promoting the formation of iron plaque, increasing the Cd sequestration by iron plaque than other treatments. Consequently, the highest yield and lowest Cd accumulation in rice were observed following P1M3 application. This study revealed the feasibility of applying P1M3 for facilitating paddy soils contaminated with Cd.
Collapse
Affiliation(s)
- Weijie Xu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Xiaocui Xie
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Qi Li
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Renmin Road 58, Haikou 570228, China
| | - Jiajia Ren
- Agriculture and Rural of Jiaxing, Jiaxing 323500, China
| | - Yanping Shi
- Agriculture and Rural of Jiaxing, Jiaxing 323500, China
| | - Dan Liu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| |
Collapse
|
8
|
Garau M, Pinna MV, Nieddu M, Castaldi P, Garau G. Mixing Compost and Biochar Can Enhance the Chemical and Biological Recovery of Soils Contaminated by Potentially Toxic Elements. PLANTS (BASEL, SWITZERLAND) 2024; 13:284. [PMID: 38256837 PMCID: PMC10818981 DOI: 10.3390/plants13020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Biochar and compost are able to influence the mobility of potentially toxic elements (PTEs) in soil. As such, they can be useful in restoring the functionality of contaminated soils, albeit their effectiveness can vary substantially depending on the chemical and/or the (micro)biological endpoint that is targeted. To better explore the potential of the two amendments in the restoration of PTE-contaminated soils, biochar, compost (separately added at 3% w/w), and their mixtures (1:1, 3:1, and 1:3 biochar-to-compost ratios) were added to contaminated soil (i.e., 2362 mg kg-1 of Sb and 2801 mg kg-1 of Zn). Compost and its mixtures promoted an increase in soil fertility (e.g., total N; extractable P; and exchangeable K, Ca, and Mg), which was not found in the soil treated with biochar alone. All the tested amendments substantially reduced labile Zn in soil, while biochar alone was the most effective in reducing labile Sb in the treated soils (-11% vs. control), followed by compost (-4%) and biochar-compost mixtures (-8%). Compost (especially alone) increased soil biochemical activities (e.g., dehydrogenase, urease, and β-glucosidase), as well as soil respiration and the potential catabolic activity of soil microbial communities, while biochar alone (probably due to its high adsorptive capacity towards nutrients) mostly exhibited an inhibitory effect, which was partially mitigated in soils treated with both amendments. Overall, the biochar-compost combinations had a synergistic effect on both amendments, i.e., reducing PTE mobility and restoring soil biological functionality at the same time. This finding was supported by plant growth trials which showed increased Sb and Zn mineralomass values for rigid ryegrass (Lolium rigidum Gaud.) grown on biochar-compost mixtures, suggesting a potential use of rigid ryegrass in the compost-biochar-assisted phytoremediation of PTE-contaminated soils.
Collapse
Affiliation(s)
- Matteo Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| | - Maria Vittoria Pinna
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| | - Maria Nieddu
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
- Nucleo Ricerca Desertificazione, University of Sassari, 07100 Sassari, Italy
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| |
Collapse
|
9
|
Liu H, Li C, Lin Y, Chen YJ, Zhang ZJ, Wei KH, Lei M. Biochar and organic fertilizer drive the bacterial community to improve the productivity and quality of Sophora tonkinensis in cadmium-contaminated soil. Front Microbiol 2024; 14:1334338. [PMID: 38260912 PMCID: PMC10800516 DOI: 10.3389/fmicb.2023.1334338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Excessive Cd accumulation in soil reduces the production of numerous plants, such as Sophora tonkinensis Gagnep., which is an important and widely cultivated medicinal plant whose roots and rhizomes are used in traditional Chinese medicine. Applying a mixture of biochar and organic fertilizers improved the overall health of the Cd-contaminated soil and increased the yield and quality of Sophora. However, the underlying mechanism between this mixed fertilization and the improvement of the yield and quality of Sophora remains uncovered. This study investigated the effect of biochar and organic fertilizer application (BO, biochar to organic fertilizer ratio of 1:2) on the growth of Sophora cultivated in Cd-contaminated soil. BO significantly reduced the total Cd content (TCd) in the Sophora rhizosphere soil and increased the soil water content, overall soil nutrient levels, and enzyme activities in the soil. Additionally, the α diversity of the soil bacterial community had been significantly improved after BO treatment. Soil pH, total Cd content, total carbon content, and dissolved organic carbon were the main reasons for the fluctuation of the bacterial dominant species. Further investigation demonstrated that the abundance of variable microorganisms, including Acidobacteria, Proteobacteria, Bacteroidetes, Firmicutes, Chloroflexi, Gemmatimonadetes, Patescibacteria, Armatimonadetes, Subgroups_ 6, Bacillus and Bacillus_ Acidiceler, was also significantly changed in Cd-contaminated soil. All these alterations could contribute to the reduction of the Cd content and, thus, the increase of the biomass and the content of the main secondary metabolites (matrine and oxymatrine) in Sophora. Our research demonstrated that the co-application of biochar and organic fertilizer has the potential to enhance soil health and increase the productivity and quality of plants by regulating the microorganisms in Cd-contaminated soil.
Collapse
Affiliation(s)
- Han Liu
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Cui Li
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yang Lin
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yi-jian Chen
- The Third Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Zhan-jiang Zhang
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Kun-hua Wei
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ming Lei
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
10
|
Nain P, Purakayastha TJ, Sarkar B, Bhowmik A, Biswas S, Kumar S, Shukla L, Biswas DR, Bandyopadhyay KK, Agarwal BK, Saha ND. Nitrogen-enriched biochar co-compost for the amelioration of degraded tropical soil. ENVIRONMENTAL TECHNOLOGY 2024; 45:246-261. [PMID: 36045480 DOI: 10.1080/09593330.2022.2103742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Tropical soils are often deeply weathered and vulnerable to degradation having low pH and unfavorable Al/Fe levels, which can constrain crop production. This study aims to examine nitrogen-enriched novel biochar co-composts prepared from rice straw, maize stover, and gram residue in various mixing ratios of the biochar and their feedstock materials for the amelioration of acidic tropical soil. Three pristine biochar and six co-composts were prepared, characterized, and evaluated for improving the chemical and biological quality of the soil against a conventional lime treatment. The pH, cation exchange capacity (CEC), calcium carbonate equivalence (CCE) and nitrogen content of co-composts varied between 7.78-8.86, 25.3-30.5 cmol (p+) kg-1, 25.5-30.5%, and 0.81-1.05%, respectively. The co-compost prepared from gram residue biochar mixed with maize stover at a 1:7 dry-weight ratio showed the highest rise in soil pH and CEC, giving an identical performance with the lime treatment and significantly better effect (p < .05) than the unamended control. Agglomerates of calcite and dolomite in biochar co-composts, and surface functional groups contributed to pH neutralization and increased CEC of the amended soil. The co-composts also significantly (p < .05) increased the dehydrogenase (1.87 µg TPF g-1 soil h-1), β-glucosidase (90 µg PNP g-1 soil h-1), and leucine amino peptidase (3.22 µmol MUC g-1 soil h-1) enzyme activities in the soil, thereby improving the soil's biological quality. The results of this study are encouraging for small-scale farmers in tropical developing countries to sustainably reutilize crop residues via biochar-based co-composting technology.
Collapse
Affiliation(s)
- Pooja Nain
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - T J Purakayastha
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Arpan Bhowmik
- Division of Design of Experiments, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, Delhi, India
| | - Sunanda Biswas
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Sarvendra Kumar
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Livleen Shukla
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - D R Biswas
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - K K Bandyopadhyay
- Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - B K Agarwal
- Department of Soil Science and Agricultural Chemistry, Birsa Agricultural University, Ranchi, Jharkhand, India
| | - Namita Das Saha
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| |
Collapse
|
11
|
Li X, Jeyakumar P, Bolan N, Huang L, Rashid MS, Liu Z, Wei L, Wang H. Biochar Derived from Urban Green Waste Can Enhance the Removal of Cd from Water and Reduce Soil Cd Bioavailability. TOXICS 2023; 12:8. [PMID: 38276721 PMCID: PMC10819508 DOI: 10.3390/toxics12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
The beneficial utilization of potentially increasing urban green waste (UGW) is critical for sustainable urban development in China. In this study, UGW was pyrolyzed at different temperatures, and the resulting biochar was used to amend Cd-contaminated soils to grow cabbage. Our results showed that the Cd adsorption capacity of UGW-biochar was positively correlated with the surface area, O/C, and (O+N)/C value of biochar. Furthermore, UGW-biochar was incorporated into three Cd-contaminated soils, including one acidic soil and two neutral soils, to assess its impact on the availability of Cd. The most substantial reduction in the concentration of available Cd was observed in the acidic soil, of the three tested soils. In the neutral soils, a more substantial reduction was found in the heavily Cd-contaminated soil compared to the lightly Cd-contaminated soil. UGW-biochar amendments to the three Cd-contaminated soils resulted in an increase in the cabbage biomass in acidic soil, whereas in neutral soils, it increased in lightly contaminated soils but decreased in heavily contaminated soils. Additionally, the Cd bioaccumulation factor (BCF), translocation factor (TF), and removal efficiency (RE), as impacted by the biochar application, were calculated in the lightly Cd-contaminated soil-cabbage system. The BCF decreased from 5.84 to 3.80 as the dosage of the UGW-biochar increased from 0% to 3%, indicating that the UGW-biochar immobilized Cd and reduced its bioaccumulation in cabbage roots. Based on our investigations, UGW-biochar effectively immobilizes Cd by reducing its mobility and bioavailability in a lightly contaminated environment matrix.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Plant Nutrition, and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (L.H.); (M.S.R.)
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture & Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand;
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Lianxi Huang
- Key Laboratory of Plant Nutrition, and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (L.H.); (M.S.R.)
| | - Muhammad Saqib Rashid
- Key Laboratory of Plant Nutrition, and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (L.H.); (M.S.R.)
| | - Zhongzhen Liu
- Key Laboratory of Plant Nutrition, and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (L.H.); (M.S.R.)
| | - Lan Wei
- Key Laboratory of Plant Nutrition, and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (L.H.); (M.S.R.)
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China;
- Guangdong Provincial Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
12
|
Zhou B, Zhang T, Wang F. Unravelling the molecular and biochemical responses in cotton plants to biochar and biofertilizer amendments for Pb toxicity mitigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100799-100813. [PMID: 37644262 DOI: 10.1007/s11356-023-29382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Over the past few years, there has been a rising interest in employing biochar (BC) and biofertilizers (BF) as a means of restoring soils that have been polluted by heavy metals. The primary objective of this study was to examine how the application of BC and BF affects the ability of cotton plants to withstand Pb toxicity at varying concentrations (0, 500, and 1000 mg/kg soil). The findings revealed that exposure to Pb stress, particularly at the 1000 mg/kg level, led to a decline in the growth and biomass of cotton plants. Pb toxicity triggered oxidative damage, impaired the photosynthetic apparatus, and diminished the levels of photosynthetic pigments. By increasing the expression of Rubisco-S, Rubisco-L, P5CR, and PRP5 genes and regulating proline metabolism, BC and BF increased the levels of proline and photosynthetic pigments and protected the photosynthetic apparatus. The application of BC and BF resulted in an upregulation of genes such as CuZnSOD, FeSOD, and APX1, as well as an increase in the activity of the glyoxalase system and antioxidant enzymes. These changes enhanced the antioxidant capacity of the plants and provided protection to membrane lipids from oxidative stress caused by Pb. The inclusion of BC and BF offered protection to photosynthesis and other essential intracellular processes in leaves by minimizing the transfer of Pb to leaves and promoting the accumulation of thiol compounds. This protective effect helped mitigate the negative impact of the toxic metal Pb on leaf function. By improving plant tolerance, reducing metal transfer, strengthening the antioxidant defense system, and enhancing the level of protective substances, these amendments show promise as valuable tools in tackling heavy metal pollution.
Collapse
Affiliation(s)
- Biao Zhou
- Urban and Rural Construction Institute, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Tiejian Zhang
- Urban and Rural Construction Institute, Hebei Agricultural University, Baoding, 071000, Hebei, China.
| | - Fei Wang
- College of Modern Science and Technology, Hebei Agricultural University, Baoding, 071000, Hebei, China
| |
Collapse
|
13
|
Radziemska M, Gusiatin MZ, Cydzik-Kwiatkowska A, Blazejczyk A, Holatko J, Brtnicky M. Does biochar in combination with compost effectively promote phytostabilization of heavy metals in soil under different temperature regimes? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163634. [PMID: 37088391 DOI: 10.1016/j.scitotenv.2023.163634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The article presents the effect of a combined amendment, i.e., biochar+compost (BC), on the process of Cd, Cu, Ni, Pb and Zn immobilization in soil cultivated with L. perenne under freezing and thawing conditions (FTC). In particular, the speciation analysis of the examined elements in phytostabilized soils based on their response using the sequential extraction, and the variability of the soil microbiome using 16S rRNA gene amplicon sequencing were systematically assessed. Metal stability in soils was evaluated by the reduced distribution index (Ir). Plants were grown in pots for 52 days under greenhouse conditions. After termination, phytostabilization was continued in a temperature chamber for 64 days to provide FTC. As a result, it was noted that biomass yield of L. perenne was promoted by BC (39 % higher than in the control pots) and reduced by FTC (45 % lower than in the BC-enriched soil not exposed to FTC). An efficacious level of phytostabilization, i.e., higher content of heavy metals in plant roots, was found in the BC-enriched soil, regardless of the changes in soil temperature conditions. BC improved soil pH before applying FTC more than after applying FTC. BC had the greatest impact on increasing Cu stability by redistributing it from the F1 and F2 fractions to the F3 and F4 fractions. For most metals, phytostabilization under FTC resulted in an increase in the proportion of the F1 fraction and a decrease in its stability. Only for Pb and Zn, FTC had greater impact on their stability than BC addition. In all soil samples, the core genera with about 2-3 % abundances were Sphingomonas sp. and Mycobacterium sp. FTC favored the growth of Bacteroidetes and Proteobacteria in soil. Microbial taxa that coped well with FTC but only in the absence of BC were Rhodococcus, Alkanindiges sp., Flavobacterium sp., Williamsia sp. Thermomonas sp.
Collapse
Affiliation(s)
- Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Mariusz Z Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-719 Olsztyn, Poland
| | - Agnieszka Cydzik-Kwiatkowska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Aurelia Blazejczyk
- Institute of Civil Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic; Agrovyzkum Rapotin, Ltd., Vyzkumniku 267, 788 13 Rapotin, Czech Republic
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| |
Collapse
|
14
|
Meng Z, Huang S, Mu W, Wu J, Lin Z. Quantitative transport and immobilization of cadmium in saturated-unsaturated soils with the combined application of biochar and organic fertilizer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47221-47233. [PMID: 36735122 DOI: 10.1007/s11356-023-25342-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
In this study, cadmium (Cd) transport and immobilization on passivators (biochar, organic fertilizer) and soils under saturated-unsaturated conditions were independently analyzed. The results showed that the Cd adsorption capacities of biochar and organic fertilizer were comparable in acidic soils. But in alkaline soils, the Cd adsorption capacity of organic fertilizer was significantly larger than that of biochar. In acidic soils, passivators effectively immobilized Cd, and the total net effects were in the order: combination (44.05-58.13%) > 3% biochar (31.96-46.88%) > 3% organic fertilizer (28.78-41.82%). In alkaline soils, all treatments had negative effects on Cd immobilization. For acidic soils, the immobilization of Cd was mainly attributed to the passivators, and the positive contribution percentages of relatively stable Cd increase by passivators were 81.05-100%, while those by soils were 0-18.95%. For alkaline soils, after the treatments of passivators, although a considerable amount of Cd was immobilized inside the passivator, Cd was activated more inside the soil. Therefore, it is noteworthy that soil conditions must be fully considered when applying biochar and organic fertilizers for Cd remediation.
Collapse
Affiliation(s)
- Zhuowen Meng
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuang Huang
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China.
| | - Wenting Mu
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China
| | - Jingwei Wu
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhongbing Lin
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
15
|
Efficient Remediation of Cadmium Contamination in Soil by Functionalized Biochar: Recent Advances, Challenges, and Future Prospects. Processes (Basel) 2022. [DOI: 10.3390/pr10081627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heavy metal pollution in soil seriously harms human health and animal and plant growth. Among them, cadmium pollution is one of the most serious issues. As a promising remediation material for cadmium pollution in soil, functionalized biochar has attracted wide attention in the last decade. This paper summarizes the preparation technology of biochar, the existing forms of heavy metals in soil, the remediation mechanism of biochar for remediating cadmium contamination in soil, and the factors affecting the remediation process, and discusses the latest research advances of functionalized biochar for remediating cadmium contamination in soil. Finally, the challenges encountered by the implementation of biochar for remediating Cd contamination in soil are summarized, and the prospects in this field are highlighted for its expected industrial large-scale implementation.
Collapse
|
16
|
Switchgrass and Giant Reed Energy Potential when Cultivated in Heavy Metals Contaminated Soils. ENERGIES 2022. [DOI: 10.3390/en15155538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cultivation of energy crops on degraded soils contributes to reduce the risks associated with land use change, and the biomass may represent an additional revenue as a feedstock for bioenergy. Switchgrass and giant reed were tested under 300 and 600 mg Cr kg−1, 110 and 220 mg Ni kg−1, and 4 and 8 mg Cd kg−1 contaminated soils, in a two year pot experiment. Switchgrass yields (average aerial 330 g.m−2 and below ground 430 g.m−2), after the second year harvest, were not affected by Cd contamination and 110 mg Ni kg−1, but 220 mg Ni kg−1 significantly affected the yields (55–60% reduction). A total plant loss was observed in Cr-contaminated pots. Giant reed aboveground yields (control: 410 g.m−2), in the second year harvest, were significantly affected by all metals and levels of contamination (30–70% reduction), except in 110 mg Ni kg−1 pots. The belowground biomass yields (average 1600 g.m−2) were not affected by the tested metals. Contamination did not affect the high heating value (HHV) of switchgrass (average 18.4 MJ.kg−1) and giant reed aerial fractions (average 18.9 MJ.kg−1, stems, and 18.1 MJ.kg−1, leaves), harvested in the second year, indicating that the biomass can be exploited for bioenergy.
Collapse
|
17
|
Gao Y, Wu P, Jeyakumar P, Bolan N, Wang H, Gao B, Wang S, Wang B. Biochar as a potential strategy for remediation of contaminated mining soils: Mechanisms, applications, and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:114973. [PMID: 35398638 DOI: 10.1016/j.jenvman.2022.114973] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Soil heavy metal contamination caused by mining activities is a global issue. These heavy metals can be enriched in plants and animals through the food chain, and eventually transferred to the human system and threatening public health. Biochar, as an environmentally friendly soil remediation agent, can effectively immobilize heavy metals in soil. However, most researchers concern more about the remediation effect and mechanism of biochar for industrial and agricultural contaminated soil, while related reviews focusing on mining soil remediation are limited. Furthermore, the remediation effect of soil in mining areas is affected by many factors, such as physicochemical properties of biochar, pyrolysis conditions, soil conditions, mining environment and application method, which can lead to great differences in the remediation effect of biochar in diverse mining areas. Therefore, it is necessary to systematically unravel the relevant knowledge of biochar remediation, which can also provide a guide for future studies on biochar remediation of contaminated soils in mining areas. The present paper first reviews the negative effects of mining activities on soil and the advantages of biochar relative to other remediation methods, followed by the mechanism and influencing factors of biochar on reducing heavy metal migration and bioavailability in mining soil were systematically summarized. Finally, the main research directions and development trends in the future are pointed out, and suggestions for future development are proposed.
Collapse
Affiliation(s)
- Yining Gao
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Pan Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Key Laboratory of Karst Environment and Geohazard, Ministry of Natural Resources, Guiyang, 550025, Guizhou, China
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Nanthi Bolan
- The Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, USA
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Bing Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Key Laboratory of Karst Environment and Geohazard, Ministry of Natural Resources, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
18
|
Effects of Phosphate, Red Mud, and Biochar on As, Cd, and Cu Immobilization and Enzymatic Activity in a Co-Contaminated Soil. Processes (Basel) 2022. [DOI: 10.3390/pr10061127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Arsenic (As), cadmium (Cd), and copper (Cu) are the primary inorganic pollutants commonly found in contaminated soils. The simultaneous stabilization of the three elements is a preferred approach for mixture-contaminated soils which has received extensive research attention. However, few studies have focused on the immobilization efficiency of a single amendment on the three elements. In this study, phosphate, red mud, and biochar were used to remediate As (237.8 mg kg−1), Cd (28.72 mg kg−1), and Cu (366.5 mg kg−1) co-contaminated soil using a 180-day incubation study. The BCR (European Community Bureau of Reference) extraction method, NH4H2PO4–extractable As, and diethylenetriamine penta-acetic acid (DTPA)–extractable Cd and Cu were analyzed at different time intervals. The results indicated that the application of red mud and biochar significantly reduced soil DTPA–Cd and Cu concentrations during the incubation, while the decrease in soil NH4H2PO4–As was much less than that of soil DTPA–Cd and Cu. After 180 days of incubation, the concentrations of NH4H2PO4–As in red mud and biochar treatments decreased by 2.15~7.89% and 3.01~9.63%, respectively. Unlike red mud and biochar, phosphate significantly reduced the concentration of soil DTPA–Cd and Cu, but failed to lower that of As. The BCR extraction method confirmed that red mud and biochar addition increased the reducible fraction of As due to the surface complexes of As with Fe oxide. Canonical correspondence analysis (CCA) demonstrated that soil pH in addition to available As, Cd, and Cu concentrations were the primary factors in driving the changes in soil enzymatic activity. Soil pH showed positive correlation with soil urease and catalase activities, while negative correlation was observed between soil-available As, Cd, and Cu, and soil enzyme activities. This study revealed that it is difficult to simultaneously and significantly reduce the bioavailabilities of soil As, Cd, and Cu using one amendment. Further research on modifying these amendments or applying combined amendments will be conducted, in order to develop an efficient method for simultaneously immobilizing As, Cd, and Cu.
Collapse
|
19
|
Tanveer K, Ilyas N, Akhtar N, Yasmin H, Hefft DI, El-Sheikh MA, Ahmad P. Role of biochar and compost in cadmium immobilization and on the growth of Spinacia oleracea. PLoS One 2022; 17:e0263289. [PMID: 35613105 PMCID: PMC9132307 DOI: 10.1371/journal.pone.0263289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/17/2022] [Indexed: 01/24/2023] Open
Abstract
This research was carried out to evaluate the effect of biochar and compost application on Spinacia oleracea growth in cadmium contaminated soil. Cd toxicity decreased plant growth and biomass significantly and also negatively affected the physiological and biochemical attributes of plants. However, the application of biochar and compost improved the contaminated soil by reducing Cd toxicity and causing its immobilization, which in turn improved plant growth. The combined application of biochar and compost significantly (p < 0.05) enhanced biomass and photosynthetic pigments development in plants. The treatments also increased membrane stability index by 45.12% and enhanced water using efficiency by 218.22%, respectively. The increase in antioxidant activities was 76.03%, 29.02%, and 123.27% in superoxide dismutase, peroxidase, and catalase, respectively. The combined application also reduced the cadmium content (reduced 40.14% in root and 51.16% shoot), its translocation (19.67% decrease), and bioaccumulation (52.63% and 40.32% decrease in Cd content in shoot and root, respectively) in spinach plant. Among the two selected varieties of S. oleracea, Desi palak (V1) performed better as compared to Kanta palak (V2). It can be concluded that the combined application of biochar and compost is one of the best strategies to reduce the toxicity level of Cd in plants and to improve their growth.
Collapse
Affiliation(s)
- Kinza Tanveer
- Department of Botany, PMAS-Arid University Rawalpindi, Rawalpindi, Pakistan
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid University Rawalpindi, Rawalpindi, Pakistan
- * E-mail: (NI); (PA)
| | - Nosheen Akhtar
- Department of Botany, PMAS-Arid University Rawalpindi, Rawalpindi, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Daniel Ingo Hefft
- University Centre Reaseheath, Food and Agricultural Sciences, Reaseheath College, Nantwich, United Kingdom
| | - Mohamed A. El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Srinagar, Jammu and Kashmir, India
- * E-mail: (NI); (PA)
| |
Collapse
|
20
|
Barley Straw Biochar and Compost Affect Heavy Metal Transport in Soil and Uptake by Potatoes Grown under Wastewater Irrigation. SUSTAINABILITY 2022. [DOI: 10.3390/su14095665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wastewater can supplement freshwater in agriculture; however, it contains toxic heavy metals such as cadmium, chromium, and lead that are hazardous to humans and the environment. We investigated the effects of barley straw biochar, green and table waste compost, and their mix on heavy metal transport in soil and uptake by potatoes (Solanum tuberosum L.) irrigated with synthetic wastewater for two years. In both years, amending soil with compost significantly reduced (p ≤ 0.05) cadmium uptake in potato flesh, skin, roots, and stems; zinc uptake in potato skin and roots; and copper uptake in potato flesh due to increased soil cation-exchange capacity, dissolved organic carbon, and soil pH. Co-amending the soil with compost and 3% biochar significantly reduced (p ≤ 0.05) the bioavailability of cadmium, copper, and zinc in the contaminated soil. Relative to the non-amended soils, soil amendment with biochar, compost, and their mix affected neither the transport of chromium, iron, and lead in the soils nor their uptake by potatoes. It was concluded that amending soil with barley straw biochar and/or compost produced from city green table waste could be used to improve the safety of wastewater irrigated potatoes, depending on the biochar application rate and heavy metal type.
Collapse
|
21
|
Chen L, Li X, Peng Y, Xiang P, Zhou Y, Yao B, Zhou Y, Sun C. Co-application of biochar and organic fertilizer promotes the yield and quality of red pitaya (Hylocereus polyrhizus) by improving soil properties. CHEMOSPHERE 2022; 294:133619. [PMID: 35041821 DOI: 10.1016/j.chemosphere.2022.133619] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the combined impact of biochar and organic fertilizer on the soil properties, yield and quality of red pitaya (Hylocereus polyrhizus). A two-year (2019 and 2020) field experiment was conducted to study the effects of 3 rates of biochar (with carbon fertilizer ratios of 0%, 3%, and 6% w/w) combined with 3 levels of organic fertilizer (22.5, 45, and 90 t ha-1) on soil properties, along with red pitaya yield and quality. The results showed that soil pH, total organic carbon, available nutrients (N, P, and K), the yield and qualities (reduced sugar, soluble protein, and soluble solid) of red pitaya increased with the application of organic fertilizer compared with no application of biochar and organic fertilizer (CK treatment), but the combined application of biochar and organic fertilizer was more effective than their sole application. Furthermore, a medium dose of organic fertilizer combined with 3% biochar (C3F2 treatment) and a high dose of organic fertilizer combined with 3% biochar (C3F3 treatment) had the highest yields of red pitaya in 2019 and 2020. However, an application of 6% biochar with a low dose of organic fertilizer treatment (C6F1) had the highest profit in 2020, not the C3F3 treatment. The highest profits were observed in the C3F2 (71.0 × 103 RMB·t-1) and C6F1 (51.2 × 103 RMB·t-1) treatments. From the point of view of red pitaya yield and economic benefits, 3% biochar +45 t ha-1 organic fertilizer was the recommended combination that showed the best synergistic effect.
Collapse
Affiliation(s)
- Limei Chen
- School of Ecology and Environment, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Xiaoying Li
- School of Ecology and Environment, Southwest Forestry University, Kunming, Yunnan, 650224, China.
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong, 523758, China
| | - Ping Xiang
- School of Ecology and Environment, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Yuzhou Zhou
- School of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Bin Yao
- School of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yaoyu Zhou
- School of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Chaoran Sun
- School of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
22
|
Plunkett SA, Eckley CS, Luxton TP, Johnson MG. The effects of biochar and redox conditions on soil Pb bioaccessibility to people and waterfowl. CHEMOSPHERE 2022; 294:133675. [PMID: 35066080 PMCID: PMC9942605 DOI: 10.1016/j.chemosphere.2022.133675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 05/03/2023]
Abstract
Biochar can reduce lead (Pb) bioavailability to plants in metal-contaminated soil, but the ability of biochar to reduce the bioavailability of soil Pb to people and wildlife remains unknown. In this study, 17 biochars were evaluated as in situ amendments for three soils with distinct sources of Pb contamination (smelter emissions, ceramics waste, mining waste), hydrology (upland, well-drained soil vs submerged wetland soil), and biological receptors (human vs waterfowl). Biochars were made from blends of 30% manure (poultry litter or dairy manure) and 70% lignocellulosic material (wheat straw or grand fir shavings) and pyrolyzed at 300, 500, 700, and 900 °C. Soils were amended with 2% biochar (w/w) and incubated for 6 months. A suite of standard (e.g., EPA Method 1340) and experimental soil Pb bioaccessibility assays were used to assess the impact of the treatments. The results showed that biochar amendments to upland soils resulted in modest reductions in gastrointestinal Pb bioaccessibility (maximum reduction from 78 to 68% bioaccessibility as a percent of total, EPA Method 1340 at pH 2.5). In the wetland soil, sample redox status had a greater impact on Pb bioaccessibility than any amendment. Low-solubility Pb sulfides in this soil oxidized over the course of the study and no treatment was able to offset the increase in Pb bioaccessibility caused by this oxidation. The impact of redox status on Pb bioaccessibility was only evident when soil bioaccessibility assays were adapted to preserve sample redox status. This result highlights the importance of maintaining in situ redox conditions when processing/analyzing samples from low-oxygen environments and that soil remediation efforts should consider the role of redox conditions on Pb bioaccessibility.
Collapse
Affiliation(s)
- Shannon A Plunkett
- Oak Ridge Institute for Science and Education (ORISE) Fellow, c/o U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, 200 SW 35th St, Corvallis, OR, 97333, USA; Duke University, Department of Civil and Environmental Engineering, 121 Hudson Hall, 100 Science Drive, Durham, NC, 27710, USA.
| | - Chris S Eckley
- U.S. Environmental Protection Agency, Region 10, 14 Park Place Building, 1200 6th Ave, Seattle, WA, 98101, USA.
| | - Todd P Luxton
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Land Remediation and Technology Division. 5995 Center Hill Ave, Cincinnati, OH, 45224, USA.
| | - Mark G Johnson
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, 200 SW 35th St, Corvallis, OR, 97333, USA.
| |
Collapse
|
23
|
Shaari NEM, Tajudin MTFM, Khandaker MM, Majrashi A, Alenazi MM, Abdullahi UA, Mohd KS. Cadmium toxicity symptoms and uptake mechanism in plants: a review. BRAZ J BIOL 2022; 84:e252143. [PMID: 35239785 DOI: 10.1590/1519-6984.252143] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Cadmium (Cd) is one of non-essential heavy metals which is released into environment naturally or anthropogenically. It is highly persistent toxic metals that are exceptionally distressing industrial and agriculture activities by contaminating soil, water and food. Its long-duration endurance in soil and water results in accumulation and uptake into plants, leading to the food chain. This becomes a serious global problem threatening humans and animals as food chain components. Living organisms, especially humans, are exposed to Cd through plants as one of the main vegetative food sources. This review paper is concentrated on the symptoms of the plants affected by Cd toxicity. The absorption of Cd triggers several seen and unseen symptoms by polluted plants such as stunted growth, chlorosis, necrosis and wilting. Apart from that, factors that affect the uptake and translocation of Cd in plants are elaborated to understand the mechanism that contributes to its accumulation. By insight of Cd accumulation, this review also discussed the phytoremediation techniques-phytoextraction, phytostimulation, phytostabilization, phytovolatization and rhizofiltration in bioremediating the Cd.
Collapse
Affiliation(s)
- N E M Shaari
- Universiti Sultan Zainal Abidin, School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Besut, Terengganu, Malaysia
| | - M T F M Tajudin
- Universiti Sultan Zainal Abidin, School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Besut, Terengganu, Malaysia
| | - M M Khandaker
- Universiti Sultan Zainal Abidin, School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Besut, Terengganu, Malaysia
| | - A Majrashi
- Taif University, Faculty of Science, Department of Biology, Taif, Saudi Arabia
| | - M M Alenazi
- King Saud University, College of Food and Agricultural Sciences, Plant Production Department, Riyadh, Saudi Arabia
| | - U A Abdullahi
- Universiti Sultan Zainal Abidin, School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Besut, Terengganu, Malaysia
| | - K S Mohd
- Universiti Sultan Zainal Abidin, School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Besut, Terengganu, Malaysia
| |
Collapse
|
24
|
Ducey TF, Sigua GC, Novak JM, Ippolito JA, Spokas KA, Johnson MG. Microbial Response to Phytostabilization in Mining Impacted Soils Using Maize in Conjunction with Biochar and Compost. Microorganisms 2021; 9:2545. [PMID: 34946145 PMCID: PMC8707346 DOI: 10.3390/microorganisms9122545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Even after remediation, mining impacted soils can leave behind a landscape inhospitable to plant growth and containing residual heavy metals. While phytostabilization can be used to restore such sites by limiting heavy metal spread, it is reliant on soil capable of supporting plant growth. Manure-based biochars, coupled with compost, have demonstrated the ability to improve soil growth conditions in mine impacted soils, however there is a paucity of information regarding their influence on resident microbial populations. The objective of this study was to elucidate the impact of these soil amendments on microbial community structure and function in mine impacted soils placed under phytostabilization management with maize. To this aim, a combination of phospholipid fatty acid (PLFA) and enzymatic analyses were performed. Results indicate that microbial biomass is significantly increased upon addition of biochar and compost, with maximal microbial biomass achieved with 5% poultry litter biochar and compost (62.82 nmol g-1 dry soil). Microbial community structure was impacted by biochar type, rate of application, and compost addition, and influenced by pH (r2 = 0.778), EC (r2 = 0.467), and Mg soil concentrations (r2 = 0.453). In three of the four enzymes analyzed, poultry litter biochar treatments were observed with increased activity rates that were often significantly greater than the unamended control. Overall, enzyme activities rates were influenced by biochar type and rate, and addition of compost. These results suggest that using a combination of biochar and compost can be utilized as a management tool to support phytostabilization strategies in mining impacted soils.
Collapse
Affiliation(s)
- Thomas F. Ducey
- Coastal Plains Soil, Water, and Plant Research Center, ARS-USDA, Florence, SC 29501, USA; (G.C.S.); (J.M.N.)
| | - Gilbert C. Sigua
- Coastal Plains Soil, Water, and Plant Research Center, ARS-USDA, Florence, SC 29501, USA; (G.C.S.); (J.M.N.)
| | - Jeffrey M. Novak
- Coastal Plains Soil, Water, and Plant Research Center, ARS-USDA, Florence, SC 29501, USA; (G.C.S.); (J.M.N.)
| | - James A. Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Kurt A. Spokas
- National Forage Seed Production Research Center, ARS-USDA, St. Paul, MN 55105, USA;
| | - Mark G. Johnson
- Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, United States Environmental Protection Agency, Corvallis, OR 97333, USA;
| |
Collapse
|
25
|
McKenna AM, Chacón-Patiño ML, Chen H, Blakney GT, Mentink-Vigier F, Young RB, Ippolito JA, Borch T. Expanding the Analytical Window for Biochar Speciation: Molecular Comparison of Solvent Extraction and Water-Soluble Fractions of Biochar by FT-ICR Mass Spectrometry. Anal Chem 2021; 93:15365-15372. [PMID: 34761922 DOI: 10.1021/acs.analchem.1c03058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biochar, a low-density yet carbon-rich material derived from different organic materials pyrolyzed under low or no oxygen conditions, has been widely studied as a soil amendment, for greenhouse gas mitigation and in remediation of trace element-contaminated soils. Molecular speciation of biochar compounds has been challenging due to low solubility, aggregation, and immense compositional polydispersity that challenges nearly all mass spectrometry methods routinely applied to carbon-based organic materials. Through a combined technique approach that applies advanced analytical strategies, we provide bulk and molecular characterization of Kentucky bluegrass biochar that can be applied to any biomass or biochar sample. First, we characterize Kentucky bluegrass biochar chemical functional groups by solid-state magic-angle spinning dynamic nuclear polarization NMR (MAS-DNP NMR) and resolve aromatic and aliphatic signals from the pyrogenic material and intact plant material. Next, we isolate water-soluble biochar species by solid-phase extraction followed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and identify highly polar, oxygen species across a wide carbon number range. Solvent fractionation of biochar further expands the compositional range and identifies condensed polycyclic aromatic species across nonpolar and polar classes detected by two ionization modes (-ESI and +APPI) by FT-ICR MS. Plotting biochar species with DBE versus carbon number highlights the pericondensed molecular structural motif that persists across numerous heteroatom classes and ionization modes. To the best of our knowledge, this is the first molecular level identification of nonfunctionalized PAHs in biochar extracts by APPI FT-ICR MS. Thus, we identify biochar species that span the same compositional space as coal, heavy oil asphaltenes, and coal tar and correspond to condensed ring PAHs.
Collapse
Affiliation(s)
- Amy M McKenna
- Ion Cyclotron Resonance Facility, Florida State University, National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., Tallahassee, Florida 32310-4005, United States.,Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523-1170, United States
| | - Martha L Chacón-Patiño
- Ion Cyclotron Resonance Facility, Florida State University, National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., Tallahassee, Florida 32310-4005, United States
| | - Huan Chen
- Ion Cyclotron Resonance Facility, Florida State University, National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., Tallahassee, Florida 32310-4005, United States
| | - Gregory T Blakney
- Ion Cyclotron Resonance Facility, Florida State University, National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., Tallahassee, Florida 32310-4005, United States
| | - Frederic Mentink-Vigier
- Nuclear Magnetic Resonance Facility, Florida State University, National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., Tallahassee, Florida 32310-4005, United States
| | - Robert B Young
- Chemical Analysis & Instrumentation Laboratory, New Mexico State University, MSC 3RES, Las Cruces NM 88003, United States
| | - James A Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523-1170, United States
| | - Thomas Borch
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523-1170, United States.,Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
26
|
Naveed M, Tanvir B, Xiukang W, Brtnicky M, Ditta A, Kucerik J, Subhani Z, Nazir MZ, Radziemska M, Saeed Q, Mustafa A. Co-composted Biochar Enhances Growth, Physiological, and Phytostabilization Efficiency of Brassica napus and Reduces Associated Health Risks Under Chromium Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:775785. [PMID: 34868175 PMCID: PMC8637747 DOI: 10.3389/fpls.2021.775785] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 05/06/2023]
Abstract
Among heavy metals, chromium (Cr) contamination is increasing gradually due to the use of untreated industrial effluents for irrigation purposes, thereby posing a severe threat to crop production. This study aimed to evaluate the potential of compost, biochar (BC), and co-composted BC on the growth, physiological, biochemical attributes, and health risks associated with the consumption of Brassica grown on Cr-contaminated soil. Results revealed that Cr stress (Cr-25) significantly reduced the growth and physiological attributes and increased antioxidant enzyme activities in Brassica, but the applied amendments considerably retrieved the negative effects of Cr toxicity through improving the growth and physiology of plants. The maximum increase in plant height (75.3%), root length (151.0%), shoot dry weight (139.4%), root dry weight (158.5%), and photosynthetic rate (151.0%) was noted with the application of co-composted BC under Cr stress (Cr-25) in comparison to the control. The application of co-composted BC significantly reduced antioxidant enzyme activities, such as APX (42.5%), GP (45.1%), CAT (45.4%), GST (47.8%), GR (47.1%), and RG (48.2%), as compared to the control under Cr stress. The same treatment reduced the accumulation of Cr in grain, shoot, and roots of Brassica by 4.12, 2.27, and 2.17 times and enhanced the accumulation in soil by 1.52 times as compared to the control. Moreover, the application of co-composted BC significantly enhanced phytostabilization efficiency and reduced associated health risks with the consumption of Brassica. It is concluded that the application of co-composted BC in Cr-contaminated soil can significantly enhance the growth, physiological, and biochemical attributes of Brassica by reducing its uptake in plants and enhanced phytostabilization efficiency. The tested product may also help in restoring the soils contaminated with Cr.
Collapse
Affiliation(s)
- Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Bisma Tanvir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Wang Xiukang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Faculty of Chemistry, Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Brno, Czechia
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Upper Dir, Pakistan
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jiri Kucerik
- Faculty of Chemistry, Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Brno, Czechia
| | - Zinayyera Subhani
- Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Zubair Nazir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Maja Radziemska
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Warsaw, Poland
| | - Qudsia Saeed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Adnan Mustafa
- Biology Centre, The Soil and Water Research Infrastructure (SoWa RI), Czech Academy of Sciences, Ceske Budejovice, Czechia
| |
Collapse
|
27
|
Azeem M, Ali A, Arockiam Jeyasundar PGS, Bashir S, Hussain Q, Wahid F, Ali EF, Abdelrahman H, Li R, Antoniadis V, Rinklebe J, Shaheen SM, Li G, Zhang Z. Effects of sheep bone biochar on soil quality, maize growth, and fractionation and phytoavailability of Cd and Zn in a mining-contaminated soil. CHEMOSPHERE 2021; 282:131016. [PMID: 34090005 DOI: 10.1016/j.chemosphere.2021.131016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Biochar prepared from various feedstock materials has been utilized in recent years as a potential stabilizing agent for heavy metals in smelter-contaminated soils. However, the effectiveness of animal bone-derived biochar and its potential for the stabilization of contaminants remains unclear. In the present study, sheep bone-derived biochar (SB) was prepared at low (500 °C; SBL) and high temperatures (800 °C; SBH) and amended a smelter-contaminated soil at 2, 5, and 10% (w/w). The effects of SB on soil properties, bioavailable Zn and Cd and their geochemical fractions, bacterial community composition and activity, and the response of plant attributes (pigments and antioxidant activity) were assessed. Results showed that the SBH added at 10% (SBH10) increased soil organic carbon, total nitrogen, and phosphorus, and also increased the oxidizable and residual Zn and Cd fractions at the expense of the bioavailable fractions. The SBH10 lowered the Zn and Cd contents in maize roots (by 57 and 60%) and shoot (by 42 and 61%), respectively, compared to unamended control. Additionally, SBH10 enhanced urease (98%) and phosphates (107%) activities, but reduced dehydrogenase (58%) and β-glucosidase (30%) activities. Regarding the effect of the pyrolysis temperature, SBH enhanced the activity of Acidobacteria, Bacteroidetes, Firmicutes, Nitrospirae, Verrucomicrobia, Chlorobi, and Microgenomates, but reduced Actinobacteria and Parcubacteria in comparison to SBL. However, only the SBL10 reduced the Proteobacteria community (by 9%). In conclusion, SB immobilized Zn and Cd in smelter-affected soils, enhanced the bacterial abundance and microbial function (urease, phosphates), and improved plant growth. However, validation of the results, obtained from the pot experiment, under field conditions is suggested.
Collapse
Affiliation(s)
- Muhammad Azeem
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observatory and Monitoring Station, Chinese Academy of Sciences, Ningbo, 315830, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | | | - Saqib Bashir
- Department of Soil and Environmental Science, Ghazi University, Dera Ghazi Khan, 32200, Punjab, Pakistan
| | - Qaiser Hussain
- Institute of Soil Science, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46300, Punjab, Pakistan
| | - Fazli Wahid
- Department of Agriculture, University of Swabi, Swabi, 23340, Pakistan
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza, 12613, Egypt
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, Guangjin-Gu, Seoul, 05006, Republic of Korea; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India.
| | - Saby M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah, 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516, Kafr El-Sheikh, Egypt.
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observatory and Monitoring Station, Chinese Academy of Sciences, Ningbo, 315830, China.
| | - Zenqqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
28
|
Bashir MA, Naveed M, Ashraf S, Mustafa A, Ali Q, Rafique M, Alamri S, Siddiqui MH. Performance of Zea mays L. cultivars in tannery polluted soils: Management of chromium phytotoxicity through the application of biochar and compost. PHYSIOLOGIA PLANTARUM 2021; 173:129-147. [PMID: 33216991 DOI: 10.1111/ppl.13277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 05/22/2023]
Abstract
Soil contamination with heavy metals caused by various industrial activities is a threatening global environmental issue of the current era. Chromium (Cr) is the most toxic heavy metal used in leather industry and disposal of untreated wastewater into natural water bodies leads to contamination of natural soil and water resources. We studied the combined effect of biochar and compost on improving the tolerance to Cr toxicity by enhancing the morpho-physiological and biochemical attributes of two maize cultivars (P-1543 and NK-8441) grown in tannery waste polluted soils. The results of this study reveal that Cr toxicity reduced the plant growth by affecting physiological and biochemical attributes. Here, compost and biochar application significantly increased the plant biomass (fresh and dry), height, photosynthesis, chlorophyll content, water relation, starch, and protein content over treatment set as control. However, significant decline in electrolyte leakage (EL), proline, lipid peroxidation, soluble sugars, and antioxidant enzymes (APX, GPX, GR, GST, GSH, SOD, and CAT) was observed by combined application of compost and biochar. Hexavalent chromium concentration was maximum decreased to 4.1 μg g-1 in soil after post-harvesting of maize cultivar NK-8441, while in roots and shoots to 22.6 and 19.2 μg g-1 of maize cultivar P-1543, respectively, by combined application of compost and biochar. Moreover, these both amendments in combination showed considerably better results than their sole application and cultivar P-1543 comparatively performed better than NK 8441, in both K and S soils. Correlation and principal component analysis (PCA) revealed mostly highly positive associations among all the studied morpho, physio, and biochemical attributes of maize plant with the few exceptions, particularly concentration of Cr(III) and Cr(VI) in soil. The present work concluded that combined use of biochar and compost has great potential to decrease Cr toxicity and improve plant growth in tannery polluted soils.
Collapse
Affiliation(s)
- Muhammad A Bashir
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sobia Ashraf
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Adnan Mustafa
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qasim Ali
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Munazza Rafique
- Soil Bacteriology Section, Agricultural Biotechnology Research Institute, AARI, Faisalabad, Pakistan
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Bilias F, Nikoli T, Kalderis D, Gasparatos D. Towards a Soil Remediation Strategy Using Biochar: Effects on Soil Chemical Properties and Bioavailability of Potentially Toxic Elements. TOXICS 2021; 9:184. [PMID: 34437502 PMCID: PMC8402515 DOI: 10.3390/toxics9080184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022]
Abstract
Soil contamination with potentially toxic elements (PTEs) is considered one of the most severe environmental threats, while among remediation strategies, research on the application of soil amendments has received important consideration. This review highlights the effects of biochar application on soil properties and the bioavailability of potentially toxic elements describing research areas of intense current and emerging activity. Using a visual scientometric analysis, our study shows that between 2019 and 2020, research sub-fields like earthworm activities and responses, greenhouse gass emissions, and low molecular weight organic acids have gained most of the attention when biochar was investigated for soil remediation purposes. Moreover, biomasses like rice straw, sewage sludge, and sawdust were found to be the most commonly used feedstocks for biochar production. The effect of biochar on soil chemistry and different mechanisms responsible for PTEs' immobilization with biochar, are also briefly reported. Special attention is also given to specific PTEs most commonly found at contaminated soils, including Cu, Zn, Ni, Cr, Pb, Cd, and As, and therefore are more extensively revised in this paper. This review also addresses some of the issues in developing innovative methodologies for engineered biochars, introduced alongside some suggestions which intend to form a more focused soil remediation strategy.
Collapse
Affiliation(s)
- Fotis Bilias
- Soil Science Laboratory, Soil Science and Agricultural Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Thomai Nikoli
- Laboratory of Soil Science and Plant Diagnostics, Mediterranean Agronomic Institute of Chania, 73100 Chania, Greece;
| | - Dimitrios Kalderis
- Department of Electronic Engineering, Hellenic Mediterranean University, 73133 Chania, Greece;
| | - Dionisios Gasparatos
- Laboratory of Soil Science and Agricultural Chemistry, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
30
|
Ducey TF, Novak JM, Sigua GC, Ippolito JA, Rushmiller HC, Watts DW, Trippe KM, Spokas KA, Stone KC, Johnson MG. Microbial response to designer biochar and compost treatments for mining impacted soils. BIOCHAR 2021; 3:299-314. [PMID: 35128320 PMCID: PMC8815453 DOI: 10.1007/s42773-021-00093-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/02/2021] [Indexed: 06/14/2023]
Abstract
The Oronogo-Duenweg mining belt is a designated United States Environmental Protection Agency Superfund site due to lead-contaminated soil and groundwater by former mining and smelting operations. Sites that have undergone remediation - in which the O, A, and B horizons have been removed alongside the lead contamination - have an exposed C horizon and are incalcitrant to revegetation efforts. Soils also continue to contain quantifiable Cd and Zn concentrations. In order to improve soil conditions and encourage successful site revegetation, our study employed three biochars, sourced from different feedstocks (poultry litter, beef lot manure, and lodge pole pine), at two rates of application (2.5%, and 5%), coupled with compost (0%, 2.5% and 5% application rates). Two plant species - switchgrass (Panicum virgatum) and buffalograss (Bouteloua dactyloides) - were grown in the amended soils. Amendment of soils with poultry litter biochar applied at 5% resulted in the greatest reduction of soil bioavailable Cd and Zn. Above ground biomass yields were greatest with beef lot manure biochar applied at 2.5% with 5% compost, or with 5% biochar at 2.5% and 5% compost rates. Maximal microbial biomass was achieved with 5% poultry litter biochar and 5% compost, and microbial communities in soils amended with poultry litter biochar distinctly clustered away from all other soil treatments. Additionally, poultry litter biochar amended soils had the highest enzyme activity rates for β-glucosidase, N-acetyl-β-D-glucosaminidase, and esterase. These results suggest that soil reclamation using biochar and compost can improve mine-impacted soil biogeophysical characteristics, and potentially improve future remediation efforts.
Collapse
Affiliation(s)
- Thomas F. Ducey
- Coastal Plains Soil, Water, and Plant Research Center, Agricultural Research Service-USDA, Florence SC, USA
| | - Jeffrey M. Novak
- Coastal Plains Soil, Water, and Plant Research Center, Agricultural Research Service-USDA, Florence SC, USA
| | - Gilbert C. Sigua
- Coastal Plains Soil, Water, and Plant Research Center, Agricultural Research Service-USDA, Florence SC, USA
| | - James A. Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins CO, USA
| | - Hannah C. Rushmiller
- Coastal Plains Soil, Water, and Plant Research Center, Agricultural Research Service-USDA, Florence SC, USA
| | - Donald W. Watts
- Coastal Plains Soil, Water, and Plant Research Center, Agricultural Research Service-USDA, Florence SC, USA
| | - Kristin M. Trippe
- National Forage Seed Production Research Center, Agricultural Research Service-USDA, Corvallis OR, USA
| | - Kurt A. Spokas
- Soil and Water Management Research Unit, Agricultural Research Service-USDA, St. Paul MN, USA
| | - Kenneth C. Stone
- Coastal Plains Soil, Water, and Plant Research Center, Agricultural Research Service-USDA, Florence SC, USA
| | - Mark G. Johnson
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Corvallis OR, USA
| |
Collapse
|
31
|
Alhar MAM, Thompson DF, Oliver IW. Mine spoil remediation via biochar addition to immobilise potentially toxic elements and promote plant growth for phytostabilisation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111500. [PMID: 33069155 DOI: 10.1016/j.jenvman.2020.111500] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/25/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
There are thousands of disused and abandoned mining sites around the world with substantial accumulations of exposed mine spoil materials that pose a direct threat to their surrounding environment. Management of such sites, and neutralisation of the environmental threats they pose, is therefore extremely important and is an issue of global significance. Low cost management and remediation strategies need to be developed because many abandoned mine sites are in remote and/or economically challenged areas. One promising option is the incorporation of biochar into spoil materials, which has the potential to immobilise leachable toxic constituents and facilitate revegetation and thereby stabilisation of spoil heaps. This study investigated the capacity of readily available biochar materials made from wheat and rice waste products to immobilise and retain key metallic contaminants Pb and Zn from solution, and also investigated the utility of biochar application for remediating mine spoil heaps from different mine types in terms of facilitating establishment of vegetation coverage and minimising porewater element mobility within spoil heaps. The results demonstrated the high sorption capacity of the biochars (typically >97% of Pb or Zn in solution) and their ability to retain the metals despite an active desorption procedure (>93% of sorbed Pb retained and >75% of sorbed Zn). The remediation trial revealed that biochar application increased plant yield and decreased plant assimilation of many potentially toxic elements and also decreased spoil porewater concentrations of Al, Cd, Pb and Zn in most cases. In some spoil types investigated biochar addition also significantly decreased porewater concentrations of As (e.g. from ~30 mg/L to ~5 mg/L), demonstrating its potential utility for low cost environmental remediation across a range of mine spoil types.
Collapse
Affiliation(s)
- Maysaa A M Alhar
- School of Geography, Geology and the Environment, Keele University, Keele, ST5 5BG, UK
| | - David F Thompson
- School of Chemical and Physical Sciences, Keele University, Keele, ST5 5BG2, UK
| | - Ian W Oliver
- School of Geography, Geology and the Environment, Keele University, Keele, ST5 5BG, UK.
| |
Collapse
|
32
|
Antonangelo JA, Sun X, Zhang H. The roles of co-composted biochar (COMBI) in improving soil quality, crop productivity, and toxic metal amelioration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111443. [PMID: 33049617 DOI: 10.1016/j.jenvman.2020.111443] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 05/22/2023]
Abstract
The use of co-composted biochar (COMBI) made by the addition of biochar at the beginning of the composting process has greatly increased in agriculture during the last decade. There are more benefits of using the co-composting end product COMBI than using compost and biochar separately or the mixture of the two products. We conducted an extensive review of the production of several COMBIs and their contribution to the composting process and biochar properties as well as the further use of COMBIs in agricultural lands to improve soil health and increase crop yields, and to remediate areas severely contaminated with potentially toxic metals (PTMs). Although the number of researches focused on COMBI production and its application is so far limited, there is enough evidence to elucidate the importance of creating such products to promote sustainable agriculture and environmental safety. Even if a few drawbacks or side effects are found, they are outweighed by the many benefits achieved with COMBIs production and application in comparison to other amendments. The quality of both biochar and compost is largely improved in so many ways during the co-composting process, which in turn improved soil health and crop yields of up to 300% in some particular cases. This work improved the overall understanding of COMBI production and application in agriculture. Based on the review, we suggested future researches to better understand the mechanisms of COMBI long-term application to promote awareness on its role over time through alterations in its surface chemistry, ionic nutrient adsorption, supply (aging effect), and environmental implications.
Collapse
Affiliation(s)
- João A Antonangelo
- Plant and Soil Sciences Department, Oklahoma State University, 371 Agricultural Hall, Stillwater, OK, 74078, USA.
| | - Xiao Sun
- Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave, Saint Paul, MN, 55108-6005, USA
| | - Hailin Zhang
- Plant and Soil Sciences Department, Oklahoma State University, 371 Agricultural Hall, Stillwater, OK, 74078, USA
| |
Collapse
|
33
|
Zhu Y, Wang H, Lv X, Zhang Y, Wang W. Effects of biochar and biofertilizer on cadmium-contaminated cotton growth and the antioxidative defense system. Sci Rep 2020; 10:20112. [PMID: 33208871 PMCID: PMC7674410 DOI: 10.1038/s41598-020-77142-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/29/2020] [Indexed: 11/09/2022] Open
Abstract
Consistent use of large amounts of fertilizers, pesticides, and mulch can cause the accumulation of harmful substances in cotton plants. Among these harmful substances, cadmium (Cd), an undegradable element, stands out as being particularly highly toxic to plants. The objective of this study was to evaluate the ability of biochar (3%) and biofertilizer (1.5%) to decrease Cd uptake, increase cotton dry weight, and modulate the activities of photosynthetic and peroxidase (POD), superoxide dismutase (SOD), catalase enzyme (CAT) in cotton (Gossypium hirsutum L.) grown in Cd-contaminated soil (0, 1, 2, or 4 mg Cd kg-1 soil) in pots. These studies showed that, as expected, exogenous Cd adversely affects cotton chlorophyll and photosynthesis. However, biochar and biofertilizer increased cotton dry weight by an average of 16.82% and 32.62%, respectively. Meanwhile, biochar and biofertilizer decreased the accumulation of Cd in cotton organs, and there was a significant reduction in the amount of Cd in bolls (P < 0.05). Biochar and biofertilizer have a positive impact on cotton chlorophyll content, net photosynthesis, stomatal conductance, transpiration rate, and intercellular CO2 concentration. Thus, the addition of biochar and biofertilizer promote cotton growth. However, biochar and biofertilizer increased the SOD activity of leaves (47.70% and 77.21%), CAT activity of leaves (35.40% and 72.82%), SOD activity of roots (33.62% and 39.37%), and CAT activity of roots (36.91% and 60.29%), respectively, and the addition of biochar and biofertilizer decreased the content of MDA and electrolyte leakage rate. Redundancy analyses showed that biochar and biofertilizer also improved SOD and POD activities by reducing the heavy metal-induced oxidative stress in cotton and reducing Cd uptake in cotton organs. Therefore, biochar and biofertilizer have a positive effect on the growth of cotton.
Collapse
Affiliation(s)
- Yongqi Zhu
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| | - Haijiang Wang
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China.
| | - Xin Lv
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China.
| | - Yutong Zhang
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| | - Weiju Wang
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| |
Collapse
|
34
|
Ghosh D, Maiti SK. Biochar assisted phytoremediation and biomass disposal in heavy metal contaminated mine soils: a review. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:559-576. [PMID: 33174450 DOI: 10.1080/15226514.2020.1840510] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mining activities causes heavy metal pollution and adversely affect the ecological safety and human well-being. Phytoremediation-biochar synergy can effectively remediate mine spoils contaminated with heavy metals (HM). A review which focuses exclusively on the application of biochar assisted phytoremediation in HM contaminated mine spoil is lacking. Mechanisms of metal immobilization by biochar, potential plants and contaminated biomass disposal methods has also been reviewed. Availability of biochar feedstock and production conditions, optimization of application rate, application techniques, selection of suitable hyperaccumulators and cost optimization of bulk biochar production are the key to a successful biochar-based HM remediation of mine tailings and coalmine spoil. Presently, herbs and shrubs are mostly used as phytoremediators, use of woody trees would encourage a long-term metal sequestration which would reduce the cost of biomass disposal. Also, use of non-edible plants would prevent the plants from entering the food chain. For a holistic biochar-phytoremediation technique, incineration and pyrolysis can effectively dispose contaminated biomass. From the economical viewpoint, the environment cost-benefit analysis should be considered before considering the feasibility of a technology.HighlightsMass scale in-situ biochar production and economics are keys issues.Biochar assisted phytoremediation for HM contaminated mine spoils.Long term studies using woody biomass needs attention.Disposal of contaminated biomass by pyrolysis method.
Collapse
Affiliation(s)
- Dipita Ghosh
- Department of Environmental Science and Engineering, Centre of Mining Environment, Indian Institute of Technology (Indian School of Mines), Dhanbad, India Jharkhand
| | - Subodh Kumar Maiti
- Department of Environmental Science and Engineering, Centre of Mining Environment, Indian Institute of Technology (Indian School of Mines), Dhanbad, India Jharkhand
| |
Collapse
|
35
|
Ghosh D, Maiti SK. Can biochar reclaim coal mine spoil? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 272:111097. [PMID: 32854895 DOI: 10.1016/j.jenvman.2020.111097] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Surface coal mining activities completely destroy vegetation cover, soil and biodiversity. The aftermaths include huge coal mine spoil dumps, changed topography, drainage and landscape, deteriorated aesthetics and increased pollution load. These coal mine spoils are characterised by high rock fragments, extremely low water holding capacity, compacted and high bulk density, lack of organic carbon and plant nutrients, low cation exchange capacity, acidic pH and toxic metal contamination, which poses difficulties in reclamation. An array of studies has been focused on the sustainable use of biochar for restoration of degraded agricultural soil by improving the soil physicochemical, nutritional and biological properties. Although a volume of studies has been done on biochar application, its specialised application in reclamation of coal mine spoils is still atypical, also a systematic review on the mechanism by which biochar amends the mine spoil is lacking. This review focuses on i) factors affecting the biochar properties, ii) the mechanism involved in altering the physical, chemical and biological properties by biochar, (iii) remediation of potentially toxic elements in soil and restoration of degraded land using biochar, and, iv) highlighting the important aspects to be considered while using biochar for reclamation of coal mine spoil. Biochar prepared at 450 °C from a lignocellulosic rich biomass can be an alternative for reclamation for coal mine spoil. Review also suggested suitable methodologies for bulk production, application and economics of biochar in coal mine spoil reclamation.
Collapse
Affiliation(s)
- Dipita Ghosh
- Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Subodh Kumar Maiti
- Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| |
Collapse
|
36
|
Benhabylès L, Djebbar R, Miard F, Nandillon R, Morabito D, Bourgerie S. Biochar and compost effects on the remediative capacities of Oxalis pes-caprae L. growing on mining technosol polluted by Pb and As. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30133-30144. [PMID: 32449151 DOI: 10.1007/s11356-020-08833-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Selection of plant species with a great remediating capacity and a high biomass production is an important step for depolluting soils especially mine soils. Hyperaccumulators are used in phytoextraction for extracting metals from soil to roots and to translocate them to aerial parts. While in phytostabilization that usually requires amendment, metals are accumulated in the plant roots. The purpose of this study is to investigate Oxalis pes-caprae L. tolerance to Pb and As from Pontgibaud mine soil in France amended with compost and/or biochar. Oxalis bulbils were harvested in three sites located around Algiers: (1) an agricultural land in Reghaïa, (2) an area planted with Pines at the USTHB university campus, and (3) the polluted bank of the El Harrach river. The small and medium bulbil sizes were selected from each locality. Concerning the experimental soil, five mixtures of Pontgibaud technosol (P) with amendments compost (C) and biochar (Bc) were prepared: PC, PBc5, PBc10, PBc5 C, PBcC (w/w). The results indicate that amendments alter the soil physico-chemical characteristics and the mobility of metal(loid)s. They also reveal that As and Pb are differently distributed in plant organs. Medium bulbils especially from El Harrach river and the university campus have shown a better growth. Seedlings growth rate has been the highest in Pontgibaud amended with PC and the lowest in PBc10.
Collapse
Affiliation(s)
- Lamia Benhabylès
- Department of Biology and Physiology of Organisms, Laboratory of Plant Physiology, Faculty of Biological Sciences, USTHB, Bab Ezzouar, 16011, Algiers, Algeria
- Renewable Energy Development Center, BP. 62, Route de l'observatoire Bouzareah, 16340, Algiers, Algeria
| | - Réda Djebbar
- Department of Biology and Physiology of Organisms, Laboratory of Plant Physiology, Faculty of Biological Sciences, USTHB, Bab Ezzouar, 16011, Algiers, Algeria
| | - Florie Miard
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans cedex 2, France
| | - Romain Nandillon
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans cedex 2, France
- IDDEA, Environmental Consulting Engineering, Olivet, France
| | - Domenico Morabito
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans cedex 2, France
| | - Sylvain Bourgerie
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans cedex 2, France
| |
Collapse
|
37
|
Hrkić Ilić Z, Pajević S, Borišev M, Luković J. Assessment of phytostabilization potential of two Salix L. clones based on the effects of heavy metals on the root anatomical traits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29361-29383. [PMID: 32440877 DOI: 10.1007/s11356-020-09228-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Willow species (Salix L.) are a useful tool for assessing phytostabilization of the sites polluted by heavy metals. Phytostabilization potential of two willow genotypes (Salix alba L. clone '68/53/1' and Salix nigra Marshall clone '0408') has been evaluated in a 45-day hydroponic experiment, using stem cuttings (diameter 12 to 14 mm, length 20 cm) exposed to two concentrations (10-4 M and 10-5 M) of individually applied Cd, Ni, and Pb. Metals were diluted in 25% Hoagland's solution, in forms of CdCl2·H2O, NiSO4·6H2O, and Pb-EDTA. The control group of cuttings was grown in 25% Hoagland's solution without heavy metals. High Cd concentrations in willow roots, 8637 mg/kg (clone '68/53/1') and 6728 mg/kg of dry weight (clone '0408'), have indicated a high phytostabilization potential. However, detailed analyses of cross-sectional area of the root cortex and the central cylinder revealed that the excess concentration of Cd led to a significant reduction of measured anatomical root's traits of clone '68/53/1' in comparison with the control samples. Excessive concentration of Ni and Pb in nutrient solution increased the values of quantitatively measured root's traits of clone '0408', implying stimulatory effects of the applied concentrations. Concentration of 10-4 M of each metal had more negative effects on the roots' anatomical traits, notably on parenchymal and exodermal cells and vessels. Deposits of metals were observed in root tissues. Clone '0408' demonstrated an increased tolerance to heavy metals, which could potentially make this clone useful in phytostabilization.
Collapse
Affiliation(s)
- Zorana Hrkić Ilić
- Faculty of Forestry, University of Banja Luka, Bulevar Vojvode Stepe Stepanovića 75A, 78000, Banja Luka, Bosnia and Herzegovina.
| | - Slobodanka Pajević
- University of Novi Sad Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia
| | - Milan Borišev
- University of Novi Sad Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia
| | - Jadranka Luković
- University of Novi Sad Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia
| |
Collapse
|
38
|
Abstract
The sustainable production of food faces formidable challenges. Foremost is the availability of arable soils, which have been ravaged by the overuse of fertilizers and detrimental soil management techniques. The maintenance of soil quality and reclamation of marginal soils are urgent priorities. The use of biochar, a carbon-rich, porous material thought to improve various soil properties, is gaining interest. Biochar (BC) is produced through the thermochemical decomposition of organic matter in a process known as pyrolysis. Importantly, the source of organic material, or ‘feedstock’, used in this process and different parameters of pyrolysis determine the chemical and physical properties of biochar. The incorporation of BC impacts soil–water relations and soil health, and it has been shown to have an overall positive impact on crop yield; however, pre-existing physical, chemical, and biological soil properties influence the outcome. The effects of long-term field application of BC and how it influences the soil microcosm also need to be understood. This literature review, including a focused meta-analysis, summarizes the key outcomes of BC studies and identifies critical research areas for future investigations. This knowledge will facilitate the predictable enhancement of crop productivity and meaningful carbon sequestration.
Collapse
|
39
|
El Rasafi T, Haddioui A. Growth, Survival and Biomass Production of Barley in a Polluted Mine Soil Amended with Biochar and Animal Manure. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:155-165. [PMID: 32556374 DOI: 10.1007/s00128-020-02914-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
In the present study, sheep manure (0%, 10% and 20% w/w) and biochar derived from coniferous tree woods (0%, 2.5% and 5% w/w) were incorporated into a multi-MTE contaminated soil from a former iron mine site and incubated for 10 days. A seeds of barley were grown in the amended soil and different morphological traits were measured after 30 days. Results indicated that MTE stress reduced the shoot length, stem diameter, leaf area, number of leaves and dry biomass as compared to the control. Organic amendments application increased soil pH and was found to affect significantly almost all the measured parameters. Animal manure was found effective in improvement of the morphological characteristics of barley plants comparing to biochar amendments. Our results suggested that animal manure could be used for reducing the effect of MTE on the morphological proprieties of barley grown in a former iron mine soil.
Collapse
Affiliation(s)
- Taoufik El Rasafi
- Laboratory of Biotechnology and Valorization of Phytogenetic Resources, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco.
| | - Abdelmajid Haddioui
- Laboratory of Biotechnology and Valorization of Phytogenetic Resources, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
| |
Collapse
|
40
|
Mudhoo A, Ramasamy DL, Bhatnagar A, Usman M, Sillanpää M. An analysis of the versatility and effectiveness of composts for sequestering heavy metal ions, dyes and xenobiotics from soils and aqueous milieus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110587. [PMID: 32325327 DOI: 10.1016/j.ecoenv.2020.110587] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/13/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
The persistence and bioaccumulation of environmental pollutants in water bodies, soils and living tissues remain alarmingly related to environmental protection and ecosystem restoration. Adsorption-based techniques appear highly competent in sequestering several environmental pollutants. In this review, the recent research findings reported on the assessments of composts and compost-amended soils as adsorbents of heavy metal ions, dye molecules and xenobiotics have been appraised. This review demonstrates clearly the high adsorption capacities of composts for umpteen environmental pollutants at the lab-scale. The main inferences from this review are that utilization of composts for the removal of heavy metal ions, dye molecules and xenobiotics from aqueous environments and soils is particularly worthwhile and efficient at the laboratory scale, and the adsorption behaviors and effectiveness of compost-type adsorbents for agrochemicals (e.g. herbicides and insecticides) vary considerably because of variabilities in structure, topology, bond connectivity, distribution of functional groups and interactions of xenobiotics with the active humic substances in composts. Compost-based field-scale remediation of environmental pollutants is still sparse and arguably much challenging to implement if, furthermore, real-world soil and water contamination issues are to be addressed effectively. Hence, significant research and process development efforts should be promptly geared and intensified in this direction by extrapolating the lab-scale findings in a cost-effective manner.
Collapse
Affiliation(s)
- Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837, Mauritius.
| | - Deepika Lakshmi Ramasamy
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia.
| |
Collapse
|
41
|
Jain S, Khare P, Mishra D, Shanker K, Singh P, Singh RP, Das P, Yadav R, Saikia BK, Baruah BP. Biochar aided aromatic grass [Cymbopogon martini (Roxb.) Wats.] vegetation: A sustainable method for stabilization of highly acidic mine waste. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:121799. [PMID: 31818656 DOI: 10.1016/j.jhazmat.2019.121799] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Dumping of acidic mine waste poses severe threats to the ecosystem due to high acidity, nutrient deficiency and mobility of toxic metals. The present study has been undertaken on phytoremediation by amending the acidic soil/mine waste with biochar (BC) and plantation of palmarosa (Cymbopogon martini (Roxb.) Wats. A greenhouse experiment in different combinations of biochar and acidic mine waste was conducted to assess the phytoremediation efficiency of palmarosa by BC amendments. Results indicate that the palmarosa tolerates multiple stresses effectively with a 54 % metal tolerance index (MTI) and capable of reducing acid production from the acidic mine waste alone. BC incorporation in the mine waste and soil treatments significantly enhanced the palmarosa biomass (1.11-3.3 times) and oil content by liming the acid, immobilization of metals and improving the soil quality. BC addition in highly acidic mine waste amplified the phytoremediation efficiency and mitigates abiotic oxidative stress on plants (MTI 84 % to >100 %). BC aided palmarosa plantation shifted the soil from high-risk assessment code (RAC) to low RAC for vegetation. Biochar amendments along with palmarosa plantation offer a sustainable technology for phytostabilization of highly acidic mine waste along with the production of industrially important essential oil.
Collapse
Affiliation(s)
- Shilpi Jain
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Puja Khare
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
| | - Disha Mishra
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Karuna Shanker
- Analytical Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Priyambada Singh
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Raghavendra Pratap Singh
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Paurabi Das
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Ranu Yadav
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Binoy K Saikia
- Polymer Petroleum & Coal Chemistry Group (MSTD), CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India
| | - B P Baruah
- Polymer Petroleum & Coal Chemistry Group (MSTD), CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India
| |
Collapse
|
42
|
Lyu H, Tang J, Cui M, Gao B, Shen B. Biochar/iron (BC/Fe) composites for soil and groundwater remediation: Synthesis, applications, and mechanisms. CHEMOSPHERE 2020; 246:125609. [PMID: 31911329 DOI: 10.1016/j.chemosphere.2019.125609] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/26/2019] [Accepted: 12/07/2019] [Indexed: 05/24/2023]
Abstract
Biochar/iron (BC/Fe) composites, such as nano zero-valent iron (nZVI)/BC, iron sulfide/BC, and iron oxide/BC, have been developed and applied to deal with various contaminants owing to their excellent physicochemical properties. This work summarizes the progress in the preparation of BC/Fe composites, the properties and applications of BC/Fe, and the mechanism of the synergistic effect between Fe and BC in the composites. Various methods, including pyrolysis, hydrothermal carbonization, fractional precipitation, and ball milling, have been used to synthesize BC/Fe composites. In addition, the introduction of stabilizers, such as carboxymethyl cellulose (CMC), in the fractional precipitation process further prevents the agglomeration of Fe particles, which enhances the stability and fluidity of the resultant composites to facilitate the application of the composites in soil and water remediation. The application of BC/Fe composites in water and soil remediation is discussed in three aspects based on the interaction mechanisms, namely adsorption, reduction, and oxidation. Overall, the composites showed the synergistic effect of BC and Fe owing to the combination of the specific properties of Fe, such as reduction, catalysis, and magnetism, which can enhance the properties of BC with a larger surface area, abundant functional groups, and increased electron transfer efficiency. This review systemically summarizes the recent developments in BC/Fe composites to maximize the efficiency of BC/Fe application in soil and groundwater remediation. Key challenges and further research needs are also suggested.
Collapse
Affiliation(s)
- Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Mengke Cui
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, United States
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
43
|
Teodoro M, Trakal L, Gallagher BN, Šimek P, Soudek P, Pohořelý M, Beesley L, Jačka L, Kovář M, Seyedsadr S, Mohan D. Application of co-composted biochar significantly improved plant-growth relevant physical/chemical properties of a metal contaminated soil. CHEMOSPHERE 2020; 242:125255. [PMID: 31896180 DOI: 10.1016/j.chemosphere.2019.125255] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
A woody-biochar was added to waste biomass during a composting process. The resulting compost-char was amended to a metal contaminated soil and two plant species, L. perenne and E. sativa, were grown in a pot experiment to determine 1) plant survival and stress factors, 2) uptake of metals to plants and, 3) chemical characteristics of sampled soils and pore waters. Compost supplemented with biochar after the composting process were also tested, as well as a commercially available compost, for comparison. Co-composting with biochar hastened the composting process, resulting in a composite material of reduced odour, increased maturity, circum-neutral pH and increased moisture retention than compost (increase by 3% of easily removable water content). When amended to the soil, CaCl2 extractable and pore water metals s were reduced by all compost treatments with little influence of biochar addition at any tested dose. Plant growth success was promoted furthest by the addition of co-composted biochar to the test soil, especially in the case of E. sativa. For both tested plant species significant reductions in plant metal concentrations (e.g. 8-times for Zn) were achieved, against the control soil, by compost, regardless of biochar addition. The results of this study demonstrate that the addition of biochar into the composting process can hasten the stability of the resulting compost-char, with more favourable characteristics as a soil amendment/improver than compost alone. This appears achievable whilst also maintaining the provision of available nutrients to soils and the reduction of metal mobility, and improved conditions for plant establishment.
Collapse
Affiliation(s)
- Manuel Teodoro
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Lukáš Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic.
| | - Brett N Gallagher
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Pavel Šimek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Petr Soudek
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Lysolaje, Czech Republic
| | - Micheal Pohořelý
- Environmental Process Engineering Laboratory, Institute of Chemical Process Fundamentals, Academy of Sciences of Czech Republic, v. v. i., Rozvojová 135, Praha 6, Suchdol, 165 02, Czech Republic; Department of Power Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28, Praha 6, Czech Republic
| | - Luke Beesley
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Lukáš Jačka
- Department of Water Resources and Environmental Modeling, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6, Suchdol, 165 00, Czech Republic
| | - Martin Kovář
- Department of Water Resources and Environmental Modeling, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6, Suchdol, 165 00, Czech Republic
| | - Samar Seyedsadr
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
44
|
Lahori AH, Vu NH, Du J, Dinh QT, Saif-Ur-Rehman, Naheed Z, Ahmed M, Zhang Z. Stabilization of toxic metals in three contaminated soils by residual impact of lime integrated with biochar and clays. JOURNAL OF SOILS AND SEDIMENTS 2020; 20:734-744. [DOI: 10.1007/s11368-019-02453-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/01/2019] [Indexed: 08/20/2023]
|
45
|
Wang J, Odinga ES, Zhang W, Zhou X, Yang B, Waigi MG, Gao Y. Polyaromatic hydrocarbons in biochars and human health risks of food crops grown in biochar-amended soils: A synthesis study. ENVIRONMENT INTERNATIONAL 2019; 130:104899. [PMID: 31203030 DOI: 10.1016/j.envint.2019.06.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 05/25/2023]
Abstract
Soil amendment with biochars is currently being studied worldwide as a sustainable agricultural practice to improve soil and water quality, increase crop productivity, and augment soil carbon storage. However, the formation of polyaromatic hydrocarbons (PAHs) during biochar production is inevitable. Therefore, it is crucial to assess the risks in food safety and human health of crops grown in biochar-amended soils. This paper performed a synthesis study of PAH concentrations in biochars and estimated the risks of soils amended with biochars, based on refereed articles published between 2012 and 2018. The PAH concentrations in biochars ranged greatly, with the dominant proportion being 2-3 ringed PAHs (40%-71%). Biochar application increased the PAH levels in soils at drastically varying extents (0.02-3574 μg/kg), which led to a broad range of PAH concentrations in food crops grown in biochar-amended soils. A five-step method was then introduced to assess the toxicity of biochar-borne PAHs to human health. The total mean incremental lifetime cancer risk for adults was estimated to range between 2.0 × 10-6-1.9 × 10-5 via direct contact with and ingestion (inhalation) of contaminated soils or consumption of tainted crops. These results indicated that biochar amendment in soils might pose potential risks to food safety and human health, but the overall cancer risks through exposure to biochar-borne PAHs in soils and food crops were low. Higher application rates (e.g. ≥20 t/ha) of biochars with high PAH contents can be avoided to minimize human cancer risks. Although biochar application in arable farmlands has many environmental and agronomic benefits, holistic and systematic approaches are required to fully assess the benefits and risks before their large-scale adoption. PAHs in biochar may be reduced by improving the biochar production process and developing a cost-effective post-manufacturing treatment.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
46
|
Phytostabilization of Zn and Cd in Mine Soil Using Corn in Combination with Biochars and Manure-Based Compost. ENVIRONMENTS 2019. [DOI: 10.3390/environments6060069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mining activities could produce a large volume of spoils, waste rocks, and tailings, which are usually deposited at the surface and become a source of metal pollution. Phytostabilization of the mine spoils could limit the spread of these heavy metals. Phytostabilization can be enhanced by using soil amendments such as manure-based biochars capable of immobilizing metal(loid)s when combined with plant species that are tolerant of high levels of contaminants while simultaneously improving properties of mine soils. However, the use of manure-based biochars and other organic amendments for mine spoil remediation are still unclear. In this greenhouse study, we evaluated the interactive effect of biochar additions (BA) with or without the manure-based compost (MBC) on the shoots biomass (SBY), roots biomass (RBY), uptake, and bioconcentration factor (BCF) of Zn and Cd in corn (Zea mays L.) grown in mine soil. Biochar additions consisting of beef cattle manure (BCM); poultry litter (PL); and lodge pole pine (LPP) were applied at 0, 2.5, and 5.0% (w/w) in combination with different rates (0, 2.5, and 5.0%, w/w) of MBC, respectively. Shoots and roots uptake of Cd and Zn were significantly affected by BA, MBC, and the interaction of BA and MBC. Corn plants that received 2.5% PL and 2.5% BCM had the greatest Cd and Zn shoot uptake, respectively. Corn plants with 5% BCM had the greatest Cd and Zn root uptake. When averaged across BA, the greatest BCF for Cd in the shoot of 92.3 was from the application of BCM and the least BCF was from the application of PL (72.8). Our results suggest that the incorporation of biochar enhanced phytostabilization of Cd and Zn with concentrations of water-soluble Cd and Zn lowest in soils amended with manure-based biochars while improving the biomass productivity of corn. Overall, the phytostabilization technique and biochar additions have the potential to be combined in the remediation of heavy metals polluted soils.
Collapse
|