1
|
Liu J, Chen Y, Lu J, Chen Y, Zhou R, Qiao J, Zhao T, Tan X, Ding M, Liu W, Cai R. A high-efficiency oil/water emulsion separation sponge based on sodium alginate-loofah composite gels. Int J Biol Macromol 2025; 306:141395. [PMID: 39988148 DOI: 10.1016/j.ijbiomac.2025.141395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/25/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Nowadays, many reported oil/water (O/W) emulsion filter materials have issues such as susceptibility to fouling, complex processing, high costs, and environmental unfriendliness. Herein, a novel O/W emulsion separation membrane-like sponge (SA/GO-SL) is prepared in this study by utilizing reshaped waste loofah (LF) as skeleton, the in situ formed sodium alginate (SA) gels as binder, and the graphene oxide (GO) added into the gels as functional component. Reshaped LF provides an enough anti-pressure ability and micron-sized pores structure, which guarantees a water flux of 63.8 Lm-2 h-1 under the 0.25 bar pressure. SA and GO improve the surface roughness and hydrophilicity of the filter sponge comprehensively, so that the sponge exhibits excellent separation capability towards the emulsified oils, with the retention rate of emulsified oil in water up to 99.3 %. Moreover, the sponge exhibits a non-ignorable retention effect on heavy metal ions such as Pb2+ and Cu2+ due to the electrostatic adsorption. The excellent separation effect makes this carbohydrate polymer sponge be the potential candidate in water purification field.
Collapse
Affiliation(s)
- Jiating Liu
- College of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou 412007, China; Hunan Aotomotive Engineering Vocational University, Zhuzhou 412001, China; Hunan Provincial Key Laboratory of Biomass Fiber Functional Materials, College of Urban and Environment, Hunan University of Technology, Zhuzhou 412007, China
| | - Yi Chen
- College of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou 412007, China; Hunan Provincial Key Laboratory of Biomass Fiber Functional Materials, College of Urban and Environment, Hunan University of Technology, Zhuzhou 412007, China; China National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China.
| | - Jiawei Lu
- College of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou 412007, China; Hunan Provincial Key Laboratory of Biomass Fiber Functional Materials, College of Urban and Environment, Hunan University of Technology, Zhuzhou 412007, China
| | - Ying Chen
- College of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou 412007, China; College of Civil Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Rui Zhou
- College of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou 412007, China; College of Civil Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Jiaxian Qiao
- College of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou 412007, China; College of Civil Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Tian Zhao
- College of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou 412007, China; Hunan Provincial Key Laboratory of Biomass Fiber Functional Materials, College of Urban and Environment, Hunan University of Technology, Zhuzhou 412007, China
| | - Xiaobo Tan
- Hunan Provincial Key Laboratory of Biomass Fiber Functional Materials, College of Urban and Environment, Hunan University of Technology, Zhuzhou 412007, China; China National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Meng Ding
- Hunan Provincial Key Laboratory of Biomass Fiber Functional Materials, College of Urban and Environment, Hunan University of Technology, Zhuzhou 412007, China; China National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Wenyong Liu
- College of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou 412007, China; China National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Rong Cai
- Hunan Aotomotive Engineering Vocational University, Zhuzhou 412001, China.
| |
Collapse
|
2
|
Cui B, Long H, Rong H, Kumar A, Efomah AN, Oba BT, Nkinahamira F, Ndagijimana P, Mehboob G, Okimiji OP, Ojekunle OZ, Guo D, Zhao M, Aborisade MA. Enhanced tetracycline removal from aqueous systems using starch-functionalized iron-graphene oxide nanocomposites: Synthesis, characterization, and mechanistic insights. Int J Biol Macromol 2025; 311:143647. [PMID: 40311987 DOI: 10.1016/j.ijbiomac.2025.143647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
The increasing presence of tetracycline antibiotics in aquatic ecosystems poses a critical environmental challenge, necessitating innovative remediation strategies. This study presents the development and characterization of starch-functionalized iron-graphene oxide (SFIGO) and starch-functionalized iron oxide (SFIO) nanocomposites adsorbents for tetracycline removal from water, with emphasis on sustainable synthesis and enhanced performance. Biluochun tea and cassava extract were used as renewable precursors in green synthesis to create a composite material that combines iron oxide's magnetic properties, graphene oxide's high surface area, and starch's biocompatibility. Comprehensive characterization using FTIR, XRD, SEM-EDX, TEM, and XPS revealed SFIGO's unique hierarchical architecture, featuring wrinkled graphene oxide sheets with well-dispersed iron-oxide nanoparticles. Batch adsorption studies demonstrated SFIGO's superior performance, achieving a maximum adsorption capacity of 865.79 mg/g at 298 K, significantly higher than SFIO's 634.83 mg/g. The adsorption process followed pseudo-second-order kinetics and showed endothermic behavior, with negative Gibbs free energy values, confirming process spontaneity. Multiple binding mechanisms, including π-π interactions, electrostatic attractions, and surface complexation, contributed to SFIGO's enhanced performance. The material demonstrated robust performance across various water matrices and maintained high removal efficiency. These findings advance our understanding of composite materials in environmental remediation and provide a sustainable solution for pharmaceutical pollutant removal.
Collapse
Affiliation(s)
- Bahui Cui
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China; School of Architectural Engineering, Guangzhou Institute of Science and Technology, Guangzhou 510540, China
| | - Huazhan Long
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Akash Kumar
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Andrew Ndudi Efomah
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Belay Tafa Oba
- College of Natural Science, Arba Minch University, 21 Arba Minch, Ethiopia
| | | | | | - Ghazanfar Mehboob
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Oluwaseun Princess Okimiji
- Department of Environmental Management, Faculty of Environmental Sciences, Lagos State University, PMB. 102101, Lagos State, Nigeria
| | - Olusheyi Zaccheaus Ojekunle
- Department of Environmental Management and Toxicology, Federal University of Agriculture, Abeokuta, P.M.B 2240, Ogun State, Nigeria
| | - Dabin Guo
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Meihua Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.
| | | |
Collapse
|
3
|
Liu Y, Wang L, Wen D, Deng Z, Wu Z, Li S, Li Y. Preparation and characterization of nano-silver/graphene oxide antibacterial skin dressing. Sci Rep 2025; 15:12490. [PMID: 40216795 PMCID: PMC11992206 DOI: 10.1038/s41598-025-93310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/05/2025] [Indexed: 04/14/2025] Open
Abstract
This study aims to develop a composite hydrogel consisting of nano silver (Ag) and graphene oxide (GO) for use as a skin wound dressing. We prepared nanosilver/graphene oxide composite hydrogels by incorporating nanosilver and graphene oxide into kaolin-reinforced, gelatin-based hydrogels. Tests were conducted on the hydrogel's water vapor permeability, mechanical properties, infrared warming performance and bacteriostatic properties under infrared light. The results indicated that kaolin enhanced the water vapor permeability and mechanical properties of the gelatin-based hydrogels. Moreover, the maximum fracture stress and strain of the hydrogel were elevated to 51.16 kPa and 1152.78% by GO, respectively. Furthermore, the modified Ag/GO hydrogels exhibited superior photothermal conversion and infrared bacteriostatic properties. This research offers valuable insights for the clinical repair of wounds and the design of new skin wound dressings, making these materials promising for such applications.
Collapse
Affiliation(s)
- Yang Liu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Liu Wang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Dawei Wen
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhonghua Deng
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Yongfeng Li
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
4
|
Lee HK, Yang YJ, Koirala GR, Oh S, Kim TI. From lab to wearables: Innovations in multifunctional hydrogel chemistry for next-generation bioelectronic devices. Biomaterials 2024; 310:122632. [PMID: 38824848 DOI: 10.1016/j.biomaterials.2024.122632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Functional hydrogels have emerged as foundational materials in diagnostics, therapy, and wearable devices, owing to their high stretchability, flexibility, sensing, and outstanding biocompatibility. Their significance stems from their resemblance to biological tissue and their exceptional versatility in electrical, mechanical, and biofunctional engineering, positioning themselves as a bridge between living organisms and electronic systems, paving the way for the development of highly compatible, efficient, and stable interfaces. These multifaceted capability revolutionizes the essence of hydrogel-based wearable devices, distinguishing them from conventional biomedical devices in real-world practical applications. In this comprehensive review, we first discuss the fundamental chemistry of hydrogels, elucidating their distinct properties and functionalities. Subsequently, we examine the applications of these bioelectronics within the human body, unveiling their transformative potential in diagnostics, therapy, and human-machine interfaces (HMI) in real wearable bioelectronics. This exploration serves as a scientific compass for researchers navigating the interdisciplinary landscape of chemistry, materials science, and bioelectronics.
Collapse
Affiliation(s)
- Hin Kiu Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Ji Yang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gyan Raj Koirala
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suyoun Oh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Tan Z, Chen C, Tang W. Advances in Hydrogels Research for Ion Detection and Adsorption. Crit Rev Anal Chem 2024:1-23. [PMID: 39128001 DOI: 10.1080/10408347.2024.2388817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The continuing development of heavy industry worldwide has led to an exponential increase in the amount of wastewater discharged from factories and entering the natural world in the form of rivers and air. As the top of the food chain in the natural world, toxic ions penetrate the human body through the skin, nose, and a few milligrams of toxic ions can often cause irreversible damage to the human body, so ion detection and adsorption is related to the health and safety of human beings. Hydrogel is a hydrophilic three-dimensional reticulated polymer material that first synthesized by Wichterle and Lim in 1960, which is rich in porous structure and has a variety of active adsorption sites as a new type of adsorbent and can be used to detect ions through the introduction of photonic crystals, DNA, fluorescent probe, and other materials. This review describes several synthetic and natural hydrogels for the adsorption and detection of ions and discusses the mechanism of ion adsorption by hydrogels, and provide a perspective for the future development.
Collapse
Affiliation(s)
- Zhenjiang Tan
- Shanghai Key Laboratory of Engineering Materials Application and Evaluation, School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Cheng Chen
- Shanghai Key Laboratory of Engineering Materials Application and Evaluation, School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
- Shanghai Thermophysical Properties Big Data Professional Technical Service Platform, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai, China
| | - Wenwei Tang
- School of Mathematics Physics and Statistics, Shanghai Polytechnic University, Shanghai, China
| |
Collapse
|
6
|
Sun Z, Yin Y, Liu B, Xue T, Zou Q. Amphibious Multifunctional Hydrogel Flexible Haptic Sensor with Self-Compensation Mechanism. SENSORS (BASEL, SWITZERLAND) 2024; 24:3232. [PMID: 38794086 PMCID: PMC11125873 DOI: 10.3390/s24103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
In recent years, hydrogel-based wearable flexible electronic devices have attracted much attention. However, hydrogel-based sensors are affected by structural fatigue, material aging, and water absorption and swelling, making stability and accuracy a major challenge. In this study, we present a DN-SPEZ dual-network hydrogel prepared using polyvinyl alcohol (PVA), sodium alginate (SA), ethylene glycol (EG), and ZnSO4 and propose a self-calibration compensation strategy. The strategy utilizes a metal salt solution to adjust the carrier concentration of the hydrogel to mitigate the resistance drift phenomenon to improve the stability and accuracy of hydrogel sensors in amphibious scenarios, such as land and water. The ExpGrow model was used to characterize the trend of the ∆R/R0 dynamic response curves of the hydrogels in the stress tests, and the average deviation of the fitted curves ϵ¯ was calculated to quantify the stability differences of different groups. The results showed that the stability of the uncompensated group was much lower than that of the compensated group utilizing LiCl, NaCl, KCl, MgCl2, and AlCl3 solutions (ϵ¯ in the uncompensated group in air was 276.158, 1.888, 2.971, 30.586, and 13.561 times higher than that of the compensated group in LiCl, NaCl, KCl, MgCl2, and AlCl3, respectively; ϵ¯ in the uncompensated group in seawater was 10.287 times, 1.008 times, 1.161 times, 4.986 times, 1.281 times, respectively, higher than that of the compensated group in LiCl, NaCl, KCl, MgCl2 and AlCl3). In addition, for the ranking of the compensation effect of different compensation solutions, the concentration of the compensation solution and the ionic radius and charge of the cation were found to be important factors in determining the compensation effect. Detection of events in amphibious environments such as swallowing, robotic arm grasping, Morse code, and finger-wrist bending was also performed in this study. This work provides a viable method for stability and accuracy enhancement of dual-network hydrogel sensors with strain and pressure sensing capabilities and offers solutions for sensor applications in both airborne and underwater amphibious environments.
Collapse
Affiliation(s)
- Zhenhao Sun
- School of Microelectronics, Tianjin University, Tianjin 300072, China; (Z.S.); (Y.Y.); (B.L.)
| | - Yunjiang Yin
- School of Microelectronics, Tianjin University, Tianjin 300072, China; (Z.S.); (Y.Y.); (B.L.)
| | - Baoguo Liu
- School of Microelectronics, Tianjin University, Tianjin 300072, China; (Z.S.); (Y.Y.); (B.L.)
| | - Tao Xue
- Center of Analysis and Testing Facilities, Tianjin University, Tianjin 300072, China;
| | - Qiang Zou
- School of Microelectronics, Tianjin University, Tianjin 300072, China; (Z.S.); (Y.Y.); (B.L.)
- Tianjin International Joint Research Center for Internet of Things, Tianjin 300072, China
- Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Xie J, Qin Y, Zeng Y, Yuan R, Lu X, Yang X, Wei E, Cui C. Phytic acid/tannic acid reinforced hydrogels with ultra-high strength for human motion monitoring and arrays. SOFT MATTER 2024; 20:640-650. [PMID: 38164001 DOI: 10.1039/d3sm01295f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Conductive hydrogels have been widely researched for their potential applications in soft electronic devices. Creating environmentally friendly and multifunctional high-strength hydrogels for high-performance devices remains a significant challenge. This study employs the biodegradable material polyvinyl alcohol (PVA) as the primary component, with phytic acid (PA) and tannic acid (TA) as reinforcing phases, to create a multifunctional, high-strength "green" hydrogel. Through the multiple complexations of two bio-enhancing phases with the PVA main chain, this hydrogel attains ultra-high tensile strength (9.341 MPa), substantial toughness (4.262 MJ m-3), and extensive fracture strain (> 1000%), making it a representative with both mechanical performance and antibacterial capabilities. Additionally, it exhibits a low strain sensing limit (0.5%) and excellent durability (500 cycles under 50% strain). This work introduces a novel strategy of combining biodegradable materials with biomass to fabricate multifunctional hydrogels suitable for human motion monitoring and 2D pressure distribution.
Collapse
Affiliation(s)
- Jiegao Xie
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and technology, Jing-ming, 727, Yunnan Province, People's Republic of China.
| | - Yafei Qin
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and technology, Jing-ming, 727, Yunnan Province, People's Republic of China.
| | - Yu Zeng
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and technology, Jing-ming, 727, Yunnan Province, People's Republic of China.
| | - Ruibo Yuan
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and technology, Jing-ming, 727, Yunnan Province, People's Republic of China.
| | - Xinyu Lu
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and technology, Jing-ming, 727, Yunnan Province, People's Republic of China.
| | - Xiaojing Yang
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and technology, Jing-ming, 727, Yunnan Province, People's Republic of China.
| | - Erjiong Wei
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and technology, Jing-ming, 727, Yunnan Province, People's Republic of China.
| | - Chenkai Cui
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and technology, Jing-ming, 727, Yunnan Province, People's Republic of China.
| |
Collapse
|
8
|
Pawłowska S, Cysewska K, Ziai Y, Karczewski J, Jasiński P, Molin S. Influence of conductive carbon and MnCo 2O 4 on morphological and electrical properties of hydrogels for electrochemical energy conversion. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:57-70. [PMID: 38229679 PMCID: PMC10790649 DOI: 10.3762/bjnano.15.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
In this work, a strategy for one-stage synthesis of polymer composites based on PNIPAAm hydrogel was presented. Both conductive particles in the form of conductive carbon black (cCB) and MnCo2O4 (MCO) spinel particles were suspended in the three-dimensional structure of the hydrogel. The MCO particles in the resulting hydrogel composite acted as an electrocatalyst in the oxygen evolution reaction. Morphological studies confirmed that the added particles were incorporated and, in the case of a higher concentration of cCB particles, also bound to the surface of the structure of the hydrogel matrix. The produced composite materials were tested in terms of their electrical properties, showing that an increase in the concentration of conductive particles in the hydrogel structure translates into a lowering of the impedance modulus and an increase in the double-layer capacitance of the electrode. This, in turn, resulted in a higher catalytic activity of the electrode in the oxygen evolution reaction. The use of a hydrogel as a matrix to suspend the catalyst particles, and thus increase their availability through the electrolyte, seems to be an interesting and promising application approach.
Collapse
Affiliation(s)
- Sylwia Pawłowska
- Faculty of Electronics, Telecommunications and Informatics, and Advanced Materials Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Karolina Cysewska
- Faculty of Electronics, Telecommunications and Informatics, and Advanced Materials Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Yasamin Ziai
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego St. 5B, 02-106 Warsaw, Poland
| | - Jakub Karczewski
- Faculty of Applied Physics and Mathematics, and Advanced Materials Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Piotr Jasiński
- Faculty of Electronics, Telecommunications and Informatics, and Advanced Materials Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Sebastian Molin
- Faculty of Electronics, Telecommunications and Informatics, and Advanced Materials Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
9
|
Moradi S, Firoozbakhtian A, Hosseini M, Karaman O, Kalikeri S, Raja GG, Karimi-Maleh H. Advancements in wearable technology for monitoring lactate levels using lactate oxidase enzyme and free enzyme as analytical approaches: A review. Int J Biol Macromol 2024; 254:127577. [PMID: 37866568 DOI: 10.1016/j.ijbiomac.2023.127577] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Lactate is a metabolite that holds significant importance in human healthcare, biotechnology, and the food industry. The need for lactate monitoring has led to the development of various devices for measuring lactate concentration. Traditional laboratory methods, which involve extracting blood samples through invasive techniques such as needles, are costly, time-consuming, and require in-person sampling. To overcome these limitations, new technologies for lactate monitoring have emerged. Wearable biosensors are a promising approach that offers non-invasiveness, low cost, and short response times. They can be easily attached to the skin and provide continuous monitoring. In this review, we evaluate different types of wearable biosensors for lactate monitoring using lactate oxidase enzyme as biological recognition element and free enzyme systems.
Collapse
Affiliation(s)
- Sara Moradi
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Ali Firoozbakhtian
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran; Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Onur Karaman
- Akdeniz University, Department of Medical Imaging Techniques, Antalya, Turkey.
| | - Shankramma Kalikeri
- Division of Nanoscience and Technology, School of Lifesciences, Mysuru, JSS Academy of Higher Education and Research, Mysuru-570015, Karnataka, India
| | - G Ganesh Raja
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica-1000000, Chile
| | - Hassan Karimi-Maleh
- The Quzhou Affiliated Hospital of Wenzhu Medical University, Quzhou Peoplés Hospital, PR China; School of Resources and Environment, University of Electronic Science and Technology of China, PR China; School of Engineering, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
10
|
Azeem MK, Islam A, Khan RU, Rasool A, Anees Ur Rehman Qureshi M, Rizwan M, Shuib RK, Rehman A, Sadiqa A. Guar gum/poly ethylene glycol/graphene oxide environmentally friendly hybrid hydrogels for controlled release of boron micronutrient. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231157. [PMID: 38094268 PMCID: PMC10716656 DOI: 10.1098/rsos.231157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/21/2023] [Indexed: 01/11/2024]
Abstract
The present study was aimed at synthesis of polymeric hydrogels for controlled boron (B) release, as B deficiency is a major factor that decreases crops yield. Thus, graphene oxide incorporated guar gum and poly (ethylene glycol) hydrogels were prepared using the Solution Casting method for boron release. 3-Glycidyloxypropyl trimethoxysilane (GLYMOL) was used as a cross-linker. Characterizations of hydrogels were carried out by Fourier Transform Infrared Spectroscopy (FTIR), Thermo-Gravimetric Analysis and Scanning Electron scope. The FTIR outcomes confirmed the existence of functional groups, bindings and development of hydrogel frameworks from incorporated components. The quantity of GLYMOL directly increased the thermal stability and water retention but decreased the swelling %. The maximum swelling for the hydrogel formulations was observed at pH 7. The addition of GLYMOL changed the diffusion from quasi-Fickcian to non-Fickcian diffusion. The maximum swelling quantities of 3822% and 3342% were exhibited by GPP (control) and GPP-8 in distilled water, respectively. Boron release was determined in distilled water and sandy soil by azomethine-H test using UV-Visible spectrophotometer while 85.11% and 73.65% boron was released from BGPP-16, respectively. In short, water retentive, water holding capacities, swelling performances, biodegradability and swelling/deswelling features would offer an ideal platform for boron release in sustained agricultural applications.
Collapse
Affiliation(s)
- Muhammad Khalid Azeem
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, Punjab, Pakistan
| | - Atif Islam
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, Punjab, Pakistan
| | - Rafi Ullah Khan
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Atta Rasool
- School of Chemistry, University of the Punjab, Lahore, Punjab, Pakistan
| | | | - Muhammad Rizwan
- Department of Chemistry, University of Lahore 54000, Pakistan
| | - Raa Khimi Shuib
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300, Penang, Malaysia
| | - Abdul Rehman
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300, Penang, Malaysia
- Department of Polymer Engineering, National Textile University, Karachi campus, 74900, Karachi, Pakistan
| | - Ayesha Sadiqa
- Department of Chemistry, University of Lahore 54000, Pakistan
| |
Collapse
|
11
|
Li J, Ding Q, Wang H, Wu Z, Gui X, Li C, Hu N, Tao K, Wu J. Engineering Smart Composite Hydrogels for Wearable Disease Monitoring. NANO-MICRO LETTERS 2023; 15:105. [PMID: 37060483 PMCID: PMC10105367 DOI: 10.1007/s40820-023-01079-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/16/2023] [Indexed: 05/31/2023]
Abstract
Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome general check-ups. The wearable technique provides a continuous measurement method for health monitoring by tracking a person's physiological data and analyzing it locally or remotely. During the health monitoring process, different kinds of sensors convert physiological signals into electrical or optical signals that can be recorded and transmitted, consequently playing a crucial role in wearable techniques. Wearable application scenarios usually require sensors to possess excellent flexibility and stretchability. Thus, designing flexible and stretchable sensors with reliable performance is the key to wearable technology. Smart composite hydrogels, which have tunable electrical properties, mechanical properties, biocompatibility, and multi-stimulus sensitivity, are one of the best sensitive materials for wearable health monitoring. This review summarizes the common synthetic and performance optimization strategies of smart composite hydrogels and focuses on the current application of smart composite hydrogels in the field of wearable health monitoring.
Collapse
Affiliation(s)
- Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ning Hu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China.
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
12
|
Wu SD, Chuang WT, Ho JC, Wu HC, Hsu SH. Self-Healing of Recombinant Spider Silk Gel and Coating. Polymers (Basel) 2023; 15:polym15081855. [PMID: 37112001 PMCID: PMC10141599 DOI: 10.3390/polym15081855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Self-healing properties, originating from the natural healing process, are highly desirable for the fitness-enhancing functionality of biomimetic materials. Herein, we fabricated the biomimetic recombinant spider silk by genetic engineering, in which Escherichia coli (E. coli) was employed as a heterologous expression host. The self-assembled recombinant spider silk hydrogel was obtained through the dialysis process (purity > 85%). The recombinant spider silk hydrogel with a storage modulus of ~250 Pa demonstrated autonomous self-healing and high strain-sensitive properties (critical strain ~50%) at 25 °C. The in situ small-angle X-ray scattering (in situ SAXS) analyses revealed that the self-healing mechanism was associated with the stick-slip behavior of the β-sheet nanocrystals (each of ~2-4 nm) based on the slope variation (i.e., ~-0.4 at 100%/200% strains, and ~-0.9 at 1% strain) of SAXS curves in the high q-range. The self-healing phenomenon may occur through the rupture and reformation of the reversible hydrogen bonding within the β-sheet nanocrystals. Furthermore, the recombinant spider silk as a dry coating material demonstrated self-healing under humidity as well as cell affinity. The electrical conductivity of the dry silk coating was ~0.4 mS/m. Neural stem cells (NSCs) proliferated on the coated surface and showed a 2.3-fold number expansion after 3 days of culture. The biomimetic self-healing recombinant spider silk gel and thinly coated surface may have good potential in biomedical applications.
Collapse
Affiliation(s)
- Shin-Da Wu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - Jo-Chen Ho
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| |
Collapse
|
13
|
Bonciu AF, Andrei F, Palla-Papavlu A. Fabrication of Hybrid Electrodes by Laser-Induced Forward Transfer for the Detection of Cu 2+ Ions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1744. [PMID: 36837372 PMCID: PMC9959881 DOI: 10.3390/ma16041744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Composites based on poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS)-graphene oxide (GO) are increasingly considered for sensing applications. In this work we aim at patterning and prototyping microscale geometries of PEDOT:PSS: GO composites for the modification of commercially available electrochemical sensors. Here, we demonstrate the laser-induced forward transfer of PEDOT:PSS: GO composites, a remarkably simple procedure that allows for the fast and clean transfer of materials with high resolution for a wide range of laser fluences (450-750 mJ/cm2). We show that it is possible to transfer PEDOT:PSS: GO composites at different ratios (i.e., 25:75 %wt and 50:50 %wt) onto flexible screen-printed electrodes. Furthermore, when testing the functionality of the PEDOT:PSS: GO modified electrodes via LIFT, we could see that both the PEDOT:PSS: GO ratio as well as the addition of an intermediate release layer in the LIFT process plays an important role in the electrochemical response. In particular, the ratio of the oxidation peak current to the reduction peak current is almost twice as high for the sensor with a 50:50 %et PEDOT:PSS: GO pixel. This direct transfer methodology provides a path forward for the prototyping and production of polymer: graphene oxide composite based devices.
Collapse
|
14
|
Consecutive Ink Writing of Conducting Polymer and Graphene Composite Electrodes for Foldable Electronics-Related Applications. Polymers (Basel) 2022; 14:polym14235294. [PMID: 36501688 PMCID: PMC9736600 DOI: 10.3390/polym14235294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022] Open
Abstract
For foldable electronic devices of the future, most components should have very good flexibility and reliability to maintain electrical properties even under repeated deformation. In this study, two types of inks for conducting polymer and graphene were simultaneously printed on flexible plastic substrates via the newly developed consecutive ink writing (CIW) process for the formation of composite electrodes of foldable electronic devices. To consecutively print conducting polymer ink and graphene ink, a conventional three-dimensional (3D) printer was modified by installing two needles in the printer head, and the two inks were printed through the nozzle in the same route with a time interval. By adjusting several printing conditions (ink concentration, printing parameters, printing time intervals between the two inks, etc.), various structures of composite electrodes, such as layered or fused 2D or 3D structures were developed on the glass substrate. Furthermore, by changing the printing order of the two inks and 3D printer bed temperature, the composite electrodes with a higher printing resolution were successfully printed on the flexible polyimide substrate. The printed composite electrodes via CIW process exhibit the lowest surface electrical resistance of 0.9 kΩ and high flexibility, and stable resistance values were maintained after 1000 cycles of the folding test. Consequently, the CIW process developed in this study applies to the production of the electrical parts and components for various flexible devices, such as foldable and wearable electronics.
Collapse
|