1
|
Iizuka T, Zuberi A, Wei H, Coon V JS, Anton ML, Buyukcelebi K, Adli M, Bulun SE, Yin P. Therapeutic targeting of the tryptophan-kynurenine-aryl hydrocarbon receptor pathway with apigenin in MED12-mutant leiomyoma cells. Cancer Gene Ther 2025; 32:393-402. [PMID: 40025195 DOI: 10.1038/s41417-025-00881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Approximately 77.4% of uterine leiomyomas carry MED12 gene mutations (mut-MED12), which are specifically associated with strikingly upregulated expression and activity of the tryptophan 2,3-dioxygenase (TDO2) enzyme, leading to increased conversion of tryptophan to kynureine. Kynurenine increases leiomyoma cell survival by activating the aryl hydrocarbon receptor (AHR). We used a leiomyoma-relevant model, in which a MED12 Gly44 mutation was knocked in by CRISPR in a human uterine myometrial smooth muscle (UtSM) cell line, in addition to primary leiomyoma cells from 26 patients to ascertain the mechanisms responsible for therapeutic effects of apigenin, a natural compound. Apigenin treatment significantly decreased cell viability, inhibited cell cycle progression, and induced apoptosis preferentially in mut-MED12 versus wild-type primary leiomyoma and UtSM cells. Apigenin not only blocked AHR action but also decreased TDO2 expression and kynurenine production, preferentially in mut-MED12 cells. Apigenin did not alter TDO2 enzyme activity. TNF and IL-1β, cytokines upregulated in leiomyoma, strikingly induced TDO2 expression levels via activating the NF-κB and JNK pathways, which were abolished by apigenin. Apigenin or a TDO2 inhibitor decreased UtSM cell viability induced by TNF/IL-1β. We provide proof-of-principle evidence that apigenin is a potential therapeutic agent for mut-MED12 leiomyomas.
Collapse
Affiliation(s)
- Takashi Iizuka
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Azna Zuberi
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Helen Wei
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - John S Coon V
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Melania Lidia Anton
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Kadir Buyukcelebi
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Mazhar Adli
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Serdar E Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Ping Yin
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Bhole R, Shinkar J, Labhade S, Karwa P, Kapare H. MED12 dysregulation: insights into cancer and therapeutic resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04006-0. [PMID: 40105922 DOI: 10.1007/s00210-025-04006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/28/2025] [Indexed: 03/21/2025]
Abstract
MED12, a critical subunit of the mediator (MED) complex, plays a central role in transcriptional regulation by bridging signal-dependent transcription factors and RNA polymerase II. Dysregulation of MED12, often through mutation, has emerged as a significant driver in various cancers, including uterine leiomyomas, breast cancer (B.C.), and prostate cancer (P.C.). These mutations disrupt normal transcriptional processes by impairing the mediator complex's ability to properly regulate gene expression, which activates oncogenic pathways such as Wnt/β-catenin and TGF-β signaling, promoting tumorigenesis and drug resistance. Specifically, mutations in the MED12 gene lead to altered interactions with the transcriptional machinery, fostering aberrant activation of oncogenic networks. MED12 alterations have also been implicated in chemoresistance, particularly to therapies targeting EGFR, ALK, and BRAF, highlighting its role as a barrier to effective treatment. This review explores the mechanisms underlying MED12 dysregulation, its impact on cancer progression, and its association with therapeutic resistance. By examining its potential as a predictive biomarker and a therapeutic target, the article underscores the importance of MED12 in advancing precision oncology. Understanding MED12-mediated mechanisms offers insights into overcoming therapeutic resistance and paves the way for innovative, personalized cancer treatments.
Collapse
Affiliation(s)
- Ritesh Bhole
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India.
- Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Jagruti Shinkar
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| | - Sonali Labhade
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| | - Pawan Karwa
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| | - Harshad Kapare
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| |
Collapse
|
3
|
Bariani MV, Grimm SL, Coarfa C, Velez Edwards DR, Yang Q, Walker CL, Ali M, Al-Hendy A. Altered extracellular matrix-related pathways accelerate the transition from normal to prefibroid myometrium in Black women. Am J Obstet Gynecol 2024; 231:324.e1-324.e12. [PMID: 38825029 PMCID: PMC11344675 DOI: 10.1016/j.ajog.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Black women experience a disproportionate impact of uterine fibroids compared to White women, including earlier diagnosis, higher frequency, and more severe symptoms. The etiology underlying this racial disparity remains elusive. OBJECTIVE The aim of this study was to evaluate the molecular differences in normal myometrium (fibroid-free uteri) and at-risk myometrium (fibroid-containing uteri) tissues in Black and White women. STUDY DESIGN We conducted whole-genome RNA-seq on normal and at-risk myometrium tissues obtained from both self-identified Black and White women (not Hispanic or Latino) to determine global gene expression profiles and to conduct enriched pathway analyses (n=3 per group). We initially assessed the differences within the same type of tissue (normal or at-risk myometrium) between races. Subsequently, we analyzed the transcriptome of normal myometrium compared to at-risk myometrium in each race and determined the differences between them. We validated our findings through real-time PCR (sample size range=5-12), western blot (sample size range=5-6), and immunohistochemistry techniques (sample size range=9-16). RESULTS The transcriptomic analysis revealed distinct profiles between Black and White women in normal and at-risk myometrium tissues. Interestingly, genes and pathways related to extracellular matrix and mechanosensing were more enriched in normal myometrium from Black than White women. Transcription factor enrichment analysis detected greater activity of the serum response transcription factor positional motif in normal myometrium from Black compared to White women. Furthermore, we observed increased expression levels of myocardin-related transcription factor-serum response factor and the serum response factor in the same comparison. In addition, we noted increased expression of both mRNA and protein levels of vinculin, a target gene of the serum response factor, in normal myometrium tissues from Black women as compared to White women. Importantly, the transcriptomic profile of normal to at-risk myometrium conversion differs between Black and White women. Specifically, we observed that extracellular matrix-related pathways are involved in the transition from normal to at-risk myometrium and that these processes are exacerbated in Black women. We found increased levels of Tenascin C, type I collagen alpha 1 chain, fibronectin, and phospho-p38 MAPK (Thr180/Tyr182, active) protein levels in at-risk over normal myometrium tissues from Black women, whereas such differences were not observed in samples from White women. CONCLUSION These findings indicate that the racial disparities in uterine fibroids may be attributed to heightened production of extracellular matrix in the myometrium in Black women, even before the tumors appear. Future research is needed to understand early life determinants of the observed racial differences.
Collapse
Affiliation(s)
| | - Sandra L Grimm
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX; Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Cristian Coarfa
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX; Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN; Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN; Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | - Cheryl L Walker
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL.
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL.
| |
Collapse
|
4
|
George JW, Cancino RA, Griffin Miller JL, Qiu F, Lin Q, Rowley MJ, Chennathukuzhi VM, Davis JS. Characterization of m6A Modifiers and RNA Modifications in Uterine Fibroids. Endocrinology 2024; 165:bqae074. [PMID: 38946397 PMCID: PMC11222979 DOI: 10.1210/endocr/bqae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Uterine leiomyoma or fibroids are prevalent noncancerous tumors of the uterine muscle layer, yet their origin and development remain poorly understood. We analyzed RNA expression profiles of 15 epigenetic mediators in uterine fibroids compared to myometrium using publicly available RNA sequencing (RNA-seq) data. To validate our findings, we performed RT-qPCR on a separate cohort of uterine fibroids targeting these modifiers confirming our RNA-seq data. We then examined protein profiles of key N6-methyladenosine (m6A) modifiers in fibroids and their matched myometrium, showing no significant differences in concordance with our RNA expression profiles. To determine RNA modification abundance, mRNA and small RNA from fibroids and matched myometrium were analyzed by ultra-high performance liquid chromatography-mass spectrometry identifying prevalent m6A and 11 other known modifiers. However, no aberrant expression in fibroids was detected. We then mined a previously published dataset and identified differential expression of m6A modifiers that were specific to fibroid genetic subtype. Our analysis also identified m6A consensus motifs on genes previously identified to be dysregulated in uterine fibroids. Overall, using state-of-the-art mass spectrometry, RNA expression, and protein profiles, we characterized and identified differentially expressed m6A modifiers in relation to driver mutations. Despite the use of several different approaches, we identified limited differential expression of RNA modifiers and associated modifications in uterine fibroids. However, considering the highly heterogenous genomic and cellular nature of fibroids, and the possible contribution of single molecule m6A modifications to fibroid pathology, there is a need for greater in-depth characterization of m6A marks and modifiers in a larger and diverse patient cohort.
Collapse
Affiliation(s)
- Jitu W George
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Rosa A Cancino
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer L Griffin Miller
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Qishan Lin
- RNA Epitranscriptomics and Proteomics Resource, Department of Chemistry, University at Albany, Albany, NY 12222, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Varghese M Chennathukuzhi
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
5
|
Chuang TD, Ton N, Rysling S, Quintanilla D, Boos D, Khorram O. Therapeutic effects of in vivo administration of an inhibitor of tryptophan 2,3-dioxygenase (680c91) for the treatment of fibroids: a preclinical study. Fertil Steril 2024; 121:669-678. [PMID: 38072367 PMCID: PMC10978289 DOI: 10.1016/j.fertnstert.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE Fibroids are characterized by marked overexpression of tryptophan 2,3 dioxygenase (TDO2). The objective of this study was to determine the effectiveness of in vivo administration of an inhibitor of TDO2 (680C91) on fibroid size and gene expression. DESIGN Animal and ex vivo human study. SETTING Academic Research Institution. SUBJECTS Severe combined immunodeficiency mice bearing human fibroid xenografts treated with vehicle and TDO2 inhibitor. INTERVENTION Daily intraperitoneal administration of 680C91 or vehicle for 2 months and in vitro studies with fibroid explants. MAIN OUTCOME MEASURES Tumor weight and gene expression profile of xenografts and in vitro mechanistic experiments using fibroid explants. RESULTS Compound 680C91 was well-tolerated with no effects on blood chemistry and body weight. Treatment of mice with 680C91 resulted in 30% reduction in the weight of fibroid xenografts after 2 months of treatment and as expected lower levels of kynurenine, the byproduct of tryptophan degradation and an endogenous ligand of aryl hydrocarbon receptor (AhR) in the xenografts. The expression of cytochrome P450 family 1 subfamily B member 1 (CYP1B1), transforming growth factor β3 (TGF-β3), fibronectin (FN1), cyclin-dependent kinase 2 (CDK2), E2F transcription factor 1 (E2F1), interleukin 8 (IL-8) and secreted protein acidic and cysteine rich (SPARC) mRNA were lower in the xenografts of mice treated with 680C91 compared with vehicle controls. Similarly, the protein abundance of collagen, FN1, CYP1B1, and SPARC were lower in the xenografts of 680C9- treated mice compared with vehicle controls. Immunohistochemical analysis of xenografts indicated decreased expression of collagen, Ki67 and E2F1 but no significant changes in cleaved caspase 3 expression in mice treated with 680C91. The levels of kynurenine in the xenografts showed a direct correlation with the tumor weight and FN1 levels. In vitro studies with fibroid explants showed a significant induction of CYP1B1, TGF-β3, FN1, CDK2, E2F1, IL8, and SPARC mRNA by tryptophan, which could be blocked by cotreatment with 680C91 and the AhR antagonist CH-223191. CONCLUSION The results indicate that correction of aberrant tryptophan catabolism in fibroids could be an effective treatment through its effect to reduce cell proliferation and extracellular matrix accumulation.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, California; The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Nhu Ton
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Shawn Rysling
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Derek Quintanilla
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Drake Boos
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, California; The Lundquist Institute for Biomedical Innovation, Torrance, California; Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
6
|
Zuberi A, Huang Y, Dotts AJ, Wei H, Coon JS, Liu S, Iizuka T, Wu O, Sotos O, Saini P, Chakravarti D, Boyer TG, Dai Y, Bulun SE, Yin P. MED12 mutation activates the tryptophan/kynurenine/AHR pathway to promote growth of uterine leiomyomas. JCI Insight 2023; 8:e171305. [PMID: 37607000 PMCID: PMC10561729 DOI: 10.1172/jci.insight.171305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
Uterine leiomyomas cause heavy menstrual bleeding, anemia, and pregnancy loss in millions of women worldwide. Driver mutations in the transcriptional mediator complex subunit 12 (MED12) gene in uterine myometrial cells initiate 70% of leiomyomas that grow in a progesterone-dependent manner. We showed a distinct chromatin occupancy landscape of MED12 in mutant MED12 (mut-MED12) versus WT-MED12 leiomyomas. Integration of cistromic and transcriptomics data identified tryptophan 2,3-dioxygenase (TDO2) as the top mut-MED12 target gene that was significantly upregulated in mut-MED12 leiomyomas when compared with adjacent myometrium and WT-MED12 leiomyomas. TDO2 catalyzes the conversion of tryptophan to kynurenine, an aryl hydrocarbon receptor (AHR) ligand that we confirmed to be significantly elevated in mut-MED12 leiomyomas. Treatment of primary mut-MED12 leiomyoma cells with tryptophan or kynurenine stimulated AHR nuclear translocation, increased proliferation, inhibited apoptosis, and induced AHR-target gene expression, whereas blocking the TDO2/kynurenine/AHR pathway by siRNA or pharmacological treatment abolished these effects. Progesterone receptors regulated the expression of AHR and its target genes. In vivo, TDO2 expression positively correlated with the expression of genes crucial for leiomyoma growth. In summary, activation of the TDO2/kynurenine/AHR pathway selectively in mut-MED12 leiomyomas promoted tumor growth and may inform the future development of targeted treatments and precision medicine.
Collapse
Affiliation(s)
- Azna Zuberi
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yongchao Huang
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ariel J. Dotts
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Helen Wei
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John S. Coon
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shimeng Liu
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Takashi Iizuka
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Olivia Wu
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Olivia Sotos
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Priyanka Saini
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Debabrata Chakravarti
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Thomas G. Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Serdar E. Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ping Yin
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
7
|
George JW, Cancino RA, Miller JLG, Qiu F, Lin Q, Rowley MJ, Chennathukuzhi VM, Davis JS. Characterization of m 6A modifiers and RNA modifications in uterine fibroids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552278. [PMID: 37609293 PMCID: PMC10441280 DOI: 10.1101/2023.08.07.552278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Uterine leiomyoma or fibroids are the most common prevalent noncancerous tumors of the uterine muscle layer. Common symptoms associated with fibroids include pelvic pain, heavy menstrual bleeding, anemia, and pelvic pressure. These tumors are a leading cause of gynecological care but lack long-term therapy as the origin and development of fibroids are not well understood. Several next-generation sequencing technologies have been performed to identify the underlying genetic and epigenetic basis of fibroids. However, there remains a systemic gap in our understanding of molecular and biological process that define uterine fibroids. Recent epitranscriptomics studies have unraveled RNA modifications that are associated with all forms of RNA and are thought to influence both normal physiological functions and the progression of diseases. We quantified RNA expression profiles by analyzing publicly available RNA-seq data for 15 known epigenetic mediators to identify their expression profile in uterine fibroids compared to myometrium. To validate our findings, we performed RT-qPCR on a separate cohort of uterine fibroids targeting these modifiers confirming our RNA-seq data. We then examined protein profiles of key m6A modifiers in fibroids and their matched myometrium. In concordance with our RNA expression profiles, no significant differences were observed in these proteins in uterine fibroids compared to myometrium. To determine abundance of RNA modifications, mRNA and small RNA from fibroids and matched myometrium were analyzed by UHPLC MS/MS. In addition to the prevalent N6-methyladenosine (m6A), we identified 11 other known modifiers but did not identify any aberrant expression in fibroids. We then mined a previously published dataset and identified differential expression of m6A modifiers that were specific to fibroid genetic sub-type. Our analysis also identified m6A consensus motifs on genes previously identified to be dysregulated in uterine fibroids. Overall, using state-of-the-art mass spectrometry, RNA expression and protein profiles, we characterized and identified differentially expressed m6A modifiers in relation to driver mutations. Despite the use of several different approaches, we identified limited differential expression of RNA modifiers and associated modifications in uterine fibroids. However, considering the highly heterogenous genomic and cellular nature of fibroids, and the possible contribution of single molecule m6A modifications to fibroid pathology, there is a need for greater in-depth characterization of m6A marks and modifiers in a larger and varied patient cohort.
Collapse
Affiliation(s)
- Jitu W. George
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| | - Rosa A. Cancino
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer L. Griffin Miller
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Qishan Lin
- RNA Epitranscriptomics and Proteomics Resource, Department of Chemistry, University at Albany, Albany, NY, United States
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Varghese M. Chennathukuzhi
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John S. Davis
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| |
Collapse
|
8
|
Buyukcelebi K, Chen X, Abdula F, Elkafas H, Duval AJ, Ozturk H, Seker-Polat F, Jin Q, Yin P, Feng Y, Bulun SE, Wei JJ, Yue F, Adli M. Engineered MED12 mutations drive leiomyoma-like transcriptional and metabolic programs by altering the 3D genome compartmentalization. Nat Commun 2023; 14:4057. [PMID: 37429859 DOI: 10.1038/s41467-023-39684-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Nearly 70% of Uterine fibroid (UF) tumors are driven by recurrent MED12 hotspot mutations. Unfortunately, no cellular models could be generated because the mutant cells have lower fitness in 2D culture conditions. To address this, we employ CRISPR to precisely engineer MED12 Gly44 mutations in UF-relevant myometrial smooth muscle cells. The engineered mutant cells recapitulate several UF-like cellular, transcriptional, and metabolic alterations, including altered Tryptophan/kynurenine metabolism. The aberrant gene expression program in the mutant cells is, in part, driven by a substantial 3D genome compartmentalization switch. At the cellular level, the mutant cells gain enhanced proliferation rates in 3D spheres and form larger lesions in vivo with elevated production of collagen and extracellular matrix deposition. These findings indicate that the engineered cellular model faithfully models key features of UF tumors and provides a platform for the broader scientific community to characterize genomics of recurrent MED12 mutations.
Collapse
Affiliation(s)
- Kadir Buyukcelebi
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Xintong Chen
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Fatih Abdula
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Hoda Elkafas
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Alexander James Duval
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Harun Ozturk
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Fidan Seker-Polat
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Ping Yin
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Yue Feng
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Serdar E Bulun
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Jian Jun Wei
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Mazhar Adli
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Chuang TD, Munoz L, Quintanilla D, Boos D, Khorram O. Therapeutic Effects of Long-Term Administration of Tranilast in an Animal Model for the Treatment of Fibroids. Int J Mol Sci 2023; 24:10465. [PMID: 37445642 PMCID: PMC10341593 DOI: 10.3390/ijms241310465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Tranilast (N-3, 4-dimethoxycinnamoyl anthranilic acid) is an orally administered drug with antiallergic properties and approved in Japan and the Republic of Korea for the treatment of asthma and hypertrophic scars. Previous in vitro studies indicated that tranilast reduced fibroid growth through its inhibitory effects on cell proliferation and induction of apoptosis. The objective of this study was to determine the efficacy of tranilast for treatment of human-derived fibroids in a mouse model. SCID mice (ovariectomized, supplemented with estrogen and progesterone) were implanted with fibroid explants and treated for two months with tranilast (50 m/kg/daily) or the vehicle. After sacrifice, xenografts were excised and analyzed. Tranilast was well tolerated without adverse side effects. There was a 37% reduction in tumor weight along with a significant decrease in staining for Ki67, CCND1, and E2F1; a significant increase in nuclear staining for cleaved caspase 3; and reduced staining for TGF-β3 and Masson's trichrome in the tranilast treated mice. There was a significant inhibition of mRNA and protein expression of fibronectin, COL3A1, CCND1, E2F1, and TGF-β3 in the xenografts from the tranilast-treated mice. These promising therapeutic effects of tranilast warrant additional animal studies and human clinical trials to evaluate its efficacy for treatment of fibroids.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (L.M.); (D.Q.); (D.B.)
| | - Leslie Munoz
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (L.M.); (D.Q.); (D.B.)
| | - Derek Quintanilla
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (L.M.); (D.Q.); (D.B.)
| | - Drake Boos
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (L.M.); (D.Q.); (D.B.)
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (L.M.); (D.Q.); (D.B.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
A View on Uterine Leiomyoma Genesis through the Prism of Genetic, Epigenetic and Cellular Heterogeneity. Int J Mol Sci 2023; 24:ijms24065752. [PMID: 36982825 PMCID: PMC10056617 DOI: 10.3390/ijms24065752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Uterine leiomyomas (ULs), frequent benign tumours of the female reproductive tract, are associated with a range of symptoms and significant morbidity. Despite extensive research, there is no consensus on essential points of UL initiation and development. The main reason for this is a pronounced inter- and intratumoral heterogeneity resulting from diverse and complicated mechanisms underlying UL pathobiology. In this review, we comprehensively analyse risk and protective factors for UL development, UL cellular composition, hormonal and paracrine signalling, epigenetic regulation and genetic abnormalities. We conclude the need to carefully update the concept of UL genesis in light of the current data. Staying within the framework of the existing hypotheses, we introduce a possible timeline for UL development and the associated key events—from potential prerequisites to the beginning of UL formation and the onset of driver and passenger changes.
Collapse
|
11
|
Buyukcelebi K, Chen X, Abdula F, Duval A, Ozturk H, Seker-Polat F, Jin Q, Yin P, Feng Y, Wei JJ, Bulun S, Yue F, Adli M. Engineered MED12 mutations drive uterine fibroid-like transcriptional and metabolic programs by altering the 3D genome compartmentalization. RESEARCH SQUARE 2023:rs.3.rs-2537075. [PMID: 36798375 PMCID: PMC9934745 DOI: 10.21203/rs.3.rs-2537075/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Uterine fibroid (UF) tumors originate from a mutated smooth muscle cell (SMC). Nearly 70% of these tumors are driven by hotspot recurrent somatic mutations in the MED12 gene; however, there are no tractable genetic models to study the biology of UF tumors because, under culture conditions, the non-mutant fibroblasts outgrow the mutant SMC cells, resulting in the conversion of the population to WT phenotype. The lack of faithful cellular models hampered our ability to delineate the molecular pathways downstream of MED12 mutations and identify therapeutics that may selectively target the mutant cells. To overcome this challenge, we employed CRISPR knock-in with a sensitive PCR-based screening strategy to precisely engineer cells with mutant MED12 Gly44, which constitutes 50% of MED12 exon two mutations. Critically, the engineered myometrial SMC cells recapitulate several UF-like cellular, transcriptional and metabolic alterations, including enhanced proliferation rates in 3D spheres and altered Tryptophan/kynurenine metabolism. Our transcriptomic analysis supported by DNA synthesis tracking reveals that MED12 mutant cells, like UF tumors, have heightened expression of DNA repair genes but reduced DNA synthesis rates. Consequently, these cells accumulate significantly higher rates of DNA damage and are selectively more sensitive to common DNA-damaging chemotherapy, indicating mutation-specific and therapeutically relevant vulnerabilities. Our high-resolution 3D chromatin interaction analysis demonstrates that the engineered MED12 mutations drive aberrant genomic activity due to a genome-wide chromatin compartmentalization switch. These findings indicate that the engineered cellular model faithfully models key features of UF tumors and provides a novel platform for the broader scientific community to characterize genomics of recurrent MED12 mutations and discover potential therapeutic targets.
Collapse
|
12
|
Iizuka T, Yin P, Zuberi A, Kujawa S, Coon JS, Björvang RD, Damdimopoulou P, Pacyga DC, Strakovsky RS, Flaws JA, Bulun SE. Mono-(2-ethyl-5-hydroxyhexyl) phthalate promotes uterine leiomyoma cell survival through tryptophan-kynurenine-AHR pathway activation. Proc Natl Acad Sci U S A 2022; 119:e2208886119. [PMID: 36375056 PMCID: PMC9704719 DOI: 10.1073/pnas.2208886119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/03/2022] [Indexed: 11/15/2022] Open
Abstract
Uterine leiomyoma is the most common tumor in women and causes severe morbidity in 15 to 30% of reproductive-age women. Epidemiological studies consistently indicate a correlation between leiomyoma development and exposure to endocrine-disrupting chemical phthalates, especially di-(2-ethylhexyl) phthalate (DEHP); however, the underlying mechanisms are unknown. Here, among the most commonly encountered phthalate metabolites, we found the strongest association between the urine levels of mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), the principal DEHP metabolite, and the risk of uterine leiomyoma diagnosis (n = 712 patients). The treatment of primary leiomyoma and smooth muscle cells (n = 29) with various mixtures of phthalate metabolites, at concentrations equivalent to those detected in urine samples, significantly increased cell viability and decreased apoptosis. MEHHP had the strongest effects on both cell viability and apoptosis. MEHHP increased cellular tryptophan and kynurenine levels strikingly and induced the expression of the tryptophan transporters SLC7A5 and SLC7A8, as well as, tryptophan 2,3-dioxygenase (TDO2), the key enzyme catalyzing the conversion of tryptophan to kynurenine that is the endogenous ligand of aryl hydrocarbon receptor (AHR). MEHHP stimulated nuclear localization of AHR and up-regulated the expression of CYP1A1 and CYP1B1, two prototype targets of AHR. siRNA knockdown or pharmacological inhibition of SLC7A5/SLC7A8, TDO2, or AHR abolished MEHHP-mediated effects on leiomyoma cell survival. These findings indicate that MEHHP promotes leiomyoma cell survival by activating the tryptophan-kynurenine-AHR pathway. This study pinpoints MEHHP exposure as a high-risk factor for leiomyoma growth, uncovers a mechanism by which exposure to environmental phthalate impacts leiomyoma pathogenesis, and may lead to the development of novel druggable targets.
Collapse
Affiliation(s)
- Takashi Iizuka
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610
| | - Ping Yin
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610
| | - Azna Zuberi
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610
| | - Stacy Kujawa
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610
| | - John S. Coon
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610
| | - Richelle D. Björvang
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Diana C. Pacyga
- Department of Food Science and Human Nutrition, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824
| | - Rita S. Strakovsky
- Department of Food Science and Human Nutrition, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824
| | - Jodi A. Flaws
- Department of Comparative Bioscience, University of Illinois at Urbana–Champagne, Urbana, IL 61802
| | - Serdar E. Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610
| |
Collapse
|
13
|
Tokmedash MA, Seyyedizadeh E, Balouchi EN, Salehi Z, Ardestani MS. Synthesis of smart carriers based on tryptophan-functionalized magnetic nanoparticles and its application in 5- Fluorouracil delivery. Biomed Mater 2022; 17. [PMID: 35609617 DOI: 10.1088/1748-605x/ac7307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/24/2022] [Indexed: 11/12/2022]
Abstract
Multifunctional nanocarriers, specifically for tumor targeting and traceable features, have been increasingly considered in cancer therapies. Herein, a novel targeting agent (TA), tryptophan(TRP), was proposed for the synthesis of functionalized APTES-iron oxide nanoparticles using two methods, creating a smart drug delivery system (DDS). In one method, two-step, glutaraldehyde (GA) as a linker, bonded TRP and amino-functionalized magnetite (AMFM), and in the second method, one step, TRP binding was carried out by (3-dimethyl aminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC)/ N-hydroxysuccinimide ester (NHS). The synthesis yield of the second method was 7% higher than the first method. After synthesizing DDS, 5-Fluorouracil (5-FU) was loaded on nanocarriers and was observed that TRP functionalized nanoparticles by GA have better loading efficiency, which was 50% greater than the product from the one-step method. A pH-sensitive release profile was also studied for 5-FU/DDS with the release of almost 75% and 50% at pH 5.5 and 7.4, respectively. To analyze the biological aspects of nanocarriers, human breast cancer, MCF-7, and embryonic kidney, HEK293, cell lines were used for cellular uptake and MTT assays. In-vitro studies confirmed that TRP can act as a TA as its cellular uptake through cancerous cells was 40% greater than normal cells, and the MTT assay confirmed that using DDS can increase and decrease the cell viability of normal cells and cancerous cells, respectively, compared to free drug. Therefore, it was concluded that advanced nano-assembly is a great candidate for breast cancer cell-targeted delivery.
Collapse
Affiliation(s)
| | - Elham Seyyedizadeh
- Tehran University, 16 Azar Street, Tehran, Tehran, 1439644545, Iran (the Islamic Republic of)
| | - Elham Nezami Balouchi
- University of Tehran, 16 Azar Street, Tehran, 1439644545, Iran (the Islamic Republic of)
| | - Zeinab Salehi
- University of Tehran, 16 Azar Street, Tehran, 1439644545, Iran (the Islamic Republic of)
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy and Medicinal Chemistry, Tehran University of Medical Sciences, 16 Azar Street, Tehran, 1439644545, Iran (the Islamic Republic of)
| |
Collapse
|