1
|
Wang J, Zhan H, Wang Y, Zhao L, Huang Y, Wu R. Current advances in understanding endometrial epithelial cell biology and therapeutic applications for intrauterine adhesion. Stem Cell Res Ther 2024; 15:379. [PMID: 39456113 PMCID: PMC11515228 DOI: 10.1186/s13287-024-03989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The human endometrium is a highly regenerative tissue capable of undergoing scarless repair during the menstruation and postpartum phases. This process is mediated by endometrial adult stem/progenitor cells. During the healing of endometrial injuries, swift reepithelization results in the rapid covering of the wound surface and facilitates subsequent endometrial restoration. The involvement of endogenous endometrial epithelial stem cells, stromal cells, and bone marrow-derived cells in the regeneration of the endometrial epithelium has been a subject of prolonged debate. Increasing evidence suggests that the regeneration of the endometrial epithelium mainly relies on epithelial stem cells rather than stromal cells and bone marrow-derived cells. Currently, no consensus has been established on the identity of epithelial stem cells in the epithelial compartment. Several markers, including stage-specific embryonic antigen-1 (SSEA-1), sex-determining region Y-box 9 (SOX9), neural-cadherin (N-cadherin), leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5), CD44, axis inhibition protein 2 (Axin2), and aldehyde dehydrogenase 1A1 (ALDH1A1), have been suggested as potential candidate markers for endometrial epithelial stem cells. The identification of endometrial epithelial stem cells contributes to our understanding of endometrial regeneration and offers new therapeutic insights into diseases characterized by regenerative defects in the endometrium, such as intrauterine adhesion. This review explores different perspectives on the origins of human and mouse endometrial epithelial cells. It summarizes the potential markers, locations, and hierarchies of epithelial stem cells in both human and mouse endometrium. It also discusses epithelial cell-based treatments for intrauterine adhesion, hoping to inspire further research and clinical application of endometrial epithelial stem cells.
Collapse
Affiliation(s)
- Jia Wang
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, 310006, Zhejiang, People's Republic of China
- Zhejiang Key Laboratory of Maternal and Infant Health, Hangzhou, People's Republic of China
| | - Hong Zhan
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, 310006, Zhejiang, People's Republic of China
- Zhejiang Key Laboratory of Maternal and Infant Health, Hangzhou, People's Republic of China
| | - Yinfeng Wang
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, 310006, Zhejiang, People's Republic of China
- Zhejiang Key Laboratory of Maternal and Infant Health, Hangzhou, People's Republic of China
| | - Li Zhao
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, 310006, Zhejiang, People's Republic of China
- Zhejiang Key Laboratory of Maternal and Infant Health, Hangzhou, People's Republic of China
| | - Yunke Huang
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, 310006, Zhejiang, People's Republic of China
- Zhejiang Key Laboratory of Maternal and Infant Health, Hangzhou, People's Republic of China
| | - Ruijin Wu
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, 310006, Zhejiang, People's Republic of China.
- Zhejiang Key Laboratory of Maternal and Infant Health, Hangzhou, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China.
| |
Collapse
|
2
|
Hilage P, Birajdar A, Marsale T, Patil D, Patil AM, Telang G, Somasundaram I, Sharma RK, Joshi MG. Characterization and angiogenic potential of CD146 + endometrial stem cells. Stem Cell Res Ther 2024; 15:330. [PMID: 39334237 PMCID: PMC11438155 DOI: 10.1186/s13287-024-03918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The human endometrium, lining the inner uterus, regenerates over 400 times uniquely during a woman's reproductive life. Endometrial stem cells (eSCs) enrich the tissue, resulting in a dense vascular network, significant angiogenic potential, and effective regeneration power. Being of natural angiogenic properties and proven effective in the treatment of vascular disorders, eSCs can be considered safe, reliable, and superior to other post-natal stem cells. Cluster of Differentiation 146 (CD146) has emerged as a pivotal marker associated with pericytes and endothelial cells for promoting angiogenesis. Endometrial cells with high CD146 expression could proliferate and differentiate into multiple lineages. This study will explore the role of CD146 in eSCs, focusing on the potential to boost the angiogenic and regenerative functions of the cells. The novelty of this study lies in the investigation of CD146 on eSC function, which may open new possibilities for eSC-based therapy in regenerative medicine and vascular disorders. METHODS The study involved obtaining endometrial biopsies from active reproducing women to isolate and cultivate eSCs. eSCs were assessed for growth factor secretion pattern, characterized for their mesenchymal properties. Finally, eSCs were tested for their angiogenic potential by angiogenic gene expression profile and in-ovo chick embryo model. As aimed, to check the role of CD146 in eSC angiogenesis, CD146+ cells were magnetically sorted and cultured. The sorted cells underwent various analyses, including flowcytometry to identify mesenchymal markers and human growth factor panel to analyze growth factor secretion profiles The study evaluated the angiogenic potential of CD146 + cells using functional assays, including ring formation, endothelial differentiation, and wound scratch assays, to evaluate cell migration and healing capabilities. Molecular insights were obtained through chemokine and cytokine investigations In-ovo Chick model assay was conducted to check the angiogenic potential and evaluated through macroscopic as well as through immunohistochemistry. RESULT Endometrial stem cells (eSCs) were successfully isolated using a combination of mechanical and enzymatic digestion, followed by culturing in complete DMEM media. The secretion profile of eSCs revealed significant production of various angiogenic growth factors, including Granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), Vascular endothelial growth factor (VEGF), Fibroblast growth factors (FGF), and Platelet derived growth factor AA (PDGF-AA). The angiogenic gene profile indicated upregulation of several angiogenic genes in eSCs. The mesenchymal nature of eSCs was demonstrated through surface marker analysis (Cluster of differentiation 73, Cluster of differentiation 90, Cluster of differentiation 105) and trilineage differentiation. The in-ovo chick model confirmed the angiogenic potential of eSCs. CD146+ cells, isolated via magnetic sorting, exhibited enhanced angiogenic potential. These cells secreted significant levels of angiogenic growth factors such as VEGF. In Matrigel assays, CD146+ cells formed endothelial ring structures more rapidly and persistently than unsorted eSCs. Semi-quantitative PCR confirmed their endothelial differentiation. CD146+ cells express various angiogenic chemokines such as CXCL5, CXCL8, CCL3, and CCL20 and cytokines such as GM-CSF, Interleukin-1β (IL-1β), Interleukin-6 (IL-6), PDGF AA/BB, Epidermal growth factor (EGF), Endothelin 1, Angiopoietin. In-ovo chick model assay showed that CD146+ cells had superior angiogenesis, with more nodes, junctions, and segments compared to eSCs and controls. Immunohistochemistry confirmed increased expression of endothelial markers (Cluster of differentiation 31, VEGF, Vascular associated protein (VAP), Von Willebrand factor (vWF) in CD146+ cells. CONCLUSION The study highlights the angiogenic potential of endometrial stem cells, particularly the CD146+ cell population. These cells promote angiogenesis, secreting growth factors and forming stable blood vessel structures. CD146+ cells have higher expression levels of VEGF and TGF-α, key factors in angiogenesis. This suggests CD146+ eSCs may be promising for therapeutic applications in vascular diseases requiring angiogenesis. Further research is needed.
Collapse
Affiliation(s)
- Priyanka Hilage
- Department of Stem Cells & Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), D. Y. Patil Vidyanagar, Kasab Bawada, Kolhapur, 416006, Maharashtra, India
| | - Apurva Birajdar
- Department of Stem Cells & Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), D. Y. Patil Vidyanagar, Kasab Bawada, Kolhapur, 416006, Maharashtra, India
| | - Tejesh Marsale
- PCI Pharma Services, 23 commerce Dr, Bedford, NH, 03110, USA
| | - Dhanashree Patil
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education and Research, NH Service Road, Nehru Nagar, Belagavi, 590010, Karnataka, India
| | - Ashwini Mane Patil
- Aster Adhar Hospital, Shastri Nagar, Kolhapur, 416012, Maharashtra, India
| | - Gaurang Telang
- BioRadius Therapeutics Research Pvt. Ltd, Pune, 411057, Maharashtra, India
| | - Indumathi Somasundaram
- Department of Stem Cells & Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), D. Y. Patil Vidyanagar, Kasab Bawada, Kolhapur, 416006, Maharashtra, India
| | - Rakesh Kumar Sharma
- Department of Obstetrics and Gynecology, D.Y. Patil Medical College, Kasaba Bawada, Kolhapur, 416006, Maharashtra, India.
| | - Meghnad G Joshi
- Department of Stem Cells & Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), D. Y. Patil Vidyanagar, Kasab Bawada, Kolhapur, 416006, Maharashtra, India.
- Stem Plus Biotech Pvt. Ltd, Sangli Miraj Kupwad Commercial Complex, C/S No. 1317/2, Near Shivaji Maharaj Putla, Bus Stand Road, Gaon Bhag, Sangli, 416416, MS, India.
| |
Collapse
|
3
|
Marečková M, Garcia-Alonso L, Moullet M, Lorenzi V, Petryszak R, Sancho-Serra C, Oszlanczi A, Icoresi Mazzeo C, Wong FCK, Kelava I, Hoffman S, Krassowski M, Garbutt K, Gaitskell K, Yancheva S, Woon EV, Male V, Granne I, Hellner K, Mahbubani KT, Saeb-Parsy K, Lotfollahi M, Prigmore E, Southcombe J, Dragovic RA, Becker CM, Zondervan KT, Vento-Tormo R. An integrated single-cell reference atlas of the human endometrium. Nat Genet 2024; 56:1925-1937. [PMID: 39198675 PMCID: PMC11387200 DOI: 10.1038/s41588-024-01873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/17/2024] [Indexed: 09/01/2024]
Abstract
The complex and dynamic cellular composition of the human endometrium remains poorly understood. Previous endometrial single-cell atlases profiled few donors and lacked consensus in defining cell types. We introduce the Human Endometrial Cell Atlas (HECA), a high-resolution single-cell reference atlas (313,527 cells) combining published and new endometrial single-cell transcriptomics datasets of 63 women with and without endometriosis. HECA assigns consensus and identifies previously unreported cell types, mapped in situ using spatial transcriptomics and validated using a new independent single-nuclei dataset (312,246 nuclei, 63 donors). In the functionalis, we identify intricate stromal-epithelial cell coordination via transforming growth factor beta (TGFβ) signaling. In the basalis, we define signaling between fibroblasts and an epithelial population expressing progenitor markers. Integration of HECA with large-scale endometriosis genome-wide association study data pinpoints decidualized stromal cells and macrophages as most likely dysregulated in endometriosis. The HECA is a valuable resource for studying endometrial physiology and disorders, and for guiding microphysiological in vitro systems development.
Collapse
Affiliation(s)
- Magda Marečková
- Wellcome Sanger Institute, Cambridge, UK
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | | | | | - Valentina Lorenzi
- Wellcome Sanger Institute, Cambridge, UK
- European Bioinformatics Institute-European Molecular Biology Laboratory, Cambridge, UK
| | | | | | | | | | | | - Iva Kelava
- Wellcome Sanger Institute, Cambridge, UK
| | | | - Michał Krassowski
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kurtis Garbutt
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Kezia Gaitskell
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Department of Cellular Pathology, John Radcliffe Hospital, Oxford, UK
| | - Slaveya Yancheva
- Department of Cellular Pathology, John Radcliffe Hospital, Oxford, UK
| | - Ee Von Woon
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
- The Fertility Centre, Chelsea and Westminster Hospital, London, UK
| | - Victoria Male
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Ingrid Granne
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Karin Hellner
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Krishnaa T Mahbubani
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine (CBTM), NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Cambridge Biorepository for Translational Medicine (CBTM), NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Mohammad Lotfollahi
- Wellcome Sanger Institute, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Jennifer Southcombe
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Rebecca A Dragovic
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Christian M Becker
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Krina T Zondervan
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.
- Centre for Human Genetics, University of Oxford, Oxford, UK.
| | | |
Collapse
|
4
|
Liu H, Liang J, Dai X, Peng Y, Xiong W, Zhang L, Li X, Li W, Liu K, Bi S, Wang X, Zhang W, Liu Y. Transcriptome-wide N6-methyladenosine (m6A) methylation profiling of long non-coding RNAs in ovarian endometriosis. Genomics 2024; 116:110803. [PMID: 38290592 DOI: 10.1016/j.ygeno.2024.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/13/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent internal epigenetic posttranscriptional mechanism for regulating mammalian RNA. Despite recent advances in determining the biological functions of m6A methylation, its association with the pathology of ovarian endometriosis remains uncertain. Herein, we performed m6A transcriptome-wide profiling to identify key lncRNAs with m6A modification involved in ovarian endometriosis development by bioinformatics analysis. We found the total m6A level was lower in ovarian endometriosis than in normal endometrium samples, with 9663 m6A peaks associated with 8989 lncRNAs detected in ovarian endometriosis and 9902 m6A peaks associated with 9210 lncRNAs detected in normal endometrium samples. These m6A peaks were primarily enriched within AAACU motifs. Functional enrichment analysis indicated that pathways involving the regulation of adhesion and development were significantly enriched in these differentially methylated lncRNAs. The regulatory relationships among lncRNAs, microRNAs (miRNAs), and mRNAs were identified by competing endogenous RNA (ceRNA) analysis and determination of the network regulating lncRNA-mRNA expression. Several specific lncRNA, including LINC00665, LINC00937, FZD10-AS1, DIO3OS and GATA2-AS1 which were differently expressed and modified by m6A, were validated using qRT-PCR and its interaction with infiltrating immune cells was explored. Furthermore, we found LncRNA DIO3OS promotes the invasion and migration of Human endometrial stromal cells (THESCs) and ALKBH5 regulates the expression of the lncRNA DIO3OS through m6A modification in vitro. Our study firstly revealed the transcriptome-wide map of m6A modification in lncRNAs of ovarian endometriosis. These findings may enable the determination of the underlying mechanism governing the pathogenesis of ovarian endometriosis and provide theoretical basis for further deeper research on the role of m6A in the development of ovarian endometriosis.
Collapse
Affiliation(s)
- Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jiaxin Liang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Dai
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuan Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Keyi Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Siyi Bi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiwen Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Spencer TE, Lowke MT, Davenport KM, Dhakal P, Kelleher AM. Single-cell insights into epithelial morphogenesis in the neonatal mouse uterus. Proc Natl Acad Sci U S A 2023; 120:e2316410120. [PMID: 38019863 PMCID: PMC10710066 DOI: 10.1073/pnas.2316410120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The uterus is vital for successful reproduction in mammals, and two different types of epithelia (luminal and glandular) are essential for embryo implantation and pregnancy establishment. However, the essential cellular and molecular factors and pathways governing postnatal epithelium maturation, determination, and differentiation in developing uterus are yet to be elucidated. Here, the epithelium of the neonatal mouse uterus was isolated and subjected to single-cell transcriptome (scRNA-seq) analysis. Both the undifferentiated epithelium and determined luminal epithelium were heterogeneous and contained several different cell clusters based on single-cell transcription profiles. Substantial gene expression differences were evident as the epithelium matured and differentiated between postnatal days 1 to 15. Two new glandular epithelium-expressed genes (Gas6 and Cited4) were identified and validated by in situ hybridization. Trajectory analyses provided a framework for understanding epithelium maturation, lineage bifurcation, and differentiation. A candidate set of transcription factors and gene regulatory networks were identified that potentially direct epithelium lineage specification and morphogenesis. This atlas provides a foundation important to discover intrinsic cellular and molecular mechanisms directing uterine epithelium morphogenesis during a critical window of postnatal development.
Collapse
Affiliation(s)
- Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
- Division of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Makenzie T. Lowke
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
| | | | - Pramod Dhakal
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
| | - Andrew M. Kelleher
- Division of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| |
Collapse
|
6
|
Xanthis V, Mantso T, Dimtsi A, Pappa A, Fadouloglou VE. Human Aldehyde Dehydrogenases: A Superfamily of Similar Yet Different Proteins Highly Related to Cancer. Cancers (Basel) 2023; 15:4419. [PMID: 37686694 PMCID: PMC10650815 DOI: 10.3390/cancers15174419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
The superfamily of human aldehyde dehydrogenases (hALDHs) consists of 19 isoenzymes which are critical for several physiological and biosynthetic processes and play a major role in the organism's detoxification via the NAD(P) dependent oxidation of numerous endogenous and exogenous aldehyde substrates to their corresponding carboxylic acids. Over the last decades, ALDHs have been the subject of several studies as it was revealed that their differential expression patterns in various cancer types are associated either with carcinogenesis or promotion of cell survival. Here, we attempt to provide a thorough review of hALDHs' diverse functions and 3D structures with particular emphasis on their role in cancer pathology and resistance to chemotherapy. We are especially interested in findings regarding the association of structural features and their changes with effects on enzymes' functionalities. Moreover, we provide an updated outline of the hALDHs inhibitors utilized in experimental or clinical settings for cancer therapy. Overall, this review aims to provide a better understanding of the impact of ALDHs in cancer pathology and therapy from a structural perspective.
Collapse
Affiliation(s)
| | | | | | | | - Vasiliki E. Fadouloglou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
7
|
Hu S, Sun Z, Li B, Zhao H, Wang Y, Yao G, Li X, Bian X, Li TC, Vankelecom H, Sun Y. iTRAQ-based Proteomic Analysis Unveils ACSL4 as a Novel Potential Regulator of Human Endometrial Receptivity. Endocrinology 2023; 164:6991315. [PMID: 36652382 DOI: 10.1210/endocr/bqad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/19/2023]
Abstract
Competent endometrial receptivity is a prerequisite for successful embryo implantation. Identification of novel key molecules involved in endometrial receptivity is essential to better interpret human implantation and improve pregnancy rates in assisted reproduction treatment. Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics was performed to profile the proteomes of the prereceptive (luteinizing hormone [LH] + 2, n = 4) and receptive (LH + 7, n = 4) endometrial tissues. A total of 173 differentially expressed proteins (DEPs) between LH + 2 and LH + 7 endometrial samples were identified. Integrated analysis of the proteomic data and published transcriptomic data was performed to identify the concordant DEPs with differential expression at both the messenger RNA and protein levels. Protein-protein interaction (PPI) network analysis was performed on concordant DEPs. We first identified 63 novel concordant DEPs and 5 hub proteins (ACSL4, ACSL5, COL1A1, PTGS1, and PLA2G4F) between LH + 2 and LH + 7 endometrial samples. ACSL4 was predominantly expressed in endometrial epithelial cells and its expression was significantly upregulated by progesterone in the LH + 7 endometrium and significantly downregulated in repeated implantation failure patients. Knockdown of ACSL4 in endometrial epithelial cells induced the downregulation of endometrial receptivity markers (HOXA10, COX2, and LIF) and the significant decrease of implantation rate during in vitro implantation analysis. This study provides the first gel-independent quantitative proteomes of the LH + 2 and LH + 7 human endometrium using iTRAQ technology. The identified concordant DEPs and hub proteins open a new avenue for future studies aimed at elucidating the underlying mechanisms governing endometrial receptivity. ACSL4 was identified as a novel regulatory molecule in the establishment of endometrial receptivity and might play important roles during implantation.
Collapse
Affiliation(s)
- Shuanggang Hu
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Zhe Sun
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Boyu Li
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Hanting Zhao
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Yuan Wang
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Guangxin Yao
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Xinyu Li
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Xuejiao Bian
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Tin Chiu Li
- Department of Obstetrics and Gynaecology, Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hugo Vankelecom
- Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
| | - Yun Sun
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| |
Collapse
|
8
|
Lin TC, Wang KH, Chuang KH, Kao AP, Kuo TC. Oct-4 induces cisplatin resistance and tumor stem cell-like properties in endometrial carcinoma cells. Taiwan J Obstet Gynecol 2023; 62:16-21. [PMID: 36720532 DOI: 10.1016/j.tjog.2022.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE Research has suggested that tumor-initiating tumor stem cells are derived from normal stem cells and that tumor cells undergo progressive de-differentiation to achieve a stem cell-like state. Tumor stem cells are characterized by high proliferation ability, high plasticity, expression of multi-drug resistance proteins, and the ability to seed new tumors. Octamer-binding transcription factor 4 (Oct-4) and its activation targets are overexpressed in the tumor stem cells of various types of tumors, and this expression is associated with the pathogenesis, development, and poor prognosis of tumors. The primary objective of this study was to test if a stably transfected with Oct-4 gene cell line, RL95-2/Oct-4, has the characteristics of tumor stem cells. MATERIALS AND METHODS Human endometrial carcinoma cells (RL95-2) were transfected with a plasmid carrying genes for Oct-4 and green fluorescent protein (GFP). The stably transfected cells, RL95-2/Oct-4, were selected using G418 and observed to express the GFP reporter gene under the control of the Oct-4 promoter. GFP expression levels of RL95-2/Oct-4 cells were measured using flow cytometry. The proliferation potential of cells was determined according to cumulative population doubling and colony-formation efficiency. Gene expression was analyzed using reverse transcription-polymerase chain reaction. RESULTS RL95-2/Oct-4 cells not only exhibited increased expression of the three most important stem cell genes, Oct-4, Nanog, and Sox2, but also had increased expression of the endometrial tumor stem cell genes CD133 and ALDH1. Furthermore, enhanced expression of these genes in the RL95-2/Oct-4 cells was associated with higher colony-forming ability and growth rate than in parental RL95-2 cells. We also observed that cisplatin induced less cell death in RL95-2/Oct-4 cells than in RL95-2 cells, indicating that RL95-2/Oct-4 cells were more resistant to chemotherapeutic agents. CONCLUSION The study findings contribute to investigate the effects of Oct-4 on tumor stem cell origins.
Collapse
Affiliation(s)
- Ta-Chin Lin
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan; Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan
| | - Kai-Hung Wang
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan; Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan; Department of Laboratory Medicine, Kuo General Hospital, Tainan, Taiwan.
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - An-Pei Kao
- Stemforce Biotechnology Co., Ltd, Chiayi, Taiwan
| | - Tsung-Cheng Kuo
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan; Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan
| |
Collapse
|
9
|
Chen K, Zheng S, Fang F. Endometrial Stem Cells and Their Applications in Intrauterine Adhesion. Cell Transplant 2023; 32:9636897231159561. [PMID: 36891869 PMCID: PMC9998408 DOI: 10.1177/09636897231159561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Intrauterine adhesion (IUA), resulting from pregnancy or nonpregnant uterine trauma, is one of the major causes of abnormal menstruation, infertility, or repeated pregnancy loss. Although a few methods, including hysteroscopy and hormone therapy, are routinely used for its diagnosis and treatment, they cannot restore tissue regeneration. Stem cells, which have self-renewal and tissue regeneration abilities, have been proposed as a promising therapy for patients with severe IUAs. In this review, we summarize the origin and features of endometrium-associated stem cells and their applications in the treatment of IUAs based on animal models and human clinical trials. We expect that this information will help to elucidate the underlying mechanism for tissue regeneration and to improve the design of stem cell-based therapies for IUAs.
Collapse
Affiliation(s)
- Kai Chen
- Reproductive Medicine Center & Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Wannan Medical College, Wuhu, China
| | - Shengxia Zheng
- Reproductive Medicine Center & Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Endometriosis Stem Cells as a Possible Main Target for Carcinogenesis of Endometriosis-Associated Ovarian Cancer (EAOC). Cancers (Basel) 2022; 15:cancers15010111. [PMID: 36612107 PMCID: PMC9817684 DOI: 10.3390/cancers15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Endometriosis is a serious recurrent disease impairing the quality of life and fertility, and being a risk for some histologic types of ovarian cancer defined as endometriosis-associated ovarian cancers (EAOC). The presence of stem cells in the endometriotic foci could account for the proliferative, migrative and angiogenic activity of the lesions. Their phenotype and sources have been described. The similarly disturbed expression of several genes, miRNAs, galectins and chaperones has been observed both in endometriotic lesions and in ovarian or endometrial cancer. The importance of stem cells for nascence and sustain of malignant tumors is commonly appreciated. Although the proposed mechanisms promoting carcinogenesis leading from endometriosis into the EAOC are not completely known, they have been discussed in several articles. However, the role of endometriosis stem cells (ESCs) has not been discussed in this context. Here, we postulate that ESCs may be a main target for the carcinogenesis of EAOC and present the possible sequence of events resulting finally in the development of EAOC.
Collapse
|
11
|
Sun H, Hirata T, Koga K, Arakawa T, Nagashima N, Neriishi K, Elsherbini M, Maki E, Izumi G, Harada M, Hirota Y, Wada-Hiraike O, Osuga Y. Elevated phosphorylation of estrogen receptor α at serine-118 in ovarian endometrioma. F&S SCIENCE 2022; 3:401-409. [PMID: 35654737 DOI: 10.1016/j.xfss.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate the phosphorylation of estrogen receptor α at serine-118 (phospho-ERα S118) in the endometrium, ovarian endometrioma, and deep infiltrating endometriosis (DIE). DESIGN Experimental study. SETTING University-affiliated hospital and academic research laboratory. PATIENT(S) Twenty-five patients underwent a hysterectomy, 18 patients underwent surgical removal of ovarian endometrioma, and 6 patients underwent DIE. INTERVENTION(S) Tissue samples were obtained from patients who underwent surgical procedures. MAIN OUTCOME MEASURE(S) Immunostaining for phospho-ERα S118, ERα, or phosphorylated p44/42 mitogen-activated protein kinase (phospho-p44/42 MAPK) was performed to evaluate the endometrium with or without endometriosis, ovarian endometrioma, and DIE. For in vitro analysis, endometrial epithelial cells (Ishikawa cells) were stimulated with estradiol (E2) or tumor necrosis factor alpha (TNFα), and the expression levels of phospho-ERα S118 and phospho-p44/42 MAPK were evaluated via Western blotting. RESULT(S) First, phospho-ERα S118 level was significantly higher in the glands and stroma of ovarian endometriosis samples than in those of endometrial and DIE samples. Second, colocalization of phospho-p44/42 MAPK and phospho-ERα S118 was observed in the glands of ovarian endometrioma. The proportions of cells strongly expressing phospho-p44/42 and phospho-ERα were 87% in phosphor-p44/42 MAPK-positive cells and 79% in phosphor-ERα-positive cells. Third, E2 stimulation significantly enhanced phospho-ERα S118 after 15 and 30 minutes in in vitro analysis using endometrial epithelial cells. Fourth, TNFα stimulation modestly but significantly enhanced phospho-ERα S118 after 15 and 30 minutes. Fifth, in Ishikawa cells, treatment with a p44/42 inhibitor (PD98059) significantly reduced phospho-ERα S118 by TNFα but not by E2. CONCLUSION(S) ERα-S118 phosphorylation was increased in ovarian endometriosis. Our findings may provide a new perspective for understanding the mechanism of increased ERα action in the pathophysiology of endometriosis.
Collapse
Affiliation(s)
- Hui Sun
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Tetsuya Hirata
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan; Department of Obstetrics and Gynecology, Doai Kinen Hospital, Tokyo, Japan.
| | - Kaori Koga
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Tomoko Arakawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Natsuki Nagashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Kazuaki Neriishi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Mohammed Elsherbini
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Eiko Maki
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Gentaro Izumi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Cancer Stem Cell Markers for Urinary Carcinoma. Stem Cells Int 2022; 2022:3611677. [PMID: 35342431 PMCID: PMC8941535 DOI: 10.1155/2022/3611677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer stem cell (CSC) refers to cancer cells with stem cell properties, that is, they have the ability of “self-renewal” and “differentiation.” Cancer stem cells exist in cancer cells and are the “culprit” of cancer recurrence and metastasis. It is difficult to be found because of its small amount, and it is difficult for anticancer drugs to produce effects on it. At present, the isolation and identification of cancer stem cells from many solid tumors are still quite difficult, mainly due to the lack of specific molecular markers of cancer stem cells. In this review, cancer stem cell surface markers and functional markers in urinary system were summarized. These markers can provide molecular targets for cancer therapy.
Collapse
|
13
|
Cousins FL, Filby CE, Gargett CE. Endometrial Stem/Progenitor Cells–Their Role in Endometrial Repair and Regeneration. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 3:811537. [PMID: 36304009 PMCID: PMC9580754 DOI: 10.3389/frph.2021.811537] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
The human endometrium is a remarkable tissue, undergoing ~450 cycles of proliferation, differentiation, shedding (menstruation), repair, and regeneration over a woman's reproductive lifespan. Post-menstrual repair is an extremely rapid and scar-free process, with re-epithelialization of the luminal epithelium completed within 48 h of initiation of shedding. Following menstruation, the functionalis grows from the residual basalis layer during the proliferative phase under the influence of rising circulating estrogen levels. The regenerative capacity of the endometrium is attributed to stem/progenitor cells which reside in both the epithelial and stromal cell compartments of the basalis layer. Finding a definitive marker for endometrial epithelial progenitors (eEPCs) has proven difficult. A number of different markers have been suggested as putative progenitor markers including, N-cadherin, SSEA-1, AXIN2, SOX-9 and ALDH1A1, some of which show functional stem cell activity in in vitro assays. Each marker has a unique location(s) in the glandular epithelium, which has led to the suggestion that a differentiation hierarchy exists, from the base of epithelial glands in the basalis to the luminal epithelium lining the functionalis, where epithelial cells express different combinations of markers as they differentiate and move up the gland into the functionalis away from the basalis niche. Perivascular endometrial mesenchymal stem cells (eMSCs) can be identified by co-expression of PDGFRβ and CD146 or by a single marker, SUSD2. This review will detail the known endometrial stem/progenitor markers; their identity, location and known interactions and hierarchy across the menstrual cycle, in particular post-menstrual repair and estrogen-driven regeneration, as well as their possible contributions to menstruation-related disorders such as endometriosis and regeneration-related disorder Asherman's syndrome. We will also highlight new techniques that allow for a greater understanding of stem/progenitor cells' role in repair and regeneration, including 3D organoids, 3D slice cultures and gene sequencing at the single cell level. Since mouse models are commonly used to study menstruation, repair and regeneration we will also detail the mouse stem/progenitor markers that have been investigated in vivo.
Collapse
Affiliation(s)
- Fiona L. Cousins
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
- *Correspondence: Fiona L. Cousins
| | - Caitlin E. Filby
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
14
|
Mesenchymal Stromal Cells Isolated from Ectopic but Not Eutopic Endometrium Display Pronounced Immunomodulatory Activity In Vitro. Biomedicines 2021; 9:biomedicines9101286. [PMID: 34680403 PMCID: PMC8533241 DOI: 10.3390/biomedicines9101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
A comparative analysis of the cell surface markers and immunological properties of cell cultures originating from normal endometrium and endometrioid heterotopias of women with extragenital endometriosis was carried out. Both types of cell cultures expressed surface molecules typical of mesenchymal stromal cells and did not express hematopoietic and epithelial markers. Despite similar phenotype, the mesenchymal stromal cells derived from the two sources had different immunomodulation capacities: the cells of endometrioid heterotopias but not eutopic endometrium could suppress dendritic cell differentiation from monocytes as well as lymphocyte proliferation in allogeneic co-cultures. A comparative multiplex analysis of the secretomes revealed a significant increase in the secretion of pro-inflammatory mediators, including IL6, IFN-γ, and several chemokines associated with inflammation by the stromal cells of ectopic lesions. The results demonstrate that the stromal cells of endometrioid heterotopias display enhanced pro-inflammatory and immunosuppressive activities, which most likely impact the pathogenesis and progression of the disease.
Collapse
|
15
|
Abstract
Uniquely among adult tissues, the human endometrium undergoes cyclical shedding, scar-free repair and regeneration during a woman's reproductive life. Therefore, it presents an outstanding model for study of such processes. This Review examines what is known of endometrial repair and regeneration following menstruation and parturition, including comparisons with wound repair and the influence of menstrual fluid components. We also discuss the contribution of endometrial stem/progenitor cells to endometrial regeneration, including the importance of the stem cell niche and stem cell-derived extracellular vesicles. Finally, we comment on the value of endometrial epithelial organoids to extend our understanding of endometrial development and regeneration, as well as therapeutic applications.
Collapse
Affiliation(s)
- Lois A Salamonsen
- Centre for Reproductive Health, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Clayton, Victoria 3168, Australia
| | - Jennifer C Hutchison
- Centre for Reproductive Health, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Clayton, Victoria 3168, Australia
| | - Caroline E Gargett
- Ritchie Centre, Hudson Institute of Medical Research, 25-31 Wright St, Clayton, Victoria 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
16
|
Cousins FL, Pandoy R, Jin S, Gargett CE. The Elusive Endometrial Epithelial Stem/Progenitor Cells. Front Cell Dev Biol 2021; 9:640319. [PMID: 33898428 PMCID: PMC8063057 DOI: 10.3389/fcell.2021.640319] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
The human endometrium undergoes approximately 450 cycles of proliferation, differentiation, shedding and regeneration over a woman's reproductive lifetime. The regenerative capacity of the endometrium is attributed to stem/progenitor cells residing in the basalis layer of the tissue. Mesenchymal stem cells have been extensively studied in the endometrium, whereas endometrial epithelial stem/progenitor cells have remained more elusive. This review details the discovery of human and mouse endometrial epithelial stem/progenitor cells. It highlights recent significant developments identifying putative markers of these epithelial stem/progenitor cells that reveal their in vivo identity, location in both human and mouse endometrium, raising common but also different viewpoints. The review also outlines the techniques used to identify epithelial stem/progenitor cells, specifically in vitro functional assays and in vivo lineage tracing. We will also discuss their known interactions and hierarchy and known roles in endometrial dynamics across the menstrual or estrous cycle including re-epithelialization at menses and regeneration of the tissue during the proliferative phase. We also detail their potential role in endometrial proliferative disorders such as endometriosis.
Collapse
Affiliation(s)
- Fiona L. Cousins
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| | - Ronald Pandoy
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Shiying Jin
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|