1
|
Zoheir KMA, Ali NI, Ashour AE, Kishta MS, Othman SI, Rudayni HA, Rashad AA, Allam AA. Lipoic acid improves wound healing through its immunomodulatory and anti-inflammatory effects in a diabetic mouse model. J Diabetes Metab Disord 2025; 24:56. [PMID: 39868353 PMCID: PMC11759746 DOI: 10.1007/s40200-025-01559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/28/2024] [Indexed: 01/28/2025]
Abstract
Objectives Diabetes mellitus is a chronic disease that has become more prevalent worldwide because of lifestyle changes. It leads to serious complications, including increased atherosclerosis, protein glycosylation, endothelial dysfunction, and vascular denervation. These complications impair neovascularization and wound healing, resulting in delayed recovery from injuries and an elevated risk of infections. The present study aimed to investigate the effect of lipoic acid (LA) on the key mediators involved in the wound healing process, specifically CD4 + CD25 + T cell subsets, CD4 + CD25 + Foxp3 + regulatory T (Treg) cells, T-helper-17 (Th17) cells that generate IL-17 A, glucocorticoid-induced tumor necrosis factor receptor (GITR) expressing cells, as well as cytokines such as IL-2, IL-1β, IL-6, and TNF-α and IFN-γ. These mediators play crucial roles in epidermal and dermal proliferation, hypertrophy, and cell migration. Methods We divided mice into 5 groups: the non-diabetic (normal control; NC), wounded non-diabetic mice (N + W), wounded diabetic mice (D + W), wounded diabetic mice treated with 50 mg/kg lipoic acid (D + W + L50) for 14 days, and wounded diabetic mice treated with 100 mg/kg lipoic acid (D + W + L100) for 14 days. Results Flow cytometric analysis indicated that lipoic acid-treated mice exhibited a significant decrease in the frequency of intracellular cytokines (IL-17 A, TNF-α and IFN-γ) in CD4 + T cells, as well as a reduction in the number of GITR-expressing cells. Conversely, a significant upregulation in the number CD4+, CD25+, FOXp3 + and CD4 + CD25 + Foxp3 + regulatory T (Treg) cells was observed in this group compared to both the normal + wounded (N + W) and diabetic + wounded (D + W) groups. Additionally, the mRNA Levels of inflammatory mediators (IL-2, IL-1β, IL-6, and TNF-α) were downregulated in lipoic acid-treated mice compared to other groups. T thereby he histological findings of diabetic skin wounds treated with lipoic acid showed well-healed surgical wounds. Conclusions These findings support the beneficial role of lipoic acid in fine-tuning the balance between anti-inflammatory and pro-inflammatory cytokines, influencing both their release and gene expression.
Collapse
Affiliation(s)
- Khairy M. A. Zoheir
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622 Egypt
| | - Neama I. Ali
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622 Egypt
| | - Abdelkader E. Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Salman International University, Ras Sudr, South Sinai Egypt
| | - Mohamed S. Kishta
- Hormones Department, Medical Research and Clinical Studies Institute, and Stem Cell Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo, 12622 Egypt
| | - Sarah I. Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, 11671 Riyadh, Saudi Arabia
| | - Hassan A. Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623 Saudi Arabia
| | - Ahmed A. Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829 Egypt
| | - Ahmed A. Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623 Saudi Arabia
| |
Collapse
|
2
|
Strickland S, Fourroux L, Pappas D. Effect of precursors on carbon dot functionalization and applications: a review. Analyst 2025; 150:1448-1469. [PMID: 40105280 DOI: 10.1039/d4an01554a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Carbon dots (CDs) are a type of carbon-based nanoparticle (NP) that have risen in popularity due to their unique tuneable physicochemical and optical properties. CDs have received a significant amount of attention in biological based applications due to their low cytotoxicity, stable photoluminescence, and small size. They have demonstrated the ability to retain certain properties from their carbon precursors, enabling NP design via precursor selection. Thus, direct functionalization of a CD can be achieved without the need for post synthesis modification. However, CDs derived from the same class of carbon precursor can also have profoundly variable applications. Indicating that, in conjunction with precursor properties, other functional attributes can be imposed on the CD during the synthesis process to enable cross-cutting applications from a single carbon precursor. Here, we will highlight various CD precursors and the resulting multifunctional CDs, as well as rational design of CDs for specific biological and materials science applications via precursor selection.
Collapse
Affiliation(s)
- Sara Strickland
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - Luke Fourroux
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
3
|
Gao K, Wu Y, Zhang Y, Dang P, Xue H, Li T, Zhou M, Wang L, Zhu Y. Alpha-lipoic acid alleviates oxidative stress and brain damage in patients with sevoflurane anesthesia. Front Pharmacol 2025; 16:1572156. [PMID: 40183089 PMCID: PMC11965138 DOI: 10.3389/fphar.2025.1572156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Sevoflurane, the most commonly used inhalational anesthetic, may negatively impact the brain by inducing oxidative stress. This study investigated the potential protective role of alpha-lipoic acid (ALA) in mitigating sevoflurane-induced oxidative stress and brain damage. A total of 155 patients undergoing sevoflurane anesthesia for liver resection surgery were randomly assigned to receive either ALA or a placebo. Perioperative internal jugular venous blood samples were collected to measure oxidative stress markers (8-OHdG, sORP, and cORP) and brain injury biomarkers (S100β and UCH-L1). Postoperative cognitive function was also evaluated. The results demonstrated that, compared to the placebo group, the ALA group exhibited a significant reduction in 8-OHdG levels by 0.007 nmol/L (95% CI, -0.011 to -0.003; P = 0.03) 24 h after surgery, accompanied by lower sORP levels and higher cORP levels. Furthermore, postoperative levels of S100β and UCH-L1 were significantly lower in the ALA group than in the placebo group (S100β, P = 0.02; UCH-L1, P = 0.03). Additionally, oxidative stress markers were significantly correlated with brain damage 24 h after surgery. Our findings suggest that ALA significantly reduces sevoflurane-induced oxidative stress and brain damage, while also improving postoperative cognitive function, indicating its potential neuroprotective effect. Clinical Trial Registration: https://www.chictr.org.cn/, identifier ChiCTR2300077321.
Collapse
Affiliation(s)
- Kailun Gao
- Department of Anesthesiology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ying Wu
- Department of Anesthesiology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yan Zhang
- Department of Anesthesiology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Pei Dang
- Department of Anesthesiology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Huanjia Xue
- Department of Anesthesiology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
| | - Teng Li
- Department of Anesthesiology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
| | - Meiyan Zhou
- Department of Anesthesiology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
| | - Liwei Wang
- Department of Anesthesiology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
| | - Yangzi Zhu
- Department of Anesthesiology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Milani C, Longhi G, Alessandri G, Fontana F, Viglioli M, Tarracchini C, Mancabelli L, Lugli GA, Petraro S, Argentini C, Anzalone R, Viappiani A, Carli E, Vacondio F, van Sinderen D, Turroni F, Mor M, Ventura M. Functional modulation of the human gut microbiome by bacteria vehicled by cheese. Appl Environ Microbiol 2025; 91:e0018025. [PMID: 40019271 PMCID: PMC11921328 DOI: 10.1128/aem.00180-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025] Open
Abstract
Since cheese is one of the most commonly and globally consumed fermented foods, scientific investigations in recent decades have focused on determining the impact of this dairy product on human health and well-being. However, the modulatory effect exerted by the autochthonous cheese microbial community on the taxonomic composition and associated functional potential of the gut microbiota of human is still far from being fully dissected or understood. Here, through the use of an in vitro human gut-simulating cultivation model in combination with multi-omics approaches, we have shown that minor rather than dominant bacterial players of the cheese microbiota are responsible for gut microbiota modulation of cheese consumers. These include taxa from the genera Enterococcus, Bacillus, Clostridium, and Hafnia. Indeed, they contribute to expand the functional potential of the intestinal microbial ecosystem by introducing genes responsible for the production of metabolites with relevant biological activity, including genes involved in the synthesis of vitamins, short-chain fatty acids, and amino acids. Furthermore, tracing of cheese microbiota-associated bacterial strains in fecal samples from cheese consumers provided evidence of horizontal transmission events, enabling the detection of particular bacterial strains transferred from cheese to humans. Moreover, transcriptomic and metabolomic analyses of a horizontally transmitted (cheese-to-consumer) bacterial strain, i.e., Hafnia paralvei T10, cultivated in a human gut environment-simulating medium, confirmed the concept that cheese-derived bacteria may expand the functional arsenal of the consumer's gut microbiota. This highlights the functional and biologically relevant contributions of food microbes acquired through cheese consumption on the human health.IMPORTANCEDiet is universally recognized as the primary factor influencing and modulating the human intestinal microbiota both taxonomically and functionally. In this context, cheese, being a fermented food with its own microbiota, serves not only as a source of nourishment for humans, but also as a source of nutrients for the consumer's gut microbiota. Additionally, it may act as a vehicle for autochthonous food-associated microorganisms which undergo transfer from cheese to the consumer, potentially influencing host gut health. The current study highlights not only that cheese microbiota-associated bacteria can be traced in the human gut microbiota, but also that they may expand the functional repertoire of the human gut microbiota, with potentially significant implications for human health.
Collapse
Affiliation(s)
- Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio Srl, Parma, Italy
| | | | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia Petraro
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | | | - Elisa Carli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Mor
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
5
|
Rezaei H, Ravankhah M, Ansari M, Alirezaee A, Keshavarzian O, Abdollahi M, Sabet HR. Effects of Alpha-Lipoic Acid Supplementation on Weight Loss, Inflammatory, Lipid, and Hematological Levels in Patients With Chronic Kidney Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Ren Nutr 2025; 35:289-299. [PMID: 39413860 DOI: 10.1053/j.jrn.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 07/21/2024] [Accepted: 08/04/2024] [Indexed: 10/18/2024] Open
Abstract
OBJECTIVES The effects of alpha-lipoic acid (ALA) supplementation on cardiovascular-related factors have been evaluated in a number of randomized clinical trials, with different results. Thus, in this meta-analysis, the effects of ALA on blood levels of inflammatory, lipid, and hematological markers as well as anthropometric indices in patients with chronic kidney disease (CKD) were evaluated. METHODS Five electronic databases were used to conduct a comprehensive search through October 2023. Risk of bias assessment and data extraction were carried out separately by 2 reviewers on the included papers. The data were analyzed using the random-effects model in meta-analyses. The data were analyzed using the random-effects model in meta-analyses. We assessed inter-study heterogeneity with I2 and Cochran's Q test. RESULTS Nine of the 421 potential reports were included. Using random-effects models, no significant changes were observed in weight loss, body mass index, hemoglobin, and iron following ALA supplementation (600 mg/day). Results exhibited that ALA significantly reduced high-sensitivity C-reactive protein levels in individuals with CKD (weighted mean difference (WMD) = -2.91 mg/L, 95% CI: -4.65, -1.17, I2 = 50.5%, P = .09); however, there were no significant variations in levels of interleukin-6 (IL-6) or malondialdehyde. Regarding lipid profiles, findings revealed that ALA administration had no significant impact on high-density lipoprotein cholesterol and triglycerides levels among patients with CKD. However, compared to the control group, total cholestrol levels were considerably lower in CKD patients (WMD = -5.48 mg/dL, 95% CI: -10.55, -0.41, I2 = 0.0%, P = .50). Moreover, the sensitivity analyses showed that pooled WMDs for low-density lipoprotein cholesterol levels were significantly changed (-6.88 mg/dL, 95% CI, -12.78, -0.98). CONCLUSIONS These findings revealed that ALA supplementation slightly but significantly reduced blood levels of high-sensitivity C-reactive protein, total cholestrol, and low-density lipoprotein cholesterol, but did not affect IL-6, malondialdehyde, high-density lipoprotein cholesterol, weight, body mass index, iron, and hemoglobin in patients with CKD.
Collapse
Affiliation(s)
- Hadi Rezaei
- Department of Urology, Fars-Iranian Urological Association, Fars Society of Urology, Shiraz, Iran
| | - Mahdi Ravankhah
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Aida Alirezaee
- Student Research Committee, Mashad University of Medical Sciences, Mashhad, Iran
| | - Omid Keshavarzian
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhan Abdollahi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Reza Sabet
- Medical Journalism Department, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
de Sousa Silva M, Passos JS, Daré RG, Nunes JR, Adriani PP, Lopes LB. Microemulsions Improve the Cutaneous Co-Localization of Lipoic Acid and Quercetin and Antioxidant Effects in Cutaneous Cells and Tissue. AAPS PharmSciTech 2025; 26:70. [PMID: 40011308 DOI: 10.1208/s12249-025-03062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
Quercetin and α-lipoic acid are antioxidants with potential applications in the treatment of various skin conditions, such as wounds and chemoprevention of skin cancer. To enable their effective topical co-delivery and co-localization in the tissue, we developed microemulsions (ME). The selected ME (ME-50) formed a stable system with a mean droplet size of 134.4 ± 17.9 nm, increasing to 224.9 ± 19.9 nm upon antioxidants co-incorporation. The ME preserved the antioxidant capacities of the molecules, with DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay showing an IC50 of 6.2 ± 0.1 µg/mL, similar to the solution. Skin penetration studies revealed a 2.4-fold increase in quercetin (Q) accumulation in the stratum corneum and a 3.5-fold increase in the delivery to viable epidermis and dermis (ED) after a 12 h-treatment with the ME compared to control solutions; α-lipoic acid (LA) penetration improved up to 1.9-fold in ED upon ME incorporation. Treatment with Q + LA co-loaded ME enhanced the antioxidant activity in the stratum corneum and ED by 1.3-fold and 2.0-fold, respectively, compared to solutions. Treatment with the ME for 24 h also reduced oxidative species levels by 55% in H2O2-exposed keratinocytes compared to the control (untreated) cells. Taken together, these results suggest that ME-50 is a promising delivery system for enhancing the cutaneous co-delivery of quercetin and α-lipoic acid and the antioxidant effects in the tissue, offering a potential topical treatment for oxidative stress-related skin conditions.
Collapse
Affiliation(s)
- Mariana de Sousa Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
- School of Pharmaceutical Sciences of São Paulo, University of São Paulo, Sao Paulo, Brazil
| | - Julia S Passos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | - Regina G Daré
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | - Jessica R Nunes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | - Patricia P Adriani
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | - Luciana B Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
7
|
Gomes BAQ, dos Santos SM, Gato LDS, Espíndola KMM, da Silva RKM, Davis K, Navegantes-Lima KC, Burbano RMR, Romao PRT, Coleman MD, Monteiro MC. Alpha-Lipoic Acid Reduces Neuroinflammation and Oxidative Stress Induced by Dapsone in an Animal Model. Nutrients 2025; 17:791. [PMID: 40077661 PMCID: PMC11901491 DOI: 10.3390/nu17050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Chronic treatment with dapsone (DDS) has been linked to adverse reactions involving all organ systems, such as dapsone hypersensitivity syndrome, methemoglobinemia and hemolytic anemia, besides neuroinflammation and neurodegeneration due to iron accumulation and oxidative stress. These effects probably occur due to the presence of its toxic metabolite DDS-NOH, which can generate reactive oxygen species (ROS) and iron overload. In this sense, antioxidant compounds with chelating properties, such as alpha-lipoic acid (ALA), may be an interesting adjuvant therapy strategy in treating or preventing these effects. Thus, the aim of this study was to evaluate the effects of ALA on oxidative and neuroinflammatory changes caused by DDS treatment in the prefrontal cortex and hippocampus of mice. Materials and Methods:Mus musculus male mice that were pre-treated with DDS (40 mg/kg) and post-treated with ALA (25 mg/kg) underwent analyses for oxidative stress, antioxidant capacity, cytokine expression and microglial/astrocytic activity. Results: DDS did not activate macrophages/microglia or astrocytes in the prefrontal cortex but induced their activation in the hippocampus. ALA stimulated a protective microglial profile and reduced astrocyte reactivity, especially in the hippocampus. DDS increased the pro-inflammatory cytokine IL-1β and reduced brain-derived neurotrophic factor (BDNF), effects reversed by ALA. DDS also reduced antioxidant capacity (TEAC, GSH, SOD, CAT) and increased oxidative damage (lipid peroxidation, iron accumulation), while ALA restored antioxidant levels and reduced oxidative stress. Conclusions: ALA was able to reduce the effects of DDS, such as reducing microglial and astrocytic activation, as well as to decrease the levels of pro-inflammatory cytokines and increase BDNF, in addition to increasing antioxidant capacity and reducing oxidative damage caused by iron accumulation. Therefore, ALA is considered a useful and promising therapeutic alternative for the treatment of diseases related to oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Bruno Alexandre Quadros Gomes
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil; (B.A.Q.G.); (S.M.d.S.); (K.M.M.E.); (R.K.M.d.S.)
| | - Savio Monteiro dos Santos
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil; (B.A.Q.G.); (S.M.d.S.); (K.M.M.E.); (R.K.M.d.S.)
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil;
| | - Lucas da Silva Gato
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil;
| | - Kaio Murilo Monteiro Espíndola
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil; (B.A.Q.G.); (S.M.d.S.); (K.M.M.E.); (R.K.M.d.S.)
- Postgraduate Program in Pharmacology and Biochemistry, Faculty of Pharmacy, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil;
| | - Rana Karen Mesquita da Silva
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil; (B.A.Q.G.); (S.M.d.S.); (K.M.M.E.); (R.K.M.d.S.)
| | - Kelly Davis
- Postgraduate Program in Pharmacology and Biochemistry, Faculty of Pharmacy, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil;
| | - Kely Campos Navegantes-Lima
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil;
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil;
| | | | - Pedro Roosevelt Torres Romao
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil;
| | - Michael D. Coleman
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK;
| | - Marta Chagas Monteiro
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil; (B.A.Q.G.); (S.M.d.S.); (K.M.M.E.); (R.K.M.d.S.)
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil;
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil;
- Postgraduate Program in Pharmacology and Biochemistry, Faculty of Pharmacy, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil;
| |
Collapse
|
8
|
Shanaida M, Lysiuk R, Mykhailenko O, Hudz N, Abdulsalam A, Gontova T, Oleshchuk O, Ivankiv Y, Shanaida V, Lytkin D, Bjørklund G. Alpha-lipoic Acid: An Antioxidant with Anti-aging Properties for Disease Therapy. Curr Med Chem 2025; 32:23-54. [PMID: 38644711 DOI: 10.2174/0109298673300496240416114827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Abstract
The anti-aging effects of alpha-lipoic acid (αLA), a natural antioxidant synthesized in human tissues, have attracted a growing interest in recent years. αLA is a short- -chain sulfur-containing fatty acid occurring in the mitochondria of all kinds of eukaryotic cells. Both the oxidized disulfide of αLA and its reduced form (dihydrolipoic acid, DHLA) exhibit prominent antioxidant function. The amount of αLA inside the human body gradually decreases with age resulting in various health disorders. Its lack can be compensated by supplying from external sources such as dietary supplements or medicinal dosage forms. The primary objectives of this study were the analysis of updated information on the latest two-decade research regarding the use of αLA from an anti-aging perspective. The information was collected from PubMed, Wiley Online Library, Scopus, ScienceDirect, SpringerLink, Google Scholar, and clinicaltrials.gov. Numerous in silico, in vitro, in vivo, and clinical studies revealed that αLA shows a protective role in biological systems by direct or indirect reactive oxygen/nitrogen species quenching. αLA demonstrated beneficial properties in the prevention and treatment of many age-related disorders such as neurodegeneration, metabolic disorders, different cancers, nephropathy, infertility, and skin senescence. Its preventive effects in case of Alzheimer's and Parkinson's diseases are of particular interest. Further mechanistic and clinical studies are highly recommended to evaluate the wide spectrum of αLA therapeutic potential that could optimize its dietary intake for prevention and alleviation disorders related to aging.
Collapse
Affiliation(s)
- Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, 46001, Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Olha Mykhailenko
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
- Pharmacognosy and Phytotherapy Group, UCL School of Pharmacy; 29-39 Brunswick Square, WC1N 1AX, London, United Kingdom
- CONEM Ukraine Bromatology and Medicinal Chemistry Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Nataliia Hudz
- Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052, Opole, Poland
| | | | - Tetiana Gontova
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
| | | | - Yana Ivankiv
- I. Horbachevsky Ternopil National Medical University, 46001, Ternopil, Ukraine
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- Department of Research Ternopil Ivan Puluj National Technical University, Ternopil, 46001, Ukraine
| | - Dmytro Lytkin
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
| | - Geir Bjørklund
- Department of Research Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway
| |
Collapse
|
9
|
Sharifi-Zahabi E, Abdollahzad H. Alpha Lipoic Acid Supplementation and Iron Homeostasis: A Comprehensive Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. INT J VITAM NUTR RES 2024; 95:36623. [PMID: 40134249 DOI: 10.31083/ijvnr36623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 06/22/2024] [Accepted: 09/05/2024] [Indexed: 03/27/2025]
Abstract
BACKGROUND A growing body of evidence indicates the regulating effects of alpha-lipoic acid on iron metabolism. However, findings from clinical trials are equivocal. This systematic review and meta-analysis aimed to evaluate the quantitative effect of alpha lipoic acid (ALA) supplementation on iron metabolism parameters including serum iron, total iron binding capacity, hemoglobin, and ferritin. METHODOLOGY Online databases, including PubMed, Scopus, and Web of Science were searched, up to 29 May 2022, to obtain all relevant studies. RESULTS A total of 1901 publications were identified in the systematic search; of which, 10 studies with a total of 529 participants were included in this meta-analysis. Pooled analysis of the studies showed no statistically significant effects of ALA on ferritin (weighted mean difference (WMD) = -11.01 ng/mL; 95% CI: -40.07, 18.05 ng/mL; I2 = 0.0%, p = 0.670), serum iron (WMD = -0.47 μ/dL; 95% CI: -24.48, 23.54 μ/dL; I2 = 94.7%, p < 0.001), hemoglobin (WMD = 0.49 g/dL; 95% CI: -0.54, 1.52 g/dL; I2 = 95.7%, p < 0.001), and total iron binding capacity (TIBC) (WMD = 3.95 μ/dL; 95% CI: -21.3, 29.2 μ/dL; I2 = 53.1%, p = 0.094). In subgroup analysis, ALA significantly increased hemoglobin in patients with hematological disorders (WMD = 1.23 g/dL; 95% CI: 1.00, 1.45 g/dL; I2 = 96.6%, p < 0.001) and in studies with durations longer than 8 weeks (WMD = 1.03 g/dL; 95% CI: 0.82, 1.25 g/dL; I2 = 96.5%, p = 0.02). CONCLUSION ALA supplementation had no statistically significant effect on iron-related parameters. Subgroup analysis revealed a significant increasing effect of ALA on hemoglobin in patients with hematological disorders and in studies with durations >8 weeks.
Collapse
Affiliation(s)
- Elham Sharifi-Zahabi
- Student Research Committee, Kermanshah University of Medical Sciences, 6715847141 Kermanshah, Iran
| | - Hadi Abdollahzad
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, 6715847141 Kermanshah, Iran
| |
Collapse
|
10
|
Junco M, Ventura C, Santiago Valtierra FX, Maldonado EN. Facts, Dogmas, and Unknowns About Mitochondrial Reactive Oxygen Species in Cancer. Antioxidants (Basel) 2024; 13:1563. [PMID: 39765891 PMCID: PMC11673973 DOI: 10.3390/antiox13121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer metabolism is sustained both by enhanced aerobic glycolysis, characteristic of the Warburg phenotype, and oxidative metabolism. Cell survival and proliferation depends on a dynamic equilibrium between mitochondrial function and glycolysis, which is heterogeneous between tumors and even within the same tumor. During oxidative phosphorylation, electrons from NADH and FADH2 originated in the tricarboxylic acid cycle flow through complexes of the electron transport chain. Single electron leaks at specific complexes of the electron transport chain generate reactive oxygen species (ROS). ROS are a concentration-dependent double-edged sword that plays multifaceted roles in cancer metabolism. ROS serve either as signaling molecules favoring cellular homeostasis and proliferation or damage DNA, protein and lipids, causing cell death. Several aspects of ROS biology still remain unsolved. Among the unknowns are the actual levels at which ROS become cytotoxic and if toxicity depends on specific ROS species or if it is caused by a cumulative effect of all of them. In this review, we describe mechanisms of mitochondrial ROS production, detoxification, ROS-induced cytotoxicity, and the use of antioxidants in cancer treatment. We also provide updated information about critical questions on the biology of ROS on cancer metabolism and discuss dogmas that lack adequate experimental demonstration. Overall, this review brings a comprehensive perspective of ROS as drivers of cancer progression, inducers of cell death, and the potential use of antioxidants as anticancer therapy.
Collapse
Affiliation(s)
- Milagros Junco
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Virology Laboratory, Tandil Veterinary Research Center (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil B7000, Argentina
| | - Clara Ventura
- Institute for Immunological and Physiopathological Studies (IIFP), National Scientific and Technical Research Council (CONICET), Buenos Aires, La Plata 1900, Argentina;
| | | | - Eduardo Nestor Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
11
|
Figueroa AC, Díaz MS, Turco M, Fernández Trotta A, Marino B, Soria NW, Beltramo DM, Alasino RV. Effects of antioxidants on in vitro growth of Thecaphora frezzii. J Appl Microbiol 2024; 135:lxae306. [PMID: 39701825 DOI: 10.1093/jambio/lxae306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/29/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024]
Abstract
AIMS Thecaphora frezzii, the causal agent of peanut smut, causes significant grain losses in Argentina. Current control strategies are insufficient to manage this pathogen. We investigate the effect of antioxidants on the in vitro development of T. frezzii hyphae, to identify compounds with antifungal activity, also evaluate protein and lipid profiles as potential targets for these compounds. METHODS AND RESULTS The antifungal activity was evaluated in both, solid and liquid media, and minimum inhibitory concentration and minimum fungicidal concentration were calculated. The protein profile was assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis, while lipids were analyzed by thin-layer chromatography (TLC) and gas chromatography with flame ionization detection, both before and after hyphal treatment. Lipase activity was analyzed using agar Tween 20 and TLC, while lipid peroxidation was evaluated by the thiobarbituric acid-reactive substance (TBARS)assay. Microscopy was used to observe morphological and metabolic changes. Butylated hydroxyanisole, methylparaben, and lipoic acid showed inhibitory effects on T. frezzii. Lipoic acid was chosen for further study due to its lack of environmental toxicity. Lipoic acid induced the loss of cytosolic proteins, hydrolysis of triglycerides, and increased levels of free fatty acids, monoacylglycerols, and diacylglycerols. It also caused a decrease in ergosterol levels and alterations in the fungal cell wall and membrane, ultimately leading to cell death. CONCLUSIONS This study demonstrates the efficacy of lipoic acid in inhibiting the in vitro development of T. frezzii.
Collapse
Affiliation(s)
- Ana Cristina Figueroa
- Centro de Excelencia en Productos y Procesos de Córdoba-CEPROCOR- Complejo Hospitalario, Santa María de Punilla, X6154 Córdoba, Argentina
| | - María Soledad Díaz
- Centro de Excelencia en Productos y Procesos de Córdoba-CEPROCOR- Complejo Hospitalario, Santa María de Punilla, X6154 Córdoba, Argentina
| | - Mauricio Turco
- Centro de Excelencia en Productos y Procesos de Córdoba-CEPROCOR- Complejo Hospitalario, Santa María de Punilla, X6154 Córdoba, Argentina
| | - Andrea Fernández Trotta
- Centro de Excelencia en Productos y Procesos de Córdoba-CEPROCOR- Complejo Hospitalario, Santa María de Punilla, X6154 Córdoba, Argentina
| | - Bibiana Marino
- Centro de Excelencia en Productos y Procesos de Córdoba-CEPROCOR- Complejo Hospitalario, Santa María de Punilla, X6154 Córdoba, Argentina
| | - Néstor Walter Soria
- Cátedra de Biotecnología, Facultad de Ciencias de la salud, Unidad Asociada al CONICET: Área de Cs. Agrarias, Ingeniería, Cs. Biológicas, Universidad Católica de Córdoba, Avenida Armada Argentina 3555, X5016DHK Córdoba, Argentina
| | | | - Roxana Valeria Alasino
- Centro de Excelencia en Productos y Procesos de Córdoba-CEPROCOR- Complejo Hospitalario, Santa María de Punilla, X6154 Córdoba, Argentina
- Consejo Nacional de Ciencia y Tecnología de Argentina-CONICET, Argentina
| |
Collapse
|
12
|
Wadhwa R, Hegde M, Zhang H, Kaul A, Wang J, Ishida Y, Terao K, Kunnumakkara AB, Kaul SC. Antistress and Antiaging Potentials of Alpha-Lipoic Acid: Insights from Cell Culture-Based Experiments. Appl Biochem Biotechnol 2024; 196:8791-8808. [PMID: 38941028 DOI: 10.1007/s12010-024-04994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Chronic stress has been linked to a large number of pathologies, including cancer, premature aging, and neurodegenerative diseases. The accumulation of molecular waste resulting from oxidative and heavy metal-induced stress has been ascribed as a major factor contributing to these diseases. With this in mind, we started by screening 13 small molecules to determine their antistress potential in heavy metal stress-exposed C6 glioblastoma and found that alpha-lipoic acid (ALA) (a natural antioxidant abundantly present in yeast, spinach, broccoli, and meat) was the most effective candidate. We then conducted molecular analyses to validate its mechanism of action. Dose-dependent toxicity assays of cells treated with two ALA enantiomers, R-ALA and S-ALA, showed that they are nontoxic and can be tolerated at relatively high doses. Cells exposed to heavy metal, heat, and oxidative stress showed better recovery when cultured in R-ALA-/S-ALA-supplemented medium, supported by reduction of reactive oxygen species (ROS), aggregated proteins, and mitochondrial and deoxyribonucleic acid (DNA) damage. Molecular analyses revealed protection against stress-induced apoptosis and induction of autophagy in R-ALA- and S-ALA-treated C6/U2OS cells. Consistent with these findings, normal human fibroblasts showed lifespan extension. Taken together, this study demonstrates that lipoic acid has antiaging and antistress potential and warrants further attention in laboratory and clinical studies.
Collapse
Affiliation(s)
- Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Mangala Hegde
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Guwahati, Assam, 781 039, India
| | - Huayue Zhang
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Ashish Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Jia Wang
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Yoshiyuki Ishida
- CycloChem Bio Co., Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-Ku, Kobe, 650 0047, Japan
| | - Keiji Terao
- CycloChem Bio Co., Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-Ku, Kobe, 650 0047, Japan
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Guwahati, Assam, 781 039, India.
| | - Sunil C Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan.
| |
Collapse
|
13
|
Doro L, Peana AT, Migheli R, Capobianco G, Criscione M, Montella A, Campesi I. Effect of (R)-(-)-Linalool on endothelial damage: Sex differences. Biochem Biophys Rep 2024; 40:101846. [PMID: 39483177 PMCID: PMC11525626 DOI: 10.1016/j.bbrep.2024.101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
Oxidative stress and inflammation are responsible for endothelial damage displaying many sex differences. Lipopolysaccharide (LPS) is a pathogenic stimulus that can trigger inflammation, contributing to endothelial dysfunction. Given the scientific evidence on the effectiveness of herbal extracts in managing endothelial dysfunction, we considered the (R)-(-)-Linalool (LIN), an aromatic monoterpene alcohol, as a bioactive phytochemical compound that could prevent and improve endothelial injury. In this study, we evaluated the effect of the LIN on LPS-induced damage in female and male human umbilical vein endothelial cells (FHUVECs and MHUVECs), measuring cell viability, cytokines release (IL-6 and TNF-α), malondialdehyde (MDA), and nitrites. LPS significantly reduced viability both in MHUVECs and FHUVECs. Moreover, LPS increased the IL-6, TNF-α, and MDA level only in FHUVECs if compared to basal value; despite that, LPS reduced nitrites only in MHUVECs. LIN alone did not affect the parameters measured except for an increase in nitrites in FHUVECs. Nevertheless, LIN reduced damage and restored endothelium viability reduced by LPS without a clear sex difference. Under LPS, LIN inhibited IL-6 release and reduced MDA levels only in FHUVECs. The present data confirm the existence of sex differences in the behavior of HUVECs under LPS conditions. The administration of LIN seems to have a more evident effect on FHUVECs after damage induced by LPS. These LIN effects are important to conduct further well-designed studies on the sex-specific use of this compound on vascular endothelial injury.
Collapse
Affiliation(s)
- Laura Doro
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Alessandra T. Peana
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Rossana Migheli
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Giampiero Capobianco
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
- Gynecologic and Obstetric Clinic, AOU, Viale San Pietro 12, 07100, Sassari, Italy
| | - Massimo Criscione
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| |
Collapse
|
14
|
Sooklert K, Thamakaison S, Nilyai S, Cherdchom S, Rojanathanes R, Sereemaspun A. The effects of alpha-lipoic acid transdermal patch for local subcutaneous fat reduction: A randomized, placebo-controlled, clinical trial in overweight volunteers. Contemp Clin Trials Commun 2024; 42:101402. [PMID: 39678156 PMCID: PMC11638647 DOI: 10.1016/j.conctc.2024.101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/22/2024] [Accepted: 11/23/2024] [Indexed: 12/17/2024] Open
Abstract
Background Combating obesity is challenging, as anti-obesity compounds lose effectiveness or cause severe side effects when delivered via conventional routes. Thus, there is a need for new, effective treatment routes that are home-based and safe for long-term use. This double-blind, placebo-controlled clinical trial aimed to investigate the efficacy of a biocellulose transdermal patch containing α-lipoic acid (ALA), an anti-obesity compound, in reducing subcutaneous fat accumulation. Methods One hundred and sixteen overweight participants (average age 37.96 ± 7.80 years) were recruited for the study. They were randomly assigned to apply either the calcium citrate nanoparticle-encapsulated ALA transdermal patch or a placebo on their arm. The participants' body weight, height, blood lipid profile (cholesterol, triglyceride, low-density lipoprotein, and high-density lipoprotein), arm circumference, triceps skin fold, and subcutaneous fat thickness were recorded at baseline and at the 2-week follow-up. Results The mean arm circumference did not show any significant difference from baseline, whereas the triceps skinfold and subcutaneous fat thickness showed a significant reduction. The 2-week treatment did not significantly alter the plasma LDL, HDL, and triglyceride levels of the participants, but it significantly reduced the total cholesterol level. Conclusion This study reports the successful reduction of subcutaneous fat of the calcium citrate nanoparticle-encapsulated ALA transdermal patches. The transdermal patches could be used as a safe and effective home-based solution for combating obesity.
Collapse
Affiliation(s)
- Kanidta Sooklert
- Center of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sasin Thamakaison
- Department of Computer Science, School of Engineering, Stanford University, California, USA
| | - Siwaporn Nilyai
- Center of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sarocha Cherdchom
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rojrit Rojanathanes
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Amornpun Sereemaspun
- Center of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Bian ZY, Li PX, Feng XY, Zhou YR, Cheng FY, Dong WX, Xiang P, Tang JJ. Design, synthesis, and biological evaluation of imidazolylacetophenone oxime derivatives as novel brain-penetrant agents for Alzheimer's disease treatment. Eur J Med Chem 2024; 278:116794. [PMID: 39226707 DOI: 10.1016/j.ejmech.2024.116794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
Alzheimer's disease (AD, also known as dementia) has become a serious global health problem along with population aging, and neuroinflammation is the underlying cause of cognitive impairment in the brain. Nowadays, the development of multitarget anti-AD drugs is considered to be one effective approach. Imidazolylacetophenone oxime ethers or esters (IOEs) were multifunctional agents with neuroinflammation inhibition, metal chelation, antioxidant and neuroprotection properties against Alzheimer's disease. In this study, IOEs derivatives 1-8 were obtained by structural modifications of the oxime and imidazole groups, and the SARs showed that (Z)-oxime ether (derivative 2) had stronger anti-neuroinflammatory and neuroprotective ability than (E)-congener. Then, IOEs derivatives 9-30 were synthesized based on target-directed ligands and activity-based groups hybridization strategy. In vitro anti-AD activity screening revealed that some derivatives exhibited potentially multifunctional effects, among which derivative 28 exhibited the strongest inhibitory activity on NO production with EC50 value of 0.49 μM, and had neuroprotective effects on 6-OHDA-induced cell damage and RSL3-induced ferroptosis. The anti-neuroinflammatory mechanism showed that 28 could inhibit the release of pro-inflammatory factors PGE2 and TNF-α, down-regulate the expression of iNOS and COX-2 proteins, and promote the polarization of BV-2 cells from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype. In addition, 28 can dose-dependently inhibit acetylcholinesterase (AChE) and Aβ42 aggregation. Moreover, the selected nuclide [18F]-labeled 28 was synthesized to explore its biodistribution by micro-PET/CT, of which 28 can penetrate the blood-brain barrier (BBB). These results shed light on the potential of 28 as a new multifunctional candidate for AD treatment.
Collapse
Affiliation(s)
- Zhao-Yuan Bian
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Peng-Xiao Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Xu-Yao Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Yi-Ran Zhou
- Sendelta International Academy Shenzhen H3C1, Shenzhen 518000, China
| | - Fei-Yue Cheng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Wei-Xuan Dong
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710000, China
| | - Ping Xiang
- College of Plant Protection, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China.
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen Virtual University Park Building, High-TechIndustrial Park, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
16
|
Pal RS, Pal Y, Lalitha Chaitanya MVN, Kumar R, Tyagi P, Srivastava P. An Exquisite Analysis on the Significance of Nutrient Supplementation in
the Holistic Management of Poly-cystic Ovarian Syndrome. CURRENT WOMENS HEALTH REVIEWS 2024; 20. [DOI: 10.2174/0115734048262284230927191823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 01/06/2025]
Abstract
Abstract:
The complex heterogeneous disorder known as polycystic ovarian syndrome (PCOS) includes endocrine, reproductive, metabolic, psychological, and other pathological aspects. Yet,
nothing is understood regarding the cause of PCOS. Insulin resistance and hyperandrogenism are
major contributors to the pathophysiology of PCOS, according to various studies. Because of this,
a lot of PCOS treatment regimens include changing a person's lifestyle through practices, like exercise, nutrition, and vitamin supplementation. Recent studies have indicated a number of nutrients,
including vitamins, minerals, and vitamin-like substances, for the therapy of PCOS since they all
have at least one functional characteristic in the pathways that are affected by PCOS. As a result,
it is claimed that PCOS may be caused by a vitamin or mineral deficiency. It is the goal of this review to conduct a critical literature analysis on nutritional supplementation for the management of
PCOS.
Collapse
Affiliation(s)
- Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Yogendra Pal
- Department of Pharmacy,
Bharat College of Pharmacy, Jalandhar, India
| | | | - Rajnish Kumar
- Department of Pharmacy, Noida Institute of Engineering and Technology (NIET),
Greater Noida, India
| | - Pankaj Tyagi
- Department of Biotech, Noida Institute of Engineering and Technology (NIET), Greater Noida,
India
| | | |
Collapse
|
17
|
Krishnamurthy HK, Pereira M, Rajavelu I, Jayaraman V, Krishna K, Wang T, Bei K, Rajasekaran JJ. Oxidative stress: fundamentals and advances in quantification techniques. Front Chem 2024; 12:1470458. [PMID: 39435263 PMCID: PMC11491411 DOI: 10.3389/fchem.2024.1470458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Oxidative species, generated endogenously via metabolism or from exogenous sources, play crucial roles in the body. At low levels, these species support immune functions by participating in phagocytosis. They also aid in cellular signaling and contribute to vasomodulation. However, when the levels of oxidative species exceed the body's antioxidant capacity to neutralize them, oxidative stress occurs. This stress can damage cellular macromolecules such as lipids, DNA, RNA, and proteins, driving the pathogenesis of diseases and aging through the progressive deterioration of physiological functions and cellular structures. Therefore, the body's ability to manage oxidative stress and maintain it at optimal levels is essential for overall health. Understanding the fundamentals of oxidative stress, along with its reliable quantification, can enable consistency and comparability in clinical practice across various diseases. While direct quantification of oxidant species in the body would be ideal for assessing oxidative stress, it is not feasible due to their high reactivity, short half-life, and the challenges of quantification using conventional techniques. Alternatively, quantifying lipid peroxidation, damage products of nucleic acids and proteins, as well as endogenous and exogenous antioxidants, serves as appropriate markers for indicating the degree of oxidative stress in the body. Along with the conventional oxidative stress markers, this review also discusses the role of novel markers, focusing on their biological samples and detection techniques. Effective quantification of oxidative stress may enhance the understanding of this phenomenon, aiding in the maintenance of cellular integrity, prevention of age-associated diseases, and promotion of longevity.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianhao Wang
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | - Kang Bei
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | | |
Collapse
|
18
|
He WS, Zhao L, Sui J, Li X, Huang S, Ding H, Zhu H, Chen ZY. Enzymatic Synthesis of a Novel Antioxidant Octacosanol Lipoate and Its Antioxidant Potency in Sunflower Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21781-21793. [PMID: 39289871 PMCID: PMC11450929 DOI: 10.1021/acs.jafc.4c07240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
α-Lipoic acid possesses remarkable antioxidant activity; however, its poor lipid solubility greatly restricts its practical utilization. The present study was the first (i) to synthesize a novel lipophilic antioxidant of octacosanol lipoate and (ii) to assess its antioxidant potency in sunflower oil by hydrogen nuclear magnetic resonance (1H NMR) spectroscopy. In brief, octacosanol lipoate was successfully synthesized using octacosanol and lipoic acid as substrates and Candida sp. 99-125 lipase as a catalyst. The conversion of octacosanol lipoate could reach as high as 98.1% within merely 2 h, with an overall yield of 87.9%. The hydrophobicity of lipoic acid was significantly enhanced upon esterification with octacosanol. Interestingly, both traditional methods and 1H NMR analysis consistently indicated that octacosanol lipoate exhibited superior antioxidant activity compared with butyl hydroxytoluene at high temperatures. It was concluded that octacosanol lipoate has the potential to be developed into a safe and efficient natural antioxidant which can be utilized not only in daily cooking oils but also in frying oils.
Collapse
Affiliation(s)
- Wen-Sen He
- School
of Food and Biological Engineering, Jiangsu
University, Zhenjiang, Jiangsu 212013, China
- School
of Life Sciences, The Chinese University
of Hong Kong, Shatin, Hong Kong 999077, China
| | - Liying Zhao
- School
of Food and Biological Engineering, Jiangsu
University, Zhenjiang, Jiangsu 212013, China
| | - Jiawei Sui
- School
of Food and Biological Engineering, Jiangsu
University, Zhenjiang, Jiangsu 212013, China
| | - Xian Li
- School
of Food and Biological Engineering, Jiangsu
University, Zhenjiang, Jiangsu 212013, China
| | - Shouhe Huang
- School
of Life Sciences, The Chinese University
of Hong Kong, Shatin, Hong Kong 999077, China
| | - Huafang Ding
- School
of Life Sciences, The Chinese University
of Hong Kong, Shatin, Hong Kong 999077, China
| | - Hanyue Zhu
- School
of Life Sciences, The Chinese University
of Hong Kong, Shatin, Hong Kong 999077, China
- School
of Food Science and Engineering/Guangdong Provincial Key Laboratory
of Intelligent Food Manufacturing, Foshan
University, Foshan, Guangdong 528000, China
| | - Zhen-Yu Chen
- School
of Life Sciences, The Chinese University
of Hong Kong, Shatin, Hong Kong 999077, China
| |
Collapse
|
19
|
Moawad MHED, Serag I, Alkhawaldeh IM, Abbas A, Sharaf A, Alsalah S, Sadeq MA, Shalaby MMM, Hefnawy MT, Abouzid M, Meshref M. Exploring the Mechanisms and Therapeutic Approaches of Mitochondrial Dysfunction in Alzheimer's Disease: An Educational Literature Review. Mol Neurobiol 2024:10.1007/s12035-024-04468-y. [PMID: 39254911 DOI: 10.1007/s12035-024-04468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Alzheimer's disease (AD) presents a significant challenge to global health. It is characterized by progressive cognitive deterioration and increased rates of morbidity and mortality among older adults. Among the various pathophysiologies of AD, mitochondrial dysfunction, encompassing conditions such as increased reactive oxygen production, dysregulated calcium homeostasis, and impaired mitochondrial dynamics, plays a pivotal role. This review comprehensively investigates the mechanisms of mitochondrial dysfunction in AD, focusing on aspects such as glucose metabolism impairment, mitochondrial bioenergetics, calcium signaling, protein tau and amyloid-beta-associated synapse dysfunction, mitophagy, aging, inflammation, mitochondrial DNA, mitochondria-localized microRNAs, genetics, hormones, and the electron transport chain and Krebs cycle. While lecanemab is the only FDA-approved medication to treat AD, we explore various therapeutic modalities for mitigating mitochondrial dysfunction in AD, including antioxidant drugs, antidiabetic agents, acetylcholinesterase inhibitors (FDA-approved to manage symptoms), nutritional supplements, natural products, phenylpropanoids, vaccines, exercise, and other potential treatments.
Collapse
Affiliation(s)
- Mostafa Hossam El Din Moawad
- Faculty of Pharmacy, Clinical Department, Alexandria Main University Hospital, Alexandria, Egypt
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ibrahim Serag
- Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | - Abdallah Abbas
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Abdulrahman Sharaf
- Department of Clinical Pharmacy, Salmaniya Medical Complex, Government Hospital, Manama, Bahrain
| | - Sumaya Alsalah
- Ministry of Health, Primary Care, Governmental Health Centers, Manama, Bahrain
| | | | | | | | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, 60-812, Poznan, Poland.
| | - Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
20
|
Wang Z, Chen D, Wang H, Bao S, Lang L, Cui C, Song H, Yang J, Liu W. The Unprecedented Biodegradable Polyzwitterion: A Removal-Free Patch for Accelerating Infected Diabetic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404297. [PMID: 38734972 DOI: 10.1002/adma.202404297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Zwitterionic polymers have emerged as an important class of biomaterials to construct wound dressings and antifouling coatings over the past decade due to their excellent hydrophilicity. However, all the reported zwitterionic polymers as wound dressings are nondegradable because of noncleavable carbon─carbon bonding backbones, and must be removed periodically after treatment to avoid hypoxia in the wound, thus leading to potential secondary injury. In this work, a biodegradable polyzwitterion patch is fabricated for the first time by ring-opening polymerization of carboxybetaine dithiolane (CBDS), which is self-crosslinked via inter-amide hydrogen bonds and zwitterionic dipole-dipole interactions on the side chains. The unprecedented polyCBDS (PCBDS) patch demonstrates enough ductility owing to the intermolecular physical interactions to fully cover irregular wounds, also showing excellent biodegradability and antifouling performance resulted from the existence of disulfide bonds and carboxybetaine groups. Besides, the PCBDS degradation-induced released CBDS owns potent antioxidant and antibacterial activities. This PCBDS patch is used as a diabetic wound dressing, inhibiting bacterial adhesion on the external surface, and its degradation products can exactly kill bacteria and scavenge excessive reactive oxygen species (ROS) at the wound site to regulate local microenvironment, including regulation of cytokine express and macrophage polarization, accelerating infected diabetic wound repair, and also avoiding the potential secondary injury.
Collapse
Affiliation(s)
- Zhuoya Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Danyang Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Hongying Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Siyu Bao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Liping Lang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Haotian Song
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
21
|
Bellini C, Mancin F, Papini E, Tavano R. Nanotechnological Approaches to Enhance the Potential of α-Lipoic Acid for Application in the Clinic. Antioxidants (Basel) 2024; 13:706. [PMID: 38929145 PMCID: PMC11201002 DOI: 10.3390/antiox13060706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
α-lipoic acid is a naturally occurring compound with potent antioxidant properties that helps protect cells and tissues from oxidative stress. Its incorporation into nanoplatforms can affect factors like bioavailability, stability, reactivity, and targeted delivery. Nanoformulations of α-lipoic acid can significantly enhance its solubility and absorption, making it more bioavailable. While α-lipoic acid can be prone to degradation in its free form, encapsulation within nanoparticles ensures its stability over time, and its release in a controlled and sustained manner to the targeted tissues and cells. In addition, α-lipoic acid can be combined with other compounds, such as other antioxidants, drugs, or nanomaterials, to create synergistic effects that enhance their overall therapeutic benefits or hinder their potential cytotoxicity. This review outlines the advantages and drawbacks associated with the use of α-lipoic acid, as well as various nanotechnological approaches employed to enhance its therapeutic effectiveness, whether alone or in combination with other bioactive agents. Furthermore, it describes the engineering of α-lipoic acid to produce poly(α-lipoic acid) nanoparticles, which hold promise as an effective drug delivery system.
Collapse
Affiliation(s)
- Chiara Bellini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (E.P.)
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35121 Padova, Italy;
| | - Emanuele Papini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (E.P.)
| | - Regina Tavano
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (E.P.)
| |
Collapse
|
22
|
Zhang XD, Luo Q, Du Y, Yang L, Yu LC, Feng L, Rao D, Tang JX, Tan HM, Guo XY, Tang SS, Liu T, Yue F, Huang HX. The allostery and modification of hGHRH molecules and specific dimer produced significant fertility effect by proliferating and activating in-situ ovarian mesenchymal stem cells. Eur J Pharm Sci 2024; 197:106768. [PMID: 38643940 DOI: 10.1016/j.ejps.2024.106768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/23/2024] [Accepted: 04/13/2024] [Indexed: 04/23/2024]
Abstract
The negative coordination of growth hormone secretagogue receptor (GHS-R) and growth hormone-releasing hormone receptor (GHRH-R) involves in the repair processes of cellular injury. The allosteric U- or H-like modified GHRH dimer Grinodin and 2Y were comparatively evaluated in normal Kunming mice and hamster infertility models induced by CPA treatment. 1-3-9 µg of Grinodin or 2Y per hamster stem-cell-exhaustion model was subcutaneously administered once a week, respectively inducing 75-69-46 or 45-13-50 % of birth rates. In comparison, the similar mole of human menopausal gonadotropin (hMG) or human growth hormone (hGH) was administered once a day but caused just 25 or 20 % of birth rates. Grinodin induced more big ovarian follicles and corpora lutea than 2Y, hMG, hGH. The hMG-treated group was observed many distorted interstitial cells and more connective tissues and the hGH-treated group had few ovarian follicles. 2Y had a plasma lifetime of 21 days and higher GH release in mice, inducing lower birth rate and stronger individual specificity in reproduction as well as only promoting the proliferation of mesenchymal-stem-cells (MSCs) in the models. In comparison, Grinodin had a plasma lifetime of 30 days and much lower GH release in mice. It significantly promoted the proliferation and activation of ovarian MSCs together with the development of follicles in the models by increasing Ki67 and GHS-R expressions, and decreasing GHRH-R expression in a dose-dependent manner. However, the high GH and excessive estrogen levels in the models showed a dose-dependent reduction in fertility. Therefore, unlike 2Y, the low dose of Grinodin specifically shows low GHS-R and high GHRH-R expressions thus evades GH and estrogen release and improves functions of organs, resulting in an increase of fertility.
Collapse
Affiliation(s)
- Xu-Dong Zhang
- Department of Clinical Laboratories & Pathology, Guangdong Provincial Cops Hospital of Chinese People's Armed Police Forces, Guangzhou 510507, China
| | - Qun Luo
- Research & Development Department, Shenzhen Nafe Biopharmaceutical Company LTD, Shenzhen 518107, China
| | - Yan Du
- Department of Clinical Laboratories & Pathology, Guangdong Provincial Cops Hospital of Chinese People's Armed Police Forces, Guangzhou 510507, China
| | - Li Yang
- Department of Digestive & Endocrinology, Guangdong Provincial Cops Hospital of Chinese People's Armed Police Forces, Guangzhou 510507, China
| | - Li-Cheng Yu
- Department of Clinical Laboratories & Pathology, Guangdong Provincial Cops Hospital of Chinese People's Armed Police Forces, Guangzhou 510507, China
| | - Lan Feng
- Department of Biochemistry and Molecular Biology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dan Rao
- Department of Biochemistry and Molecular Biology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jing-Xuan Tang
- Department of Chemistry, College of Literature, Science, and the Arts, University of Michigan-Ann Arbor, Ann Arbor 48109, United States
| | - Hong-Mei Tan
- Department of Clinical Laboratories, Luopu Street Lijiang Community Health Service Station, Guangzhou 511431, China
| | - Xiao-Yuan Guo
- Department of Pathology, Sanya People's Hospital, Sanya City 572000, Hainan Province, China
| | - Song-Shan Tang
- Department of Biochemistry and Molecular Biology, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Tao Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Feng Yue
- Department of Clinical Laboratories, Guangzhou Tianhe District Hospital of Traditional Chinese Medicine, Guangzhou 510655, China
| | - Hui-Xian Huang
- Department of Clinical Laboratories & Pathology, Guangdong Provincial Cops Hospital of Chinese People's Armed Police Forces, Guangzhou 510507, China
| |
Collapse
|
23
|
Bossio S, Perri A, Gallo R, De Bartolo A, Rago V, La Russa D, Di Dio M, La Vignera S, Calogero AE, Vitale G, Aversa A. Alpha-Lipoic Acid Reduces Cell Growth, Inhibits Autophagy, and Counteracts Prostate Cancer Cell Migration and Invasion: Evidence from In Vitro Studies. Int J Mol Sci 2023; 24:17111. [PMID: 38069431 PMCID: PMC10707055 DOI: 10.3390/ijms242317111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Alpha-lipoic acid (ALA) is a natural antioxidant dithiol compound, exerting antiproliferative and antimetastatic effects in various cancer cell lines. In our study, we demonstrated that ALA reduces the cell growth of prostate cancer cells LNCaP and DU-145. Western blot results revealed that in both cancer cells, ALA, by upregulating pmTOR expression, reduced the protein content of two autophagy initiation markers, Beclin-1 and MAPLC3. Concomitantly, MTT assays showed that chloroquine (CQ) exposure, a well-known autophagy inhibitor, reduced cells' viability. This was more evident for treatment using the combination ALA + CQ, suggesting that ALA can reduce cells' viability by inhibiting autophagy. In addition, in DU-145 cells we observed that ALA affected the oxidative/redox balance system by deregulating the KEAP1/Nrf2/p62 signaling pathway. ALA decreased ROS production, SOD1 and GSTP1 protein expression, and significantly reduced the cytosolic and nuclear content of the transcription factor Nrf2, concomitantly downregulating p62, suggesting that ALA disrupted p62-Nrf2 feedback loop. Conversely, in LNCaP cells, ALA exposure upregulated both SOD1 and p62 protein expression, but did not affect the KEAP1/Nrf2/p62 signaling pathway. In addition, wound-healing, Western blot, and immunofluorescence assays evidenced that ALA significantly reduced the motility of LNCaP and DU-145 cells and downregulated the protein expression of TGFβ1 and vimentin and the deposition of fibronectin. Finally, a soft agar assay revealed that ALA decreased the colony formation of both the prostate cancer cells by affecting the anchorage independent growth. Collectively, our in vitro evidence demonstrated that in prostate cancer cells, ALA reduces cell growth and counteracts both migration and invasion. Further studies are needed in order to achieve a better understanding of the underlined molecular mechanisms.
Collapse
Affiliation(s)
- Sabrina Bossio
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy; (S.B.); (A.P.)
| | - Anna Perri
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy; (S.B.); (A.P.)
| | - Raffaella Gallo
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy;
| | - Anna De Bartolo
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, University of Calabria, 87036 Rende, Italy;
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Michele Di Dio
- Division of Urology, Department of Surgery, Annunziata Hospital, 87100 Cosenza, Italy;
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (S.L.V.); (A.E.C.)
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (S.L.V.); (A.E.C.)
| | - Giovanni Vitale
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20133 Milan, Italy;
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy; (S.B.); (A.P.)
| |
Collapse
|
24
|
Park JS, Rustamov N, Roh YS. The Roles of NFR2-Regulated Oxidative Stress and Mitochondrial Quality Control in Chronic Liver Diseases. Antioxidants (Basel) 2023; 12:1928. [PMID: 38001781 PMCID: PMC10669501 DOI: 10.3390/antiox12111928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic liver disease (CLD) affects a significant portion of the global population, leading to a substantial number of deaths each year. Distinct forms like non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (ALD), though they have different etiologies, highlight shared pathologies rooted in oxidative stress. Central to liver metabolism, mitochondria are essential for ATP production, gluconeogenesis, fatty acid oxidation, and heme synthesis. However, in diseases like NAFLD, ALD, and liver fibrosis, mitochondrial function is compromised by inflammatory cytokines, hepatotoxins, and metabolic irregularities. This dysfunction, especially electron leakage, exacerbates the production of reactive oxygen species (ROS), augmenting liver damage. Amidst this, nuclear factor erythroid 2-related factor 2 (NRF2) emerges as a cellular protector. It not only counters oxidative stress by regulating antioxidant genes but also maintains mitochondrial health by overseeing autophagy and biogenesis. The synergy between NRF2 modulation and mitochondrial function introduces new therapeutic potentials for CLD, focusing on preserving mitochondrial integrity against oxidative threats. This review delves into the intricate role of oxidative stress in CLD, shedding light on innovative strategies for its prevention and treatment, especially through the modulation of the NRF2 and mitochondrial pathways.
Collapse
Affiliation(s)
| | | | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.-S.P.); (N.R.)
| |
Collapse
|
25
|
Vajdi M, Noshadi N, Hassanizadeh S, Bonyadian A, Seyedhosseini-Ghaheh H, Askari G. The effects of alpha lipoic acid (ALA) supplementation on blood pressure in adults: a GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Front Cardiovasc Med 2023; 10:1272837. [PMID: 37942070 PMCID: PMC10628535 DOI: 10.3389/fcvm.2023.1272837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction There have been various clinical studies on the effect of Alpha lipoic acid (ALA) supplementation on blood pressure (BP), but the findings from these are contradictory. Therefore, we performed a systematic review and dose-response meta-analysis to summarize the relation of ALA supplementation and systolic blood pressure (SBP) and diastolic blood pressure (DBP) in adults. Methods A comprehensive search was conducted in Medline (PubMed), Embase, Scopus, and ProQuest up to July 2023. Randomized controlled trials (RCTs) evaluating the effect of ALA on SBP and DBP were included. The pooled weighted mean difference (WMD) of included trials was estimated using a random-effects model. The dose-dependent effect was also assessed. Results and discussion A total of 11 RCTs with the participation of 674 patients were included. The result of the meta-analysis indicated that using ALA supplementation significantly reduced the SBP (WMD = -5.46 mmHg; 95% CI: -9.27, -1.65; p < 0.001) and DBP (WMD = -3.36 mmHg, 95% CI: -4.99, -1.74; p < 0.001). The ALA administrations significantly reduced SBP and DBP at the dosages of <800 mg/day, when administered for ≤12 weeks. The present meta-analysis revealed that ALA supplementation could exert favorable effects on SBP and DBP. Further well-designed studies with larger samples are needed to ascertain the long-term effects of ALA on BP. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=447658, identifier PROSPERO: CRD42023447658.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nooshin Noshadi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Hassanizadeh
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Bonyadian
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Ziyatdinova G, Gimadutdinova L. Recent Advances in Electrochemical Sensors for Sulfur-Containing Antioxidants. MICROMACHINES 2023; 14:1440. [PMID: 37512751 PMCID: PMC10384414 DOI: 10.3390/mi14071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Sulfur-containing antioxidants are an important part of the antioxidant defense systems in living organisms under the frame of a thiol-disulfide equilibrium. Among them, l-cysteine, l-homocysteine, l-methionine, glutathione, and α-lipoic acid are the most typical representatives. Their actions in living systems are briefly discussed. Being electroactive, sulfur-containing antioxidants are interesting analytes to be determined using various types of electrochemical sensors. Attention is paid to the chemically modified electrodes with various nanostructured coverages. The analytical capabilities of electrochemical sensors for sulfur-containing antioxidant quantification are summarized and discussed. The data are summarized and presented on the basis of the electrode surface modifier applied, i.e., carbon nanomaterials, metal and metal oxide nanoparticles (NPs) and nanostructures, organic mediators, polymeric coverage, and mixed modifiers. The combination of various types of nanomaterials provides a wider linear dynamic range, lower limits of detection, and higher selectivity in comparison to bare electrodes and sensors based on the one type of surface modifier. The perspective of the combination of chromatography with electrochemical detection providing the possibility for simultaneous determination of sulfur-containing antioxidants in a complex matrix has also been discussed.
Collapse
Affiliation(s)
- Guzel Ziyatdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| | - Liliya Gimadutdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| |
Collapse
|