1
|
Lin Y, Wei Z, Zhang L, Yao Y, Huang Y, Yao G, Wang W, Hu S, Ding Y, Lu Y, Bian X, Dong X, Guan H, Huang Y, Sun Y. Homozygous missense variations of APC12 cause meiotic metaphase I arrest in oocytes and female infertility. Am J Obstet Gynecol 2025; 232:547.e1-547.e17. [PMID: 39542389 DOI: 10.1016/j.ajog.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Oocyte maturation arrest is a leading cause of female infertility. However, the genetic variables remain largely unknown. In oocytes, the activation of anaphase-promoting complex/cyclosome (APC/C) is a critical step in the transition from meiosis I to meiosis II. However, the causal relationship between variants in APC/C components and female infertility has not been completely investigated. OBJECTIVE This study aims to find a novel gene and its pathogenic mutation as a cause for metaphase I arrest in oocytes, thus introducing a new APC/C component for screening causes of female infertility. STUDY DESIGN Whole-exome sequencing was performed on 30 infertile women with recurrent oocyte maturation arrest without known gene variants. A homozygous missense mutation in the APC12 gene (p.R8H) was identified as a candidate for oocyte metaphase I arrest in a consanguineous family member. The experiment was conducted in vitro with HEK293T cells and mouse oocytes. Methods such as oocyte microinjection, western blotting, co-immunoprecipitation, and immunofluorescence were used. A knockdown mouse model was generated to verify the function of Apc12 in causing oocyte metaphase I arrest. About 100 wild-type C57BL/6J mice and 50 gene-edited mice were used in this study. RESULTS APC12 p.R8H was identified in an infertile woman with oocyte metaphase I arrest. Microinjection of Apc12 mutant cRNA in mouse oocytes caused a considerably higher rate of metaphase I stage arrest (65.21±5.64% vs 30.86±1.74%, P<.01) with decreased APC12 protein expression and Securin accumulation compared to the control group, while oocytes injected with Apc12 cRNA showed comparable metaphase I arrest rate (31.51±3.05%). This fit the phenotype we identified in our case and suggested that Apc12 p.R8H was a loss-of-function mutation leading to oocyte metaphase I arrest. The in vitro experiments in HEK293T cells suggested that the APC12 p.R8H mutation disrupted the interaction between APC12 and APC6, as well as impaired APC/C activity by disrupting Securin ubiquitination. Knocking down APC12 with siRNA in mouse oocytes led to metaphase I arrest (41.65±6.10% vs 24.20±2.19%, P<.01). Oocytes from Apc12+/- mice exhibited metaphase I arrest compared with oocytes from wild-type mice (72.29±0.51% vs 23.33±5.82%, P<.01), which could be rescued by injecting Apc12 cRNA (53.44±1.20%). CONCLUSION We identified a pathogenic mutation in APC12 in a female patient and confirmed its relevance as a causative factor for metaphase I arrest in oocytes, implying its importance as an APC/C component in the pathophysiology of oocyte maturation arrest, which caused female infertility.
Collapse
Affiliation(s)
- Yunying Lin
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Zhe Wei
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Ling Zhang
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yejie Yao
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yi Huang
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Guangxin Yao
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Shuanggang Hu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Ying Ding
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yao Lu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xuejiao Bian
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xinyi Dong
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Hengyu Guan
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yunfei Huang
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yun Sun
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.
| |
Collapse
|
2
|
Cui Y, Zhao S, Zhang C, Su W, Chen X, Wang Y, Yang B, Wu K, Chen ZJ, Zhang H, Zhao H. Infertile females with biallelic mutations in APC/C genes are characterized by oocyte or early embryo defects. J Assist Reprod Genet 2025:10.1007/s10815-025-03465-x. [PMID: 40238067 DOI: 10.1007/s10815-025-03465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
PURPOSE The objective of this study was to elucidate the role of anaphase promoting complex/cyclosome (APC/C)-related genes in cases of female infertility characterized by disturbances in oocyte maturation, failure of fertilization, and cessation of early embryonic growth among three distinct Chinese familial lineages. METHODS We conducted whole-exome sequencing of patients with female infertility from 639 unrelated Chinese families and three probands with APC/C gene mutations were screened. Structure modeling and in vitro experiments were performed to analyze the effects of CDC23 and APC13 variants. RESULTS We identified six rare missense variants in APC/C genes, including two compound heterozygous missense variants of CDC23 (c.A1277G, c.A833G, c.C182T and c.C301T) from case 1 and case 2 and one compound heterozygous variant of APC13 (c.C6A and c.116_126del) from case 3. These APC/C gene mutations all showed a recessive inheritance pattern. These mutations are conserved across different species. Mutation Taster, SIFT and PPH2 forecast that these variants are inclined towards exerting a deleterious effect. Structural analysis indicated that these mutations may result in changes in the chemical bonds between themselves and other APC/C subunits. In vitro experimental data suggested that mutations associated with CDC23 result in dysregulated protein expression, whereas missense mutation in APC13 is implicated in aberrant cellular localization patterns. CONCLUSION Our findings expand the genetic spectrum of APC/C genes, especially CDC23 and APC13 in female infertility, indicating that the significance of APC/C genes in female sterility should be emphasized in the future. And it provides a new diagnostic and therapeutic target for genetic counseling.
Collapse
Affiliation(s)
- Ying Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Shuai Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- Shandong Health Commission Key Laboratory of Major Gynaecological Disease Control, Jinan, Shandong Province, China
- Department of Obstetrics and Gynecology, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Changlong Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Wei Su
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Xiaolei Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Yang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Bohan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Keliang Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honghui Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China.
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China.
| |
Collapse
|
3
|
Li J, Liang J, Wang M, Jiang Y, Li W, Huang M, Huang Y, Xie Y, Chen J, Chen T. Full-length transcriptome analysis of male and female gonads in Japanese Eel (Anguilla japonica). BMC Genomics 2025; 26:89. [PMID: 39885385 PMCID: PMC11783869 DOI: 10.1186/s12864-025-11279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND The Japanese eel (Anguilla japonica) holds significant economic value in East Asia, but limitations in understanding its reproductive biology have hindered advancements in artificial breeding techniques. Previous research has primarily focused on conserved sex differentiation genes, offering limited insights into the broader molecular mechanisms driving gonadal development and sexual dimorphism. To address these limitations, this study aims to investigate key genes and pathways involved in gonadal development through a comprehensive transcriptomic analysis of male and female eel gonads. RESULTS PacBio Iso-Seq and Illumina RNA-Seq technologies were combined to conduct a full-length transcriptome analysis of male and female Japanese eel gonads at a post-differentiation, pre-maturation stage. A total of 24,661 unigenes were identified in ovaries and 15,023 in testes, along with genomic regulatory elements such as transcription factors, simple sequence repeats, and long non-coding RNAs. Additionally, 1,210 differentially expressed genes were detected. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed significant pathways involved in cell cycle regulation, metabolic processes, apoptosis, and hormone activity. Notably, several reproductive-related genes, including bambi, ccnb1, cdc20, gdf9, prlh, ccdc39, chrebp, tspo, syce3, and ngb, demonstrated significant dimorphic expression in eel gonads. CONCLUSIONS This study provides valuable insights into the molecular mechanisms of gonadal differentiation and sexual dimorphism in Japanese eels. The findings expand the genetic resources available for the eel breeding industry and could facilitate the development of improved artificial breeding techniques focused on reproductive development.
Collapse
Affiliation(s)
- Jiangling Li
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education;Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Jingjie Liang
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education;Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Mengyang Wang
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education;Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Yuewen Jiang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Li
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education;Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Mingxi Huang
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education;Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Yan Huang
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education;Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Yangjie Xie
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education;Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Jianchun Chen
- Xiamen Institute of Marine and Fisheries, Xiamen, Fujian, 361013, China
| | - Tiansheng Chen
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education;Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China.
| |
Collapse
|
4
|
Baldini GM, Ferri D, Malvasi A, Laganà AS, Vimercati A, Dellino M, Baldini D, Trojano G. Genetic Abnormalities of Oocyte Maturation: Mechanisms and Clinical Implications. Int J Mol Sci 2024; 25:13002. [PMID: 39684710 DOI: 10.3390/ijms252313002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Genetic anomalies in oocyte maturation present significant fertility and embryonic development challenges. This review explores the intricate mechanisms of nuclear and cytoplasmic maturation, emphasizing the genetic and molecular factors contributing to oocyte quality and competence. Chromosomal mutations, errors in segregation, genetic mutations in signaling pathways and meiosis-related genes, and epigenetic alterations are discussed as critical contributors to oocyte maturation defects. The role of mitochondrial defects, maternal mRNA dysregulation, and critical proteins such as NLRP14 and BMP6 are highlighted. Understanding these genetic factors is crucial for improving diagnostic approaches and therapeutic interventions in reproductive medicine, particularly for couples encountering recurrent in vitro fertilization failures. This review will explore how specific genetic mutations impact fertility treatments and reproductive success by examining the intricate oocyte maturation process. We will focus on genetic abnormalities that may disrupt the oocyte maturation pathway, discussing the underlying mechanisms involved and considering their potential clinical implications for enhancing fertility outcomes.
Collapse
Affiliation(s)
- Giorgio Maria Baldini
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", 70121 Bari, Italy
| | | | - Antonio Malvasi
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Antonio Simone Laganà
- Unit of Obstetrics and Gynecology "Paolo Giacone" Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities (PROMISE), University of Palermo, 90135 Palermo, Italy
| | - Antonella Vimercati
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Miriam Dellino
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", 70121 Bari, Italy
| | | | - Giuseppe Trojano
- Department of Maternal and Child Health, Madonna delle Grazie Hospital, 75100 Matera, Italy
| |
Collapse
|
5
|
Gu R, Wu T, Fu J, Sun YJ, Sun XX. Advances in the genetic etiology of female infertility. J Assist Reprod Genet 2024; 41:3261-3286. [PMID: 39320554 PMCID: PMC11707141 DOI: 10.1007/s10815-024-03248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024] Open
Abstract
Human reproduction is a complex process involving gamete maturation, fertilization, embryo cleavage and development, blastocyst formation, implantation, and live birth. If any of these processes are abnormal or arrest, reproductive failure will occur. Infertility is a state of reproductive dysfunction caused by various factors. Advances in molecular genetics, including cell and molecular genetics, and high-throughput sequencing technologies, have found that genetic factors are important causes of infertility. Genetic variants have been identified in infertile women or men and can cause gamete maturation arrest, poor quality gametes, fertilization failure, and embryonic developmental arrest during assisted reproduction technology (ART), and thus reduce the clinical success rates of ART. This article reviews clinical studies on repeated in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) failures caused by ovarian dysfunction, oocyte maturation defects, oocyte abnormalities, fertilization disorders, and preimplantation embryonic development arrest due to female genetic etiology, the accumulation of pathogenic genes and gene pathogenic loci, and the functional mechanism and clinical significance of pathogenic genes in gametogenesis and early embryonic development.
Collapse
Affiliation(s)
- Ruihuan Gu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Tianyu Wu
- Institute of Pediatrics, State Key Laboratory of Genetic Engineering, Institutes of BiomedicalSciences, Shanghai Key Laboratory of Medical Epigenetics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Jing Fu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Yi-Juan Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| | - Xiao-Xi Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| |
Collapse
|
6
|
Alur V, Vastrad B, Raju V, Vastrad C, Kotturshetti S. The identification of key genes and pathways in polycystic ovary syndrome by bioinformatics analysis of next-generation sequencing data. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2024; 29:53. [DOI: 10.1186/s43043-024-00212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025] Open
Abstract
Abstract
Background
Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder. The specific molecular mechanism of PCOS remains unclear. The aim of this study was to apply a bioinformatics approach to reveal related pathways or genes involved in the development of PCOS.
Methods
The next-generation sequencing (NGS) dataset GSE199225 was downloaded from the gene expression omnibus (GEO) database and NGS dataset analyzed is obtained from in vitro culture of PCOS patients’ muscle cells and muscle cells of healthy lean control women. Differentially expressed gene (DEG) analysis was performed using DESeq2. The g:Profiler was utilized to analyze the gene ontology (GO) and REACTOME pathways of the differentially expressed genes. A protein–protein interaction (PPI) network was constructed and module analysis was performed using HiPPIE and cytoscape. The miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed. The hub genes were validated by using receiver operating characteristic (ROC) curve analysis.
Results
We have identified 957 DEG in total, including 478 upregulated genes and 479 downregulated gene. GO terms and REACTOME pathways illustrated that DEG were significantly enriched in regulation of molecular function, developmental process, interferon signaling and platelet activation, signaling, and aggregation. The top 5 upregulated hub genes including HSPA5, PLK1, RIN3, DBN1, and CCDC85B and top 5 downregulated hub genes including DISC1, AR, MTUS2, LYN, and TCF4 might be associated with PCOS. The hub gens of HSPA5 and KMT2A, together with corresponding predicted miRNAs (e.g., hsa-mir-34b-5p and hsa-mir-378a-5p), and HSPA5 and TCF4 together with corresponding predicted TF (e.g., RCOR3 and TEAD4) were found to be significantly correlated with PCOS.
Conclusions
These study uses of bioinformatics analysis of NGS data to obtain hub genes and key signaling pathways related to PCOS and its associated complications. Also provides novel ideas for finding biomarkers and treatment methods for PCOS and its associated complications.
Collapse
|
7
|
Zhang H, Su W, Zhao R, Li M, Zhao S, Chen Z, Zhao H. Epigallocatechin-3-gallate improves the quality of maternally aged oocytes. Cell Prolif 2024; 57:e13575. [PMID: 38010042 PMCID: PMC10984106 DOI: 10.1111/cpr.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
The decline in female fertility as age advances is intricately linked to the diminished developmental potential of oocytes. Despite this challenge, the strategies available to enhance the quality of aged oocytes remain limited. Epigallocatechin-3-gallate (EGCG), characterised by its anti-inflammatory, antioxidant and tissue protective properties, holds promise as a candidate for improving the quality of maternally aged oocytes. In this study, we explored the precise impact and underlying mechanisms of EGCG on aged oocytes. EGCG exhibited the capacity to enhance the quality of aged oocytes both in vitro and in vivo. Specifically, the application of EGCG in vitro resulted in noteworthy improvements, including an increased rate of first polar body extrusion, enhanced mitochondrial function, refined spindle morphology and a reduction in oxidative stress. These beneficial effects were further validated by the improved fertility observed among aged mice. In addition, our findings propose that EGCG might augment the expression of Arf6. This augmentation, in turn, contributes to the assembly of spindle-associated F-actin, which can contribute to mitigate the aneuploidy induced by the disruption of spindle F-actin within aged oocytes. This work thus contributes not only to understanding the role of EGCG in bolstering oocyte health, but also underscores its potential as a therapeutic intervention to address fertility challenges associated with advanced age.
Collapse
Affiliation(s)
- HongHui Zhang
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversityNanjingChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Wei Su
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - RuSong Zhao
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversityNanjingChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Mei Li
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - ShiGang Zhao
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Zi‐Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghaiChina
- Center for Reproductive Medicine, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
8
|
Wei Y, Wang J, Qu R, Zhang W, Tan Y, Sha Y, Li L, Yin T. Genetic mechanisms of fertilization failure and early embryonic arrest: a comprehensive review. Hum Reprod Update 2024; 30:48-80. [PMID: 37758324 DOI: 10.1093/humupd/dmad026] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/07/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Infertility and pregnancy loss are longstanding problems. Successful fertilization and high-quality embryos are prerequisites for an ongoing pregnancy. Studies have proven that every stage in the human reproductive process is regulated by multiple genes and any problem, at any step, may lead to fertilization failure (FF) or early embryonic arrest (EEA). Doctors can diagnose the pathogenic factors involved in FF and EEA by using genetic methods. With the progress in the development of new genetic technologies, such as single-cell RNA analysis and whole-exome sequencing, a new approach has opened up for us to directly study human germ cells and reproductive development. These findings will help us to identify the unique mechanism(s) that leads to FF and EEA in order to find potential treatments. OBJECTIVE AND RATIONALE The goal of this review is to compile current genetic knowledge related to FF and EEA, clarifying the mechanisms involved and providing clues for clinical diagnosis and treatment. SEARCH METHODS PubMed was used to search for relevant research articles and reviews, primarily focusing on English-language publications from January 1978 to June 2023. The search terms included fertilization failure, early embryonic arrest, genetic, epigenetic, whole-exome sequencing, DNA methylation, chromosome, non-coding RNA, and other related keywords. Additional studies were identified by searching reference lists. This review primarily focuses on research conducted in humans. However, it also incorporates relevant data from animal models when applicable. The results were presented descriptively, and individual study quality was not assessed. OUTCOMES A total of 233 relevant articles were included in the final review, from 3925 records identified initially. The review provides an overview of genetic factors and mechanisms involved in the human reproductive process. The genetic mutations and other genetic mechanisms of FF and EEA were systematically reviewed, for example, globozoospermia, oocyte activation failure, maternal effect gene mutations, zygotic genome activation abnormalities, chromosome abnormalities, and epigenetic abnormalities. Additionally, the review summarizes progress in treatments for different gene defects, offering new insights for clinical diagnosis and treatment. WIDER IMPLICATIONS The information provided in this review will facilitate the development of more accurate molecular screening tools for diagnosing infertility using genetic markers and networks in human reproductive development. The findings will also help guide clinical practice by identifying appropriate interventions based on specific gene mutations. For example, when an individual has obvious gene mutations related to FF, ICSI is recommended instead of IVF. However, in the case of genetic defects such as phospholipase C zeta1 (PLCZ1), actin-like7A (ACTL7A), actin-like 9 (ACTL9), and IQ motif-containing N (IQCN), ICSI may also fail to fertilize. We can consider artificial oocyte activation technology with ICSI to improve fertilization rate and reduce monetary and time costs. In the future, fertility is expected to be improved or restored by interfering with or supplementing the relevant genes.
Collapse
Affiliation(s)
- Yiqiu Wei
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingxuan Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Qu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiqian Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiling Tan
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanwei Sha
- Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Du T, Li M, Chen L, Shao Y, Wang Y, Wang H, Ma J, Yao B. Compound heterozygous mutations in TBPL2 were identified in an infertile woman with impaired ovarian folliculogenesis. J Assist Reprod Genet 2023; 40:2945-2950. [PMID: 37804378 PMCID: PMC10656374 DOI: 10.1007/s10815-023-02961-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023] Open
Abstract
OBJECTIVE A 32-year-old female was diagnosed with unexplained primary infertility for 10 years. She had roughly normal basal hormone levels, but her basal follicle-stimulating hormone (FSH) levels were elevated. In addition, the level of anti-Mullerian hormone was within the normal range, and she had undergone two failed oocyte collection attempts. We aimed to investigate the genetic cause of female infertility in patients with impaired ovarian folliculogenesis. METHODS Genomic DNA was extracted from the peripheral blood of the patient and her family members. Whole-exome sequencing was performed on the patient, and TBPL2 mutations were identified and confirmed by Sanger sequencing. The Exome Aggregation Consortium (ExAC) Browser and Genome Aggregation Database (gnomAD) Browser Beta were used to search the allele frequencies of the variants in the general population. The harmfulness of the mutations was analyzed by SIFT, Mutation Taster, and CADD software. RESULT One novel mutation, c.802C > T (p. Arg268Ter), and one known variant, c.788 + 3A > G (p. Arg233Ter), in TBPL2 were identified in the infertile family. Compound heterozygous mutations in TBPL2 may be the cause of impaired ovarian folliculogenesis, failure of superovulation, and infertility. CONCLUSIONS We identified compound heterozygous mutations in TBPL2 that caused impaired ovarian folliculogenesis, failure of superovulation, and infertility in patients. These findings suggest an important role for compound heterozygous mutations in TBPL2 and expand the mutational spectrum of TBPL2, which might provide a new precise diagnostic marker for female infertility.
Collapse
Affiliation(s)
- Tian Du
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China
| | - Meiling Li
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 21002, Jiangsu, China
| | - Li Chen
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 21002, Jiangsu, China
| | - Yong Shao
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 21002, Jiangsu, China
| | - Yichun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hui Wang
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 21002, Jiangsu, China
| | - Jinzhao Ma
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China.
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 21002, Jiangsu, China.
| | - Bing Yao
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China.
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 21002, Jiangsu, China.
| |
Collapse
|
10
|
Xian F, Zhao C, Huang C, Bie J, Xu G. The potential role of CDC20 in tumorigenesis, cancer progression and therapy: A narrative review. Medicine (Baltimore) 2023; 102:e35038. [PMID: 37682144 PMCID: PMC10489547 DOI: 10.1097/md.0000000000035038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
The cell division cycle 20 homologue (CDC20) is known to regulate the cell cycle. Many studies have suggested that dysregulation of CDC20 is associated with various pathological processes in malignant solid tumors, including tumorigenesis, progression, chemoradiotherapy resistance, and poor prognosis, providing a biomarker for cancer diagnosis and prognosis. Some researchers have demonstrated that CDC20 also regulates apoptosis, immune microenvironment, and tumor angiogenesis. In this review, we have systematically summarized the biological functions of CDC20 in solid cancers. Furthermore, we briefly synthesized multiple medicines that inhibited CDC20. We anticipate that CDC20 will be a promising and effective biomarker and therapeutic target for the treatment of human cancer.
Collapse
Affiliation(s)
- Feng Xian
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Oncology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Caixia Zhao
- Department of Oncology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Chun Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Bie
- Department of Oncology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Guohui Xu
- Department of Interventional Radiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Ozturk S. Genetic variants underlying developmental arrests in human preimplantation embryos. Mol Hum Reprod 2023; 29:gaad024. [PMID: 37335858 DOI: 10.1093/molehr/gaad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Developmental arrest in preimplantation embryos is one of the major causes of assisted reproduction failure. It is briefly defined as a delay or a failure of embryonic development in producing viable embryos during ART cycles. Permanent or partial developmental arrest can be observed in the human embryos from one-cell to blastocyst stages. These arrests mainly arise from different molecular biological defects, including epigenetic disturbances, ART processes, and genetic variants. Embryonic arrests were found to be associated with a number of variants in the genes playing key roles in embryonic genome activation, mitotic divisions, subcortical maternal complex formation, maternal mRNA clearance, repairing DNA damage, transcriptional, and translational controls. In this review, the biological impacts of these variants are comprehensively evaluated in the light of existing studies. The creation of diagnostic gene panels and potential ways of preventing developmental arrests to obtain competent embryos are also discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
12
|
Xia XH, Liang N, Ma XY, Qin L, Wang SY, Chang ZJ. Inhibition of the NF-κB signaling pathway affects gonadal differentiation and leads to male bias in Paramisgurnus dabryanus. Theriogenology 2023; 207:82-95. [PMID: 37269599 DOI: 10.1016/j.theriogenology.2023.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
In recent years, sex-controlled breeding has emerged as an effective strategy to enhance the yields of economic animals with different growth characteristics, while increasing the economic benefits of aquaculture. It is known that the NF-κB pathway participates in gonadal differentiation and reproduction. Therefore, we used the large-scale loach as a research model for the present study and selected an effective inhibitor of the NF-κB signaling pathway (QNZ). This, to investigates the impacts of the NF-κB signaling pathway on gonadal differentiation during a critical period of gonad development and after maturation. Simultaneously, the sex ratio bias and the reproductive capacities of adult fish were analyzed. Our results indicated that the inhibition of the NF-κB signaling pathway influenced the expression of genes related to gonad development, regulated the gene expression related to the brain-gonad-liver axis of juvenile loaches, and finally impacted the gonadal differentiation of the large-scale loach and promoted a male-biased sex ratio. Meanwhile, high QNZ concentrations affected the reproductive abilities of adult loaches and inhibited the growth performance of offspring. Thus, our results deepened the exploration of sex control in fish and provided a certain research basis for the sustainable development of the aquaculture industry.
Collapse
Affiliation(s)
- Xiao-Hua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Ning Liang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiao-Yu Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Lu Qin
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Song-Yun Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Zhong-Jie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
13
|
Li W, Li Q, Xu X, Wang C, Hu K, Xu J. Novel mutations in TUBB8 and ZP3 cause human oocyte maturation arrest and female infertility. Eur J Obstet Gynecol Reprod Biol 2022; 279:132-139. [DOI: 10.1016/j.ejogrb.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 09/25/2022] [Accepted: 10/23/2022] [Indexed: 11/26/2022]
|
14
|
Chen OJ, Castellsagué E, Moustafa-Kamal M, Nadaf J, Rivera B, Fahiminiya S, Wang Y, Gamache I, Pacifico C, Jiang L, Carrot-Zhang J, Witkowski L, Berghuis AM, Schönberger S, Schneider D, Hillmer M, Bens S, Siebert R, Stewart CJR, Zhang Z, Chao WCH, Greenwood CMT, Barford D, Tischkowitz M, Majewski J, Foulkes WD, Teodoro JG. Germline Missense Variants in CDC20 Result in Aberrant Mitotic Progression and Familial Cancer. Cancer Res 2022; 82:3499-3515. [PMID: 35913887 DOI: 10.1158/0008-5472.can-21-3956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/12/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
CDC20 is a coactivator of the anaphase promoting complex/cyclosome (APC/C) and is essential for mitotic progression. APC/CCDC20 is inhibited by the spindle assembly checkpoint (SAC), which prevents premature separation of sister chromatids and aneuploidy in daughter cells. Although overexpression of CDC20 is common in many cancers, oncogenic mutations have never been identified in humans. Using whole-exome sequencing, we identified heterozygous missense CDC20 variants (L151R and N331K) that segregate with ovarian germ cell tumors in two families. Functional characterization showed these mutants retain APC/C activation activity but have impaired binding to BUBR1, a component of the SAC. Expression of L151R and N331K variants promoted mitotic slippage in HeLa cells and primary skin fibroblasts derived from carriers. Generation of mice carrying the N331K variant using CRISPR-Cas9 showed that, although homozygous N331K mice were nonviable, heterozygotes displayed accelerated oncogenicity of Myc-driven cancers. These findings highlight an unappreciated role for CDC20 variants as tumor-promoting genes. SIGNIFICANCE Two germline CDC20 missense variants that segregate with cancer in two families compromise the spindle assembly checkpoint and lead to aberrant mitotic progression, which could predispose cells to transformation. See related commentary by Villarroya-Beltri and Malumbres, p. 3432.
Collapse
Affiliation(s)
- Owen J Chen
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Ester Castellsagué
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Division of Medical Genetics and Cancer Axis, Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montréal, Québec, Canada
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mohamed Moustafa-Kamal
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Javad Nadaf
- McGill University and Génome Québec Innovation Centre, Montréal, Québec, Canada
| | - Barbara Rivera
- Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Hereditary Cancer Programme, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Barcelona, Spain
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Somayyeh Fahiminiya
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yilin Wang
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Isabelle Gamache
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Caterina Pacifico
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Lai Jiang
- Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montréal, Québec, Canada
| | - Jian Carrot-Zhang
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Leora Witkowski
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Division of Medical Genetics and Cancer Axis, Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montréal, Québec, Canada
| | - Albert M Berghuis
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec, Canada
- Department of Microbiology and Immunology, Montréal, Québec, Canada
| | - Stefan Schönberger
- Department of Pediatric Hematology and Oncology, Pediatrics III, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dominik Schneider
- Clinic of Pediatrics, Dortmund Municipal Hospital, Dortmund, Germany
| | - Morten Hillmer
- Institute of Human Genetics, University of Ulm & Ulm University Medical Center, Ulm, Germany
| | - Susanne Bens
- Institute of Human Genetics, University of Ulm & Ulm University Medical Center, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm & Ulm University Medical Center, Ulm, Germany
| | - Colin J R Stewart
- Department of Histopathology, King Edward Memorial Hospital, and School for Women's and Infants' Health, University of Western Australia, Perth, Australia
| | - Ziguo Zhang
- Institute of Cancer Research, London, United Kingdom
| | - William C H Chao
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Celia M T Greenwood
- Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montréal, Québec, Canada
- Departments of Oncology and Human Genetics, McGill University, Montréal, Québec, Canada
| | - David Barford
- Institute of Cancer Research, London, United Kingdom
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Division of Medical Genetics and Cancer Axis, Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montréal, Québec, Canada
- Program in Cancer Genetics, Department of Oncology and Human Genetics, McGill University, Montréal, Québec, Canada
- Division of Medical Genetics and Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Jose G Teodoro
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Department of Microbiology and Immunology, Montréal, Québec, Canada
| |
Collapse
|
15
|
Musfee FI, Oluwafemi OO, Agopian A, Hakonarson H, Goldmuntz E, Mitchell LE. Maternal Effect Genes as Risk Factors for Congenital Heart Defects. HGG ADVANCES 2022; 3:100098. [PMID: 35345810 PMCID: PMC8957044 DOI: 10.1016/j.xhgg.2022.100098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/04/2022] [Indexed: 11/09/2022] Open
Abstract
Maternal effect genes (MEGs) encode factors (e.g., RNA) in the oocyte that control embryonic development prior to activation of the embryonic genome. Over 80 mammalian MEGs have been identified, including several that have been associated with phenotypes in humans. Maternal variation in MEGs is associated with a range of adverse outcomes, which, in humans, include hydatidiform moles, zygotic cleavage failure, and offspring with multi-locus imprinting disorders. In addition, data from both animal models and humans suggest that the MEGs may be associated with structural birth defects such as congenital heart defects (CHDs). To further investigate the association between MEGs and CHDs, we conducted gene-level and gene-set analyses of known mammalian MEGs (n = 82) and two common groups of CHDs: conotruncal heart defects and left ventricular outflow tract defects. We identified 14 candidate CHD-related MEGs. These 14 MEGs include three (CDC20, KHDC3L, and TRIP13) of the 11 known human MEGs, as well as one (DNMT3A) of the eight MEGs that have been associated with structural birth defects in animal models. Our analyses add to the growing evidence that MEGs are associated with structural birth defects, in particular CHDs. Given the large proportion of individuals with structural birth defects for whom etiology of their condition is unknown, further investigations of MEGs as potential risk factors for structural birth defects are strongly warranted.
Collapse
|
16
|
Picchetta L, Caroselli S, Figliuzzi M, Cogo F, Zambon P, Costa M, Pergher I, Patassini C, Cortellessa F, Zuccarello D, Poli M, Capalbo A. Molecular tools for the genomic assessment of oocyte’s reproductive competence. J Assist Reprod Genet 2022; 39:847-860. [PMID: 35124783 PMCID: PMC9050973 DOI: 10.1007/s10815-022-02411-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
The most important factor associated with oocytes' developmental competence has been widely identified as the presence of chromosomal abnormalities. However, growing application of genome-wide sequencing (GS) in population diagnostics has enabled the identification of multifactorial genetic predispositions to sub-lethal pathologies, including those affecting IVF outcomes and reproductive fitness. Indeed, GS analysis in families with history of isolated infertility has recently led to the discovery of new genes and variants involved in specific human infertility endophenotypes that impact the availability and the functionality of female gametes by altering unique mechanisms necessary for oocyte maturation and early embryo development. Ongoing advancements in analytical and bioinformatic pipelines for the study of the genetic determinants of oocyte competence may provide the biological evidence required not only for improving the diagnosis of isolated female infertility but also for the development of novel preventive and therapeutic approaches for reproductive failure. Here, we provide an updated discussion and review of the progresses made in preconception genomic medicine in the identification of genetic factors associated with oocyte availability, function, and competence.
Collapse
|