1
|
Jang H, Song G, Lim W, Park S. Toxic effects of dibutyl phthalate on trophoblast through mitochondria mediated cellular dysfunction. Toxicol Appl Pharmacol 2025; 495:117186. [PMID: 39647510 DOI: 10.1016/j.taap.2024.117186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
Dibutyl phthalate is a chemical commonly used as a plasticizer in the production of daily necessaries, such as cosmetics and toys. Although several toxic effects of dibutyl phthalate have been confirmed, those related to pregnancy are unknown. Trophoblasts are critical for fetal and placental development, and trophoblast damage may cause preeclampsia. This study aimed to confirm the toxic effect of dibutyl phthalate on trophoblasts. We used the human trophoblast cell line HTR-8/SVneo and human choriocarcinoma JEG-3 cells as a placental trophoblast model to investigate the toxic effects of dibutyl phthalate. Both cell lines were treated with dibutyl phthalate (0-20 μg/mL) to verify the mechanisms regulating trophoblast function. Dibutyl phthalate treatment significantly reduced trophoblast viability, reduced invasion ability, and induced mitochondrial depolarization. Ultimately, dibutyl phthalate regulated the PI3K and MAPK signaling pathways and the expression of autophagy-related proteins ATG5, LC3B, and SQSTM1/p62. We concluded that dibutyl phthalate induced autophagy and effectively weakened trophoblast function. Additionally, we conducted experiments to assess the potential effects of monobutyl phthalate, a metabolite of dibutyl phthalate, on cellular mobility, penetration, and autophagy induction. Our results demonstrated that monobutyl phthalate impaired these functions and weakened the trophoblast barrier, after dibutyl phthalate metabolized. Thus, exposure to dibutyl phthalate and its metabolite monobutyl phthalate can damage trophoblast function, highlighting their potential as hazardous substances that impair trophoblast barrier integrity.
Collapse
Affiliation(s)
- Hyewon Jang
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju 52725, Republic of Korea; Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea.
| |
Collapse
|
2
|
da Silveira FFCL, Porto VA, de Sousa BLC, de Souza EV, Lo Nostro FL, Rocha TL, de Jesus LWO. Bioaccumulation and ecotoxicity of parabens in aquatic organisms: Current status and trends. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125213. [PMID: 39477001 DOI: 10.1016/j.envpol.2024.125213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
Parabens are preservatives widely used in personal care products, pharmaceuticals, and foodstuffs. However, they are still unregulated chemical compounds. Given their extensive use and presence in different environmental compartments, parabens can adversely affect animal health. Thus, the current study aimed to summarize and critically analyze the bioaccumulation and ecotoxicity of parabens in aquatic species. Studies have been mostly conducted in laboratory conditions (75%), using mainly fish and crustaceans. Field studies were carried out across 128 sampling sites in six countries. Paraben bioaccumulation was predominantly detected in fish muscle, liver, brain, gills, ovary, and testes. Among the parent parabens, methylparaben (MeP), ethylparaben (EtP), and propylparaben (PrP) have been detected frequently and more abundantly in tissues of marine and freshwater specimens, as well as the metabolite 4-hydroxybenzoic acid (4-HB). Parabens can induce lethal and sublethal effects on aquatic organisms, such as oxidative stress, endocrine disruption, neurotoxicity, behavioral changes, reproductive impairment, and developmental abnormalities. The toxicity of parabens varied according to species, taxonomic group, developmental stage, exposure time, and concentrations tested. This study highlights the potential bioaccumulation and ecotoxicological impacts of parabens and their metabolites on aquatic invertebrates and vertebrates. Additionally, future research recommendations are provided to evaluate the environmental risks posed by paraben contamination more effectively.
Collapse
Affiliation(s)
- Felipe Félix Costa Lima da Silveira
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Viviane Amaral Porto
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil; Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Bianca Leite Carnib de Sousa
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Emilly Valentim de Souza
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Fabiana Laura Lo Nostro
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IBBEA, UBA-CONICET, Buenos Aires, Argentina
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Lázaro Wender Oliveira de Jesus
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil; Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
3
|
Zhang Y, Tu L, Chen J, Zhou L. Interference Mechanisms of Endocrine System and Other Systems of Endocrine-Disrupting Chemicals in Cosmetics-In Vitro Studies. Int J Endocrinol 2024; 2024:2564389. [PMID: 39659890 PMCID: PMC11631346 DOI: 10.1155/ije/2564389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/07/2024] [Accepted: 11/02/2024] [Indexed: 12/12/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs), found in various cosmetic products, interfere with the normal functioning of the endocrine system, impacting hormone regulation and posing risks to human health. Common cosmetic EDCs, such as ultraviolet (UV) filters, parabens, and triclosan, can enter the human body through different routes, including skin absorption. Their presence has been linked to adverse effects on reproduction, immune function, and development. High-throughput in vitro assays, using various human cell lines, were employed to assess the effects of common cosmetic EDCs such as ethylhexyl methoxycinnamate (EHMC), benzophenone-3 (BP-3), homosalate, and parabens. Despite ongoing regulatory efforts, gaps persist in understanding their long-term impacts, particularly when they are present as mixtures or degradation products in the environment. This study focuses on recent in vitro research to investigate the mechanisms through which cosmetic-related EDCs disrupt the endocrine system and other physiological systems. The in vitro findings highlight the broader systemic impact of these chemicals, extending beyond the endocrine system to include immune, reproductive, and cardiovascular effects. This research underscores the importance of developing safer cosmetic formulations and enhancing public health protection, emphasizing the need for stricter regulations.
Collapse
Affiliation(s)
- Yixuan Zhang
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Innovation R&D, Testing and Evaluation Technical Service Platform of Cosmetics (22DZ2292100), Department of Evaluation of Cosmetics, Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| | - Lihong Tu
- Division of Public Health Service and Safety Assessment, Shanghai Institute of Preventive Medicine, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| | - Jian Chen
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Innovation R&D, Testing and Evaluation Technical Service Platform of Cosmetics (22DZ2292100), Department of Evaluation of Cosmetics, Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| | - Lihong Zhou
- Division of Public Health Service and Safety Assessment, Shanghai Institute of Preventive Medicine, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| |
Collapse
|
4
|
Liu M, Du X, Chen H, Bai C, Lan L. Systemic investigation of di-isobutyl phthalate (DIBP) exposure in the risk of cardiovascular via influencing the gut microbiota arachidonic acid metabolism in obese mice model. Regen Ther 2024; 27:290-300. [PMID: 38638558 PMCID: PMC11024931 DOI: 10.1016/j.reth.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/20/2024] Open
Abstract
Phthalate esters (PE), a significant class of organic compounds used in industry, can contaminate humans and animals by entering water and food chains. Recent studies demonstrate the influence of PE on the development and progression of heart diseases, particularly in obese people. Di-isobutyl phthalate (DIBP) was administered orally to normal and diet-induced obese mice in this research to assess cardiovascular risk. The modifications in the microbial composition and metabolites were examined using RNA sequencing and mass spectrometry analysis. Based on the findings, lean group rodents were less susceptible to DIBP exposure than fat mice because of their cardiovascular systems. Histopathology examinations of mice fed a high-fat diet revealed lesions and plagues that suggested a cardiovascular risk. In the chronic DIBP microbial remodeling metagenomics Faecalibaculum rodentium was the predominant genera in obese mice. According to metabolomics data, arachidonic acid (AA) metabolism changes caused by DIBP were linked to unfavorable cardiovascular events. Our research offers new understandings of the cardiovascular damage caused by DIBP exposure in obese people and raises the possibility that arachidonic acid metabolism could be used as a regulator of the gut microbiota to avert related diseases.
Collapse
Affiliation(s)
- Min Liu
- Department of General Practice, First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Taiyuan, Shanxi, 030001, China
| | - Xifeng Du
- Department of General Practice, First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Taiyuan, Shanxi, 030001, China
| | - Huifang Chen
- Department of General Practice, First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Taiyuan, Shanxi, 030001, China
| | - Chenkai Bai
- Department of General Practice, First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Taiyuan, Shanxi, 030001, China
| | - Lizhen Lan
- Department of General Practice, First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Taiyuan, Shanxi, 030001, China
| |
Collapse
|
5
|
Lee JH, Hallis SP, Kwak MK. Continuous TNF-α exposure in mammary epithelial cells promotes cancer phenotype acquisition via EGFR/TNFR2 activation. Arch Pharm Res 2024; 47:465-480. [PMID: 38734854 DOI: 10.1007/s12272-024-01497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Tumor necrosis factor alpha (TNF-α), an abundant inflammatory cytokine in the tumor microenvironment (TME), is linked to breast cancer growth and metastasis. In this study, we established MCF10A cell lines incubated with TNF-α to investigate the effects of continuous TNF-α exposure on the phenotypic change of normal mammary epithelial cells. The established MCF10A-LE cell line, through long-term exposure to TNF-α, displayed cancer-like features, including increased proliferation, migration, and sustained survival signaling even in the absence of TNF-α stimulation. Unlike the short-term exposed cell line MCF10A-SE, MCF10A-LE exhibited elevated levels of epidermal growth factor receptor (EGFR) and subsequent TNF receptor 2 (TNFR2), and silencing of EGFR or TNFR2 suppressed the cancer-like phenotype of MCF10A-LE. Notably, we demonstrated that the elevated levels of NAD(P)H oxidase 4 (NOX4) and the resulting increase in reactive oxygen species (ROS) were associated with EGFR/TNFR2 elevation in MCF10A-LE. Furthermore, mammosphere-forming capacity and the expression of cancer stem cell (CSC) markers increased in MCF10A-LE. Silencing of EGFR reversed these effects, indicating the acquisition of CSC-like properties via EGFR signaling. In conclusion, our results reveal that continuous TNF-α exposure activates the EGFR/TNFR2 signaling pathway via the NOX4/ROS axis, promoting neoplastic changes in mammary epithelial cells within the inflammatory TME.
Collapse
Affiliation(s)
- Jin-Hee Lee
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea
| | - Steffanus Pranoto Hallis
- Department of Pharmacy and BK21FOUR Advanced Program for SmartPharma Leaders, Graduate School of The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Mi-Kyoung Kwak
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea.
- Department of Pharmacy and BK21FOUR Advanced Program for SmartPharma Leaders, Graduate School of The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
6
|
Hwangbo H, Kim MY, Ji SY, Kim DH, Park BS, Jeong SU, Yoon JH, Kim TH, Kim GY, Choi YH. A Mixture of Morus alba and Angelica keiskei Leaf Extracts Improves Muscle Atrophy by Activating the PI3K/Akt/mTOR Signaling Pathway and Inhibiting FoxO3a In Vitro and In Vivo. J Microbiol Biotechnol 2023; 33:1635-1647. [PMID: 37674382 PMCID: PMC10772550 DOI: 10.4014/jmb.2306.06012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
Muscle atrophy, which is defined as a decrease in muscle mass and strength, is caused by an imbalance between the anabolism and catabolism of muscle proteins. Thus, modulating the homeostasis between muscle protein synthesis and degradation represents an efficient treatment approach for this condition. In the present study, the protective effects against muscle atrophy of ethanol extracts of Morus alba L. (MA) and Angelica keiskei Koidz. (AK) leaves and their mixtures (MIX) were evaluated in vitro and in vivo. Our results showed that MIX increased 5-aminoimidazole-4-carboxamide ribonucleotide-induced C2C12 myotube thinning, and enhanced soleus and gastrocnemius muscle thickness compared to each extract alone in dexamethasone-induced muscle atrophy Sprague Dawley rats. In addition, although MA and AK substantially improved grip strength and histological changes for dexamethasone-induced muscle atrophy in vivo, the efficacy was superior in the MIX-treated group. Moreover, MIX further increased the expression levels of myogenic factors (MyoD and myogenin) and decreased the expression levels of E3 ubiquitin ligases (atrogin-1 and muscle-specific RING finger protein-1) in vitro and in vivo compared to the MA- and AK-alone treatment groups. Furthermore, MIX increased the levels of phosphorylated phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR) that were reduced by dexamethasone, and downregulated the expression of forkhead box O3 (FoxO3a) induced by dexamethasone. These results suggest that MIX has a protective effect against muscle atrophy by enhancing muscle protein anabolism through the activation of the PI3K/Akt/mTOR signaling pathway and attenuating catabolism through the inhibition of FoxO3a.
Collapse
Affiliation(s)
- Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
| | - Da Hye Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
| | - Beom Su Park
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
| | - Seong Un Jeong
- Hamsoa Pharmaceutical Co., Ltd., Iksan 54524, Republic of Korea
| | - Jae Hyun Yoon
- Hamsoa Pharmaceutical Co., Ltd., Iksan 54524, Republic of Korea
| | - Tae Hee Kim
- Hamsoa Pharmaceutical Co., Ltd., Iksan 54524, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
7
|
Kim D, Oh E, Kim H, Baek SM, Cho J, Kim EH, Choi S, Bian Y, Kim W, Bae ON. Mono-(2-ethylhexyl)-phthalate potentiates methylglyoxal-induced blood-brain barrier damage via mitochondria-derived oxidative stress and bioenergetic perturbation. Food Chem Toxicol 2023; 179:113985. [PMID: 37572985 DOI: 10.1016/j.fct.2023.113985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/30/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Phthalates in contaminated foods and personal care products are one of the most frequently exposed chemicals with a public health concern. Phthalate exposure is related to cardiovascular diseases, including diabetic vascular complications and cerebrovascular diseases, yet the mechanism is still unclear. The blood-brain barrier (BBB) integrity disruption is strongly associated with cardiovascular and neurological disease exacerbation. We investigated BBB damage by di-(2-ethylhexyl) phthalate (DEHP) or its metabolite mono-(2-ethylhexyl) phthalate (MEHP) using brain endothelial cells and rat models. BBB damage by the subthreshold level of MEHP, but not a DEHP, significantly increased by the presence of methylglyoxal (MG), a reactive dicarbonyl compound whose levels increase in the blood in hyperglycemic conditions in diabetic patients. Significant potentiation in apoptosis and autophagy activation, mitochondria-derived reactive oxygen species (ROS) production, and mitochondrial metabolic disturbance were observed in brain ECs by co-exposure to MG and MEHP. N-acetyl cysteine (NAC) restored autophagy activation as well as tight junction protein impairment induced by co-exposure to MG and MEHP. Intraperitoneal administration of MG and MEHP significantly altered mitochondrial membrane potential and tight junction integrity in rat brain endothelium. This study may provide novel insights into enhancing phthalate toxicity in susceptible populations, such as diabetic patients.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Eujin Oh
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Haram Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Seung Mi Baek
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Junho Cho
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Eun-Hye Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Sungbin Choi
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Yiying Bian
- School of Public Health, China Medical University, Shenyang, 110122, China
| | - Wondong Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea.
| |
Collapse
|