1
|
Li L, Guo Z, Zhao Y, Liang C, Zheng W, Tian W, Chen Y, Cheng Y, Zhu F, Xiang X. The impact of oxidative stress on abnormal lipid metabolism-mediated disease development. Arch Biochem Biophys 2025; 766:110348. [PMID: 39961502 DOI: 10.1016/j.abb.2025.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Oxidative stress arises from an imbalance between cellular oxidation and anti-oxidation mechanisms, leading to various harmful effects on physiological health. These include inflammatory neutrophil infiltration, increased secretion of proteases, and increased production of oxidative intermediates, all of which significantly contribute to aging and the onset of multiple diseases. This review explores abnormal lipid metabolism, characterized by dysregulation in lipid synthesis, catabolism, digestion, absorption, and transport, with the potential to lead to lipid droplet accumulation or deficit across tissues, thus causing adverse health outcomes. Importantly, the intricate relationship between oxidative stress and inflammation plays a central role in exacerbating metabolic disorders, including diabetes, obesity, hypertension, non-alcoholic fatty liver disease, atherosclerosis, and lung fibrosis. This review seeks to compile and integrate recent research findings on the influence of oxidative stress on abnormal lipid metabolism pathology. A deeper understanding of this connection could reveal new perspectives for advancing the treatment and management of metabolic disorders.
Collapse
Affiliation(s)
- Lanlan Li
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Zhiliang Guo
- The 80th Group Army Hospital of Chinese PLA, Weifang, Shandong, 261021, China
| | - Yi Zhao
- Shandong Provincial Hospital Affiliated with Shandong's First Medical University, Shandong, China
| | - Chuanjie Liang
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Wenxiang Zheng
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Wenxiu Tian
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Yalin Chen
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Yi Cheng
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Fengwen Zhu
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China.
| | - Xinxin Xiang
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China.
| |
Collapse
|
2
|
Aluko EO, David UE, Ojetola AA, Fasanmade AA. Aqueous extract of Peristrophe bivalvis (L.) Merr. leaf reversed the detrimental effects of nitric oxide synthase inhibitor on blood lipid profile and glucose level. PLoS One 2024; 19:e0308338. [PMID: 39240961 PMCID: PMC11379291 DOI: 10.1371/journal.pone.0308338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/21/2024] [Indexed: 09/08/2024] Open
Abstract
There is evidence that nitric oxide (NO) modulates the metabolism of glucose and lipid, and some antihypertensive medications have been shown to affect glucose and lipid metabolism. Peristrophe bivalvis is a medicinal plant that has been shown to have antihypertensive properties. The study investigated the effect of aqueous extract of Peristrophe bivalvis leaf (APB) on fasting blood glucose level (FBG) and lipid profile in rats pretreated with nitro-L-arginine methyl ester (L-NAME). Male Wistar rats (150-170 g, n=30) were randomly divided into two groups: control (CT, n=5) and L-NAME pretreated (n=25). CT received 5 mL/kg of distilled water [DW]) while L-NAME pretreated group received 60 mg/kg of L-NAME (L-NAME60) for eight weeks. After eight weeks, the L-NAME pretreated group was randomly subdivided into L-NAME group (LN), L-NAME recovery group (LRE), L-NAME ramipril group (LRA), and L-NAME APB group (LAPB). The groups received L-NAME60+DW, DW, L-NAME60+10 mg/kg ramipril, and L-NAME60+APB (200 mg/kg), respectively, for five weeks. Serum NO, lipid profile, cyclic guanosine monophosphate (cGMP), and insulin were measured by spectrophotometry, assay kits, and ELISA, respectively. Data were analysed using ANOVA at p < 0.05. At the eighth week, a fall in FBG and an increase in triglyceride, total cholesterol, and low-density lipoprotein cholesterol were recorded in L8 compared to CT. The same effects were also noticed in the thirteenth week in LN. However, FBG was significantly increased and lipid levels were decreased in LAPB compared to LN. A significant increase was observed in cGMP level in LAPB compared to LN. The study showed that APB corrected the hyperlipidemia and hypoglycemia caused by L-NAME, and this effect might be via the activation of cGMP.
Collapse
Affiliation(s)
- Esther Oluwasola Aluko
- Physiology Department, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Akwa-Ibom State, Nigeria
| | - Ubong Edem David
- Physiology Unit, Ajayi Crowther University, Oyo, Oyo State, Nigeria
| | - Abodunrin Adebayo Ojetola
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| | - Adesoji Adedipe Fasanmade
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
3
|
Li C, Shi S. Gut microbiota and metabolic profiles in chronic intermittent hypoxia-induced rats: disease-associated dysbiosis and metabolic disturbances. Front Endocrinol (Lausanne) 2024; 14:1224396. [PMID: 38283743 PMCID: PMC10811599 DOI: 10.3389/fendo.2023.1224396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Aim Chronic intermittent hypoxia (CIH) is a key characteristic of obstructive sleep apnea (OSA) syndrome, a chronic respiratory disorder. The mechanisms of CIH-induced metabolic disturbance and histopathological damage remain unclear. Methods CIH-induced rats underwent daily 8-h CIH, characterized by oxygen levels decreasing from 21% to 8.5% over 4 min, remaining for 2 min, and quickly returning to 21% for 1 min. The control rats received a continuous 21% oxygen supply. The levels of hypersensitive C reactive protein (h-CRP), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), interleukin 8 (IL-8), and nuclear factor kappa-B (NF-κB) were measured by ELISA. Histological analysis of the soft palates was conducted using HE staining. The microbial profiling of fecal samples was carried out by Accu16STM assay. Untargeted metabolomics of serum and soft palate tissue samples were analyzed by UPLC-MS. The protein expression of cAMP-related pathways in the soft palate was determined by Western blot. Results After 28 h of CIH induction, a significant increase in pro-inflammatory cytokines was observed in the serum, along with mucosal layer thickening and soft palate tissue hypertrophy. CIH induction altered the diversity and composition of fecal microbiota, specifically reducing beneficial bacteria while increasing harmful bacteria/opportunistic pathogens. Notably, CIH induction led to a significant enrichment of genera such as Dorea, Oscillibacter, Enteractinococcus, Paenibacillus, Globicatella, and Flaviflexus genera. Meanwhile, Additionally, CIH induction had a notable impact on 108 serum marker metabolites. These marker metabolites, primarily involving amino acids, organic acids, and a limited number of flavonoids or sterols, were associated with protein transport, digestion and absorption, amino acid synthesis and metabolism, as well as cancer development. Furthermore, these differential serum metabolites significantly affected 175 differential metabolites in soft palate tissue, mainly related to cancer development, signaling pathways, amino acid metabolism, nucleotide precursor or intermediate metabolism, respiratory processes, and disease. Importantly, CIH induction could significantly affect the expression of the cAMP pathway in soft palate tissue. Conclusions Our findings suggest that targeting differential metabolites in serum and soft palate tissue may represent a new approach to clinical intervention and treatment of OSA simulated by the CIH.
Collapse
Affiliation(s)
| | - Song Shi
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Liu H, Huang Y, Huang M, Wang M, Ming Y, Chen W, Chen Y, Tang Z, Jia B. From nitrate to NO: potential effects of nitrate-reducing bacteria on systemic health and disease. Eur J Med Res 2023; 28:425. [PMID: 37821966 PMCID: PMC10566198 DOI: 10.1186/s40001-023-01413-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
Current research has described improving multisystem disease and organ function through dietary nitrate (DN) supplementation. They have provided some evidence that these floras with nitrate (NO3-) reductase are mediators of the underlying mechanism. Symbiotic bacteria with nitrate reductase activity (NRA) are found in the human digestive tract, including the mouth, esophagus and gastrointestinal tract (GT). Nitrate in food can be converted to nitrite under the tongue or in the stomach by these symbiotic bacteria. Then, nitrite is transformed to nitric oxide (NO) by non-enzymatic synthesis. NO is currently recognized as a potent bioactive agent with biological activities, such as vasodilation, regulation of cardiomyocyte function, neurotransmission, suppression of platelet agglutination, and prevention of vascular smooth muscle cell proliferation. NO also can be produced through the conventional L-arginine-NO synthase (L-NOS) pathway, whereas endogenous NO production by L-arginine is inhibited under hypoxia-ischemia or disease conditions. In contrast, exogenous NO3-/NO2-/NO activity is enhanced and becomes a practical supplemental pathway for NO in the body, playing an essential role in various physiological activities. Moreover, many diseases (such as metabolic or geriatric diseases) are primarily associated with disorders of endogenous NO synthesis, and NO generation from the exogenous NO3-/NO2-/NO route can partially alleviate the disease progression. The imbalance of NO in the body may be one of the potential mechanisms of disease development. Therefore, the impact of these floras with nitrate reductase on host systemic health through exogenous NO3-/NO2-/NO pathway production of NO or direct regulation of floras ecological balance is essential (e.g., regulation of body homeostasis, amelioration of diseases, etc.). This review summarizes the bacteria with nitrate reductase in humans, emphasizing the relationship between the metabolic processes of this microflora and host systemic health and disease. The potential effects of nitrate reduction bacteria on human health and disease were also highlighted in disease models from different human systems, including digestive, cardiovascular, endocrine, nervous, respiratory, and urinary systems, providing innovative ideas for future disease diagnosis and treatment based on nitrate reduction bacteria.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Wang Z, Zhu Y, Xia L, Li J, Song M, Yang C. Exercise-Induced ADAR2 Protects against Nonalcoholic Fatty Liver Disease through miR-34a. Nutrients 2022; 15:nu15010121. [PMID: 36615779 PMCID: PMC9824461 DOI: 10.3390/nu15010121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing health problem that is closely associated with insulin resistance and hereditary susceptibility. Exercise is a beneficial approach to NAFLD. However, the relief mechanism of exercise training is still unknown. In this study, mice on a normal diet or a high-fat diet (HFD), combined with Nω-nitro-L-arginine methyl ester, hydrochloride (L-NAME) mice, were either kept sedentary or were subjected to a 12-week exercise running scheme. We found that exercise reduced liver steatosis in mice with diet-induced NAFLD. The hepatic adenosine deaminases acting on RNA 2 (ADAR2) were downregulated in NAFLD and were upregulated in the liver after 12-week exercise. Next, overexpression of ADAR2 inhibited and suppression promoted lipogenesis in HepG2 cells treated with oleic acid (OA), respectively. We found that ADAR2 could down-regulate mature miR-34a in hepatocytes. Functional reverse experiments further proved that miR-34a mimicry eliminated the suppression of ADAR2 overexpression in lipogenesis in vitro. Moreover, miR-34a inhibition and mimicry could also affect lipogenesis in hepatocytes. In conclusion, exercise-induced ADAR2 protects against lipogenesis during NAFLD by editing miR-34a. RNA editing mediated by ADAR2 may be a promising therapeutic candidate for NAFLD.
Collapse
Affiliation(s)
- Zhijing Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yaru Zhu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lu Xia
- Department of Gastroenterology and Hepatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Li
- Department of Gastroenterology and Hepatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence: (J.L.); (M.S.); (C.Y.)
| | - Meiyi Song
- Department of Gastroenterology and Hepatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence: (J.L.); (M.S.); (C.Y.)
| | - Changqing Yang
- Department of Gastroenterology and Hepatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence: (J.L.); (M.S.); (C.Y.)
| |
Collapse
|