1
|
Gu JP, Qi TZ, Zhu DR, He XJ, Guo SP, Lan X, Gu H, Luo JL, Yang M, Gu YC, Wang WL, Chen GT, Fan BY. Isolation of pentasaccharide resin glycosides from the whole plants of Ipomoea biflora and their cytotoxic activities. PHYTOCHEMISTRY 2025; 236:114494. [PMID: 40154902 DOI: 10.1016/j.phytochem.2025.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
A total of eight previously undescribed pentasaccharide resin glycosides, named ipomofins I-VIII (1-8), along with five known ones (9-13), were isolated from the whole plants of Ipomoea biflora. Their structural elucidation was achieved through a comprehensive application of spectroscopic and chemical techniques. All these resin glycosides were characterized as partially acylated pentasaccharides, originating from operculinic acids A or D, containing l-rhamnose, d-glucose, d-xylose or d-fucose units, and 11S-hydroxyhexadecanoic acid serving as the aglycone. Notably, compounds 1 and 2 represent the first resin glycosides with operculinic acid D as their core structure, while compounds 3 and 4 are the first derivatives of operculinic acid A featuring a 23-membered ring. Compounds 1, 2, and 4-6 exhibited apparent cytotoxic effects against certain cancer cell lines. Particularly, compound 5 demonstrated the ability to impair colony formation, reduce the proportion of EdU-positive cells, and enhance the expression of proteins related to endoplasmic reticulum stress (ERS) in HCT-15 cells, indicating that its cytotoxicity might be driven by the activation of ERS pathways. Collectively, this research identified 13 resin glycosides from I. biflora, including eight previously undescribed compounds, with compound 5 emerging as a potential anticancer agent due to its induction of ERS.
Collapse
Affiliation(s)
- Jin-Ping Gu
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Tian-Zi Qi
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Dong-Rong Zhu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Xu-Jia He
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Su-Peng Guo
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Xin Lan
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Hong Gu
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Jia-Lie Luo
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Min Yang
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, RG426EY, UK
| | - Wen-Li Wang
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China.
| | - Guang-Tong Chen
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China.
| | - Bo-Yi Fan
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China.
| |
Collapse
|
2
|
Ren Y, Gallucci JC, Yu J, Burdette JE, Fuchs JR, Kinghorn AD. Antitumor and immunomodulatory activities of diphyllin and its derivatives. Bioorg Med Chem 2025; 124:118197. [PMID: 40253992 DOI: 10.1016/j.bmc.2025.118197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Immune surveillance plays a key role in controlling tumor formation and development, and immune cell-based therapies, such as chimeric antigen receptor (CAR)-T cells and CAR-natural killer (NK) cells, have become important for the treatment of cancer. The proton pump (PP), vacuolar H+-ATPase (V-ATPase), acidifies intracellular organelles, pumps protons across the cell plasma membranes, and regulates the activity of various signaling pathways, and thus has been regarded as a potential target for cancer treatment. In addition, V-ATPase plays an important role in cytotoxic T lymphocytes, extracellular vesicle (EV) endocytosis, innate immune responses (IIR), and phagocytosis and hence has the potential to function as a target for the enhancement of immunotherapy. As potent V-ATPase inhibitors, the arylnaphthalene lignans, diphyllin and its derivatives, have exhibited potent antitumor and immunomodulatory activities. The structurally related aryltetralin lignan, podophyllotoxin, has served as a lead compound for both etoposide and teniposide, which have been developed as effective anticancer agents. In the present review, the role of V-ATPase in cancer immunotherapy and the structure-activity relationships (SARs) of diphyllin and its cytotoxic and V-ATPase inhibitory activities and the mechanisms of action are discussed. Also, the promise of diphyllin and its derivatives in the development of new adjuvants for cancer immunotherapies has been proposed.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Judith C Gallucci
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Jianhua Yu
- Division of Hematology & Oncology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, United States; The Clemons Family Center for Transformative Cancer Research, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, United States
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
3
|
Wongpan A, Panvongsa W, Krobthong S, Nutho B, Kanjanasirirat P, Jearawuttanakul K, Khumpanied T, Phlaetita S, Chabang N, Munyoo B, Tuchinda P, Ponpuak M, Borwornpinyo S, Chairoungdua A. Cleistanthin A derivative disrupts autophagy and suppresses head and neck squamous cell carcinoma progression via targeted vacuolar ATPase. Sci Rep 2024; 14:22582. [PMID: 39343784 PMCID: PMC11439923 DOI: 10.1038/s41598-024-73186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) present a significant challenge due to its heterogeneity and limited treatment options, often resulting in severe side effects and poor survival rates with conventional chemoradiotherapy. Here, we investigated the anticancer activity of halogenated benzoate derivatives of cleistanthin A, ECDD-S16 and ECDD-S18, in HNSCC cells. Our findings revealed that ECDD-S18 exhibited remarkable cytotoxicity, surpassing that of cisplatin with minimal impact on normal and cisplatin-sensitive cells. Notably, ECDD-S18 induced apoptosis in a dose-dependent manner and effectively targeted vacuolar ATPase (V-ATPase), impairing lysosomal acidification. Intriguingly, ECDD-S18 inhibited autophagic flux, as evidenced by increased autophagosome but decreased autolysosome formation. Furthermore, proteomic analysis demonstrated downregulation of cathepsin D (CTSD), the lysosomal protease in ECDD-S18-treated HNSCC cells, concurrent with suppressed cell migration. ECDD-S18 also decreased expression of mesenchymal markers, suggesting inhibition of epithelial-mesenchymal transition (EMT). Importantly, cotreatment with ECDD-S18 and cisplatin enhanced the reduction in cell viability. Collectively, our results indicated that the anticancer activity of ECDD-S18 partly stems from its ability to disrupt lysosomal acidification and inhibit autophagy via targeted inhibition of V-ATPase. These findings underscore the therapeutic promise of ECDD-S18 in HNSCC treatment, either alone or in combination with existing drugs, while mitigating toxicity to normal cells.
Collapse
Affiliation(s)
- Anongnat Wongpan
- Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Rd., Ratchathewi, Bangkok, 10400, Thailand
| | - Wittaya Panvongsa
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sucheewin Krobthong
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Phongthon Kanjanasirirat
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Tanawadee Khumpanied
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Sureeporn Phlaetita
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Napason Chabang
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Bamroong Munyoo
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Patoomratana Tuchinda
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Rd., Ratchathewi, Bangkok, 10400, Thailand.
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand.
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
Cai Y, Wang Y, Su W, Zhou X, Lu C. Angelica sinensis polysaccharide suppresses the Wnt/β-catenin-mediated malignant biological behaviors of breast cancer cells via the miR-3187-3p/PCDH10 axis. Biochem Pharmacol 2024; 225:116295. [PMID: 38762145 DOI: 10.1016/j.bcp.2024.116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Breast cancer (BC) is one of the most common malignant tumors in women. Angelica sinensis polysaccharide (ASP) is one of the main components extracted from the traditional Chinese medicine Angelica sinensis. Research has shown that ASP affects the progression of various cancers by regulating miRNA expression. This study aimed to explore the specific molecular mechanism by which ASP regulates BC progression through miR-3187-3p. After the overexpression or knockdown of miR-3187-3p and PDCH10 in BC cells, the proliferation, migration, invasion, and phenotype of BC cells were evaluated after ASP treatment. Bioinformatics software was used to predict the target genes of miR-3187-3p, and luciferase gene reporter experiments reconfirmed the targeted binding relationship. Subcutaneous tumor formation experiments were conducted in nude mice after the injection of BC cells. Western blot and Ki-67 immunostaining were performed on the tumor tissues. The results indicate that ASP can significantly inhibit the proliferation, migration, and invasion of BC cells. ASP can inhibit the expression of miR-3187-3p in BC cells and upregulate the expression of PDCH10 by inhibiting miR-3187-3p. A regulatory relationship exists between miR-3187-3p and PDCH10. ASP can inhibit the expression of β-catenin and phosphorylated glycogen synthase kinase-3β (p-GSK-3β) proteins through miR-3187-3p/PDCH10 and prevent the occurrence of malignant biological behavior in BC. Overall, this study revealed the potential mechanism by which ASP inhibits the BC process. ASP mediates the Wnt/β-catenin signaling pathway by affecting the miR-3187-3p/PDCH10 molecular axis, thereby inhibiting the proliferation, migration, invasion, and other malignant biological behaviors of BC cells.
Collapse
Affiliation(s)
- Yan Cai
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China; Department of Pharmacy, Zhangjiagang Aoyang Hospital, Zhangjiagang, Jiangsu 215600, China
| | - Yang Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Wenjun Su
- Department of Pharmacy, Zhangjiagang Aoyang Hospital, Zhangjiagang, Jiangsu 215600, China
| | - Xianglin Zhou
- Intensive Care Medicine, Zhangjiagang Aoyang Hospital, Zhangjiagang, Jiangsu 215600, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
5
|
Hou W, Huang LJ, Huang H, Liu SL, Dai W, Li ZM, Zhang ZY, Xin SY, Wang JY, Zhang ZY, Ouyang X, Lan JX. Bioactivities and Mechanisms of Action of Diphyllin and Its Derivatives: A Comprehensive Systematic Review. Molecules 2023; 28:7874. [PMID: 38067601 PMCID: PMC10707837 DOI: 10.3390/molecules28237874] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Natural products are treasure houses for modern drug discovery. Diphyllin is a natural arylnaphthalene lignan lactone isolated from the leaf of Astilboides tabularis. Studies have found that it possesses plenty of bioactivity characteristics. In this paper, we reviewed the structure, bioactivity, and mechanism of action of diphyllin and its derivatives. The references were obtained from PubMed, Web of Science, and Science Direct databases up to August 2023. Papers without a bio-evaluation were excluded. Diphyllin and its derivatives have demonstrated V-ATPase inhibition, anti-tumor, anti-virus, anti-biofilm, anti-inflammatory, and anti-oxidant activities. The most studied activities of diphyllin and its derivatives are V-ATPase inhibition, anti-tumor activities, and anti-virus activities. Furthermore, V-ATPase inhibition activity is the mechanism of many bioactivities, including anti-tumor, anti-virus, and anti-inflammatory activities. We also found that the galactosylated modification of diphyllin is a common phenomenon in plants, and therefore, galactosylated modification is applied by researchers in the laboratory to obtain more excellent diphyllin derivatives. This review will provide useful information for the development of diphyllin-based anti-tumor and anti-virus compounds.
Collapse
Affiliation(s)
- Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Le-Jun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou 341000, China;
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Sheng-Lan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Wei Dai
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Zeng-Min Li
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou 341000, China;
| | - Zhen-Yu Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Su-Ya Xin
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Jin-Yang Wang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Zi-Yun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Xi Ouyang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Jin-Xia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
6
|
Al-Bari AA. Inhibition of autolysosomes by repurposing drugs as a promising therapeutic strategy for the treatment of cancers. ALL LIFE 2022; 15:568-601. [DOI: 10.1080/26895293.2022.2078894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022] Open
Affiliation(s)
- Abdul Alim Al-Bari
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
7
|
Diphyllin Shows a Broad-Spectrum Antiviral Activity against Multiple Medically Important Enveloped RNA and DNA Viruses. Viruses 2022; 14:v14020354. [PMID: 35215947 PMCID: PMC8874615 DOI: 10.3390/v14020354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/10/2022] Open
Abstract
Diphyllin is a natural arylnaphtalide lignan extracted from tropical plants of particular importance in traditional Chinese medicine. This compound has been described as a potent inhibitor of vacuolar (H+)ATPases and hence of the endosomal acidification process that is required by numerous enveloped viruses to trigger their respective viral infection cascades after entering host cells by receptor-mediated endocytosis. Accordingly, we report here a revised, updated, and improved synthesis of diphyllin, and demonstrate its antiviral activities against a panel of enveloped viruses from Flaviviridae, Phenuiviridae, Rhabdoviridae, and Herpesviridae families. Diphyllin is not cytotoxic for Vero and BHK-21 cells up to 100 µM and exerts a sub-micromolar or low-micromolar antiviral activity against tick-borne encephalitis virus, West Nile virus, Zika virus, Rift Valley fever virus, rabies virus, and herpes-simplex virus type 1. Our study shows that diphyllin is a broad-spectrum host cell-targeting antiviral agent that blocks the replication of multiple phylogenetically unrelated enveloped RNA and DNA viruses. In support of this, we also demonstrate that diphyllin is more than just a vacuolar (H+)ATPase inhibitor but may employ other antiviral mechanisms of action to inhibit the replication cycles of those viruses that do not enter host cells by endocytosis followed by low pH-dependent membrane fusion.
Collapse
|
8
|
Li Q, Zan L. Knockdown of ATG4A inhibits breast cancer progression and promotes tamoxifen chemosensitivity by suppressing autophagy. Mol Med Rep 2022; 25:101. [PMID: 35088889 PMCID: PMC8822883 DOI: 10.3892/mmr.2022.12617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
Autophagy-related 4A (ATG4A) is an autophagy regulator. The current study investigated the role of ATG4A in the development of tamoxifen-resistant breast cancer. ATG4A expression was assessed in tumor and adjacent normal tissue obtained from The Cancer Genome Atlas database. Analyses of the disease-free survival between the ATG4A high and low expression groups was then evaluated in patients with breast cancer. Cell viability and apoptosis in MCF7/R cells was detected using Cell Counting Kit-8 assay and flow cytometry, respectively. Gene set enrichment analysis identified the pathway responsible for the effects of ATG4A. The protein expression of ATG4A, LC3, p62, Bcl-2, Bax, GSK-3β, phosphorylated (p)-GSK-3β, β-catenin, cyclinD1 and c-myc in MCF and MCF7/R cells was determined using western blot. In this study, ATG4A expression was increased in the tumor tissues, and a higher ATG4A expression exhibited poor disease-free survival. While 4-hydroxytamoxifen (4-OHT) increased ATG4A expression in MCF7 and MCF7/R cells, ATG4A expression decreased in the cells treated with 3-methyladenine (3MA). Treatment with 4-OHT and rapamycin (an autophagy activator) increased the LC3-II/LC3-I ratio, LC3 puncta number and decreased the level of p62 in MCF7/R cells. However, the effects of 4-OHT and rapamycin were reversed by 3MA and knockdown of ATG4A, respectively. After treatment with 4-OHT, knockdown of ATG4A suppressed proliferation, triggered apoptosis, decreased the expression of Bcl-2, β-catenin, cyclin D1 and c-myc, and increased the expression of Bax and p-GSK3β in MCF7/R cells. Moreover, SKL2001, an activator of the Wnt/β-catenin signaling pathway, reversed the effects of ATG4A knockdown on cell viability and apoptosis in MCF7/R cells. In conclusion, the knockdown of ATG4A inhibited the anticancer effects of 4-OHT in breast cancer.
Collapse
Affiliation(s)
- Qingfang Li
- Division II, Department of Oncology, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Lingling Zan
- Department 1 of Mammary Gland, Linyi Cancer Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
9
|
Santos-Pereira C, Rodrigues LR, Côrte-Real M. Emerging insights on the role of V-ATPase in human diseases: Therapeutic challenges and opportunities. Med Res Rev 2021; 41:1927-1964. [PMID: 33483985 DOI: 10.1002/med.21782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
The control of the intracellular pH is vital for the survival of all organisms. Membrane transporters, both at the plasma and intracellular membranes, are key players in maintaining a finely tuned pH balance between intra- and extracellular spaces, and therefore in cellular homeostasis. V-ATPase is a housekeeping ATP-driven proton pump highly conserved among prokaryotes and eukaryotes. This proton pump, which exhibits a complex multisubunit structure based on cell type-specific isoforms, is essential for pH regulation and for a multitude of ubiquitous and specialized functions. Thus, it is not surprising that V-ATPase aberrant overexpression, mislocalization, and mutations in V-ATPase subunit-encoding genes have been associated with several human diseases. However, the ubiquitous expression of this transporter and the high toxicity driven by its off-target inhibition, renders V-ATPase-directed therapies very challenging and increases the need for selective strategies. Here we review emerging evidence linking V-ATPase and both inherited and acquired human diseases, explore the therapeutic challenges and opportunities envisaged from recent data, and advance future research avenues. We highlight the importance of V-ATPases with unique subunit isoform molecular signatures and disease-associated isoforms to design selective V-ATPase-directed therapies. We also discuss the rational design of drug development pipelines and cutting-edge methodological approaches toward V-ATPase-centered drug discovery. Diseases like cancer, osteoporosis, and even fungal infections can benefit from V-ATPase-directed therapies.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal.,Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Lígia R Rodrigues
- Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| |
Collapse
|