1
|
Naveed ZA, Wei X, Chen J, Mubeen H, Ali GS. The PTI to ETI Continuum in Phytophthora-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2020; 11:593905. [PMID: 33391306 PMCID: PMC7773600 DOI: 10.3389/fpls.2020.593905] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/24/2020] [Indexed: 05/15/2023]
Abstract
Phytophthora species are notorious pathogens of several economically important crop plants. Several general elicitors, commonly referred to as Pathogen-Associated Molecular Patterns (PAMPs), from Phytophthora spp. have been identified that are recognized by the plant receptors to trigger induced defense responses in a process termed PAMP-triggered Immunity (PTI). Adapted Phytophthora pathogens have evolved multiple strategies to evade PTI. They can either modify or suppress their elicitors to avoid recognition by host and modulate host defense responses by deploying hundreds of effectors, which suppress host defense and physiological processes by modulating components involved in calcium and MAPK signaling, alternative splicing, RNA interference, vesicle trafficking, cell-to-cell trafficking, proteolysis and phytohormone signaling pathways. In incompatible interactions, resistant host plants perceive effector-induced modulations through resistance proteins and activate downstream components of defense responses in a quicker and more robust manner called effector-triggered-immunity (ETI). When pathogens overcome PTI-usually through effectors in the absence of R proteins-effectors-triggered susceptibility (ETS) ensues. Qualitatively, many of the downstream defense responses overlap between PTI and ETI. In general, these multiple phases of Phytophthora-plant interactions follow the PTI-ETS-ETI paradigm, initially proposed in the zigzag model of plant immunity. However, based on several examples, in Phytophthora-plant interactions, boundaries between these phases are not distinct but are rather blended pointing to a PTI-ETI continuum.
Collapse
Affiliation(s)
- Zunaira Afzal Naveed
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- Institute of Oceanography, Minjiang University, Fuzhou, China
- Xiangying Wei
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Hira Mubeen
- Departement of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Gul Shad Ali
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- EukaryoTech LLC, Apopka, FL, United States
- *Correspondence: Gul Shad Ali
| |
Collapse
|
2
|
Synthetic Rhamnolipid Bolaforms trigger an innate immune response in Arabidopsis thaliana. Sci Rep 2018; 8:8534. [PMID: 29867089 PMCID: PMC5986815 DOI: 10.1038/s41598-018-26838-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Abstract
Stimulation of plant innate immunity by natural and synthetic elicitors is a promising alternative to conventional pesticides for a more sustainable agriculture. Sugar-based bolaamphiphiles are known for their biocompatibility, biodegradability and low toxicity. In this work, we show that Synthetic Rhamnolipid Bolaforms (SRBs) that have been synthesized by green chemistry trigger Arabidopsis innate immunity. Using structure-function analysis, we demonstrate that SRBs, depending on the acyl chain length, differentially activate early and late immunity-related plant defense responses and provide local increase in resistance to plant pathogenic bacteria. Our biophysical data suggest that SRBs can interact with plant biomimetic plasma membrane and open the possibility of a lipid driven process for plant-triggered immunity by SRBs.
Collapse
|
3
|
Morgunov IG, Kamzolova SV, Dedyukhina EG, Chistyakova TI, Lunina JN, Mironov AA, Stepanova NN, Shemshura ON, Vainshtein MB. Application of organic acids for plant protection against phytopathogens. Appl Microbiol Biotechnol 2016; 101:921-932. [PMID: 28040844 DOI: 10.1007/s00253-016-8067-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/23/2022]
Abstract
The basic tendency in the field of plant protection concerns with reducing the use of pesticides and their replacement by environmentally acceptable biological preparations. The most promising approach to plant protection is application of microbial metabolites. In the last years, bactericidal, fungicidal, and nematodocidal activities were revealed for citric, succinic, α-ketoglutaric, palmitoleic, and other organic acids. It was shown that application of carboxylic acids resulted in acceleration of plant development and the yield increase. Of special interest is the use of arachidonic acid in very low concentrations as an inductor (elicitor) of protective functions in plants. The bottleneck in practical applications of these simple, nontoxic, and moderately priced preparations is the absence of industrial production of the mentioned organic acids of required quality since even small contaminations of synthetic preparations decrease their quality and make them dangerous for ecology and toxic for plants, animals, and human. This review gives a general conception on the use of organic acids for plant protection against the most dangerous pathogens and pests, as well as focuses on microbiological processes for production of these microbial metabolites of high quality from available, inexpensive, and renewable substrates.
Collapse
Affiliation(s)
- Igor G Morgunov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290. .,Pushchino State Institute of Natural Sciences, Pushchino, Russia, 142290.
| | - Svetlana V Kamzolova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290
| | - Emilia G Dedyukhina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290
| | - Tatiana I Chistyakova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290
| | - Julia N Lunina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290
| | - Alexey A Mironov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290
| | - Nadezda N Stepanova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290.,Pushchino State Institute of Natural Sciences, Pushchino, Russia, 142290
| | - Olga N Shemshura
- Institute of Microbiology and Virology, Ministry of Education and Science of the Republic of Kazakhstan, Almaty, Kazakhstan, 050510
| | - Mikhail B Vainshtein
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290.,Pushchino State Institute of Natural Sciences, Pushchino, Russia, 142290
| |
Collapse
|
4
|
Robinson SM, Bostock RM. β-glucans and eicosapolyenoic acids as MAMPs in plant-oomycete interactions: past and present. FRONTIERS IN PLANT SCIENCE 2015; 5:797. [PMID: 25628639 PMCID: PMC4292309 DOI: 10.3389/fpls.2014.00797] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/22/2014] [Indexed: 05/20/2023]
Abstract
Branched β-1,3-glucans and the eicosapolyenoic acids (EP) are among the best characterized oomycete elicitors that trigger innate immune responses in plants. These elicitors were identified over three decades ago, and they were useful in the study of the sequence of physiological, biochemical and molecular events that induce resistance in plants. However, in spite of the cross-kingdom parallels where these molecules are well-characterized as immune system modulators in animals, their perception and modes of action in plants remains obscure. Oomycetes are among the most important plant pathogens, responsible for diseases that devastate crops, ornamentals, and tree species worldwide. With the recent interest and advances in our understanding of innate immunity in plants, and the redefining of many of the classical elicitors as microbe-associated molecular patterns (MAMPs), it seems timely and important to reexamine β-glucans and EP using contemporary approaches. In this review, we highlight early studies of β-glucans and EP, discuss their roles as evolutionarily conserved signals, and consider their action in relation to current models of MAMP-triggered immunity.
Collapse
Affiliation(s)
| | - Richard M. Bostock
- Department of Plant Pathology, University of CaliforniaDavis, Davis, CA, USA
| |
Collapse
|
5
|
Dedyukhina EG, Chistyakova TI, Mironov AA, Kamzolova SV, Morgunov IG, Vainshtein MB. Arachidonic acid synthesis from biodiesel-derived waste byMortierella alpina. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201300358] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Emiliya G. Dedyukhina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences; Pushchino Moscow Region Russia
| | - Tatyana I. Chistyakova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences; Pushchino Moscow Region Russia
| | - Aleksei A. Mironov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences; Pushchino Moscow Region Russia
- Pushchino State Institute of Natural Sciences; Pushchino Moscow Region Russia
| | - Svetlana V. Kamzolova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences; Pushchino Moscow Region Russia
| | - Igor G. Morgunov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences; Pushchino Moscow Region Russia
- Pushchino State Institute of Natural Sciences; Pushchino Moscow Region Russia
| | - Mikhail B. Vainshtein
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences; Pushchino Moscow Region Russia
- Pushchino State Institute of Natural Sciences; Pushchino Moscow Region Russia
| |
Collapse
|
6
|
Bostock RM, Savchenko T, Lazarus C, Dehesh K. Eicosapolyenoic acids: novel MAMPs with reciprocal effect on oomycete-plant defense signaling networks. PLANT SIGNALING & BEHAVIOR 2011; 6:531-3. [PMID: 21474996 PMCID: PMC3142384 DOI: 10.4161/psb.6.4.14782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Thirty years ago arachidonic (AA; 20:4 Δ ( 5,8,11,14) ) and eicosapentaenoic (EPA; 20:5 Δ ( 5,8,11,14,17) ) acids were identified as elicitors from the late blight pathogen, Phytophthora infestans, capable of triggering the dramatic shifts in isoprenoid metabolism, defense reactions, and cell death associated with the hypersensitive response of potato to incompatible races of the pathogen. ( 1) Among plant pathogens, the capacity for eicosapolyenoic acid synthesis appears to be largely restricted to oomycetes, primitive fungi (e.g., zygomycetes and chytrids), and nematodes. AA and EPA, precursors to eicosanoids that mediate inflammatory responses and serve as critical signals for immune and central nervous system functions in mammals, continue to be compelling molecules for study in plants because of what they may reveal about lipid-based signaling and induced immunity in plant-microbe interactions and possible mechanistic parallels as conserved signaling molecules across eukaryotic kingdoms. In spite of the intriguing cross-kingdom connections in AA/EPA signaling, there has been relatively little research to resolve eicosapolyenoic acid perception and action in plants, in part because of experimental limitations of systems where these fatty acids display strong activity. However, this state of affairs may change with our recent discovery that Arabidopsis responds to AA and that plants engineered to express very low levels of eicosapolyenoic acids (EP plants) have remarkably altered phenotypes to biotic challengers.
Collapse
Affiliation(s)
- Richard M Bostock
- Department of Plant Pathology, University of California, Davis, CA, USA.
| | | | | | | |
Collapse
|
7
|
Dedyukhina EG, Chistyakova TI, Vainshtein MB. Biosynthesis of arachidonic acid by micromycetes (review). APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811020037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Savchenko T, Walley JW, Chehab EW, Xiao Y, Kaspi R, Pye MF, Mohamed ME, Lazarus CM, Bostock RM, Dehesh K. Arachidonic acid: an evolutionarily conserved signaling molecule modulates plant stress signaling networks. THE PLANT CELL 2010; 22:3193-205. [PMID: 20935246 PMCID: PMC2990140 DOI: 10.1105/tpc.110.073858] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 09/16/2010] [Accepted: 09/22/2010] [Indexed: 05/18/2023]
Abstract
Fatty acid structure affects cellular activities through changes in membrane lipid composition and the generation of a diversity of bioactive derivatives. Eicosapolyenoic acids are released into plants upon infection by oomycete pathogens, suggesting they may elicit plant defenses. We exploited transgenic Arabidopsis thaliana plants (designated EP) producing eicosadienoic, eicosatrienoic, and arachidonic acid (AA), aimed at mimicking pathogen release of these compounds. We also examined their effect on biotic stress resistance by challenging EP plants with fungal, oomycete, and bacterial pathogens and an insect pest. EP plants exhibited enhanced resistance to all biotic challenges, except they were more susceptible to bacteria than the wild type. Levels of jasmonic acid (JA) were elevated and levels of salicylic acid (SA) were reduced in EP plants. Altered expression of JA and SA pathway genes in EP plants shows that eicosapolyenoic acids effectively modulate stress-responsive transcriptional networks. Exogenous application of various fatty acids to wild-type and JA-deficient mutants confirmed AA as the signaling molecule. Moreover, AA treatment elicited heightened expression of general stress-responsive genes. Importantly, tomato (Solanum lycopersicum) leaves treated with AA exhibited reduced susceptibility to Botrytis cinerea infection, confirming AA signaling in other plants. These studies support the role of AA, an ancient metazoan signaling molecule, in eliciting plant stress and defense signaling networks.
Collapse
Affiliation(s)
- Tatyana Savchenko
- Department of Plant Biology, University of California, Davis, California 95616
| | - Justin W. Walley
- Department of Plant Biology, University of California, Davis, California 95616
- Department of Biological Sciences, University of California, San Diego, California 92093-0380
| | - E. Wassim Chehab
- Department of Plant Biology, University of California, Davis, California 95616
| | - Yanmei Xiao
- Department of Plant Biology, University of California, Davis, California 95616
| | - Roy Kaspi
- Department of Plant Biology, University of California, Davis, California 95616
| | - Matthew F. Pye
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Maged E. Mohamed
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, United Kingdom
| | - Colin M. Lazarus
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, United Kingdom
| | - Richard M. Bostock
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Katayoon Dehesh
- Department of Plant Biology, University of California, Davis, California 95616
- Address correspondence to
| |
Collapse
|
9
|
Dual elicitation for improved production of withaferin A by cell suspension cultures of Withania somnifera. Appl Biochem Biotechnol 2008; 151:556-64. [PMID: 18449479 DOI: 10.1007/s12010-008-8231-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
High yielding transformed callus culture of W. somnifera was established by infecting hypocotyls with Agrobacterium tumefaciens MTCC-2250. Maximum withaferin A content of 0.0875 mg/g dry cell weight and transformation efficiency of 80% were obtained. Confirmation of transformation was done on the basis of the presence of the ags gene by using polymerase chain reaction. Various abiotic elicitors (arachidonic acid, methyl jasmonate, calcium chloride, and copper sulfate) and biotic elicitors (cell extracts and culture filtrates of Alternia alternata, Fusarium solani, and Verticilium dahaliae) were tested at different concentrations to enhance withaferin A production in suspension culture of transformed cells. Maximum enhancements of 5.4 times and 9.7 times, respectively, were obtained when copper sulfate (100 microM) and the cell extract of V. dahaliae (5% v/v) were added separately to suspension cultures. The dual elicitation strategy by the combined addition of these two elicitors resulted in 13.8-fold enhancement of withaferin A content in comparison to control cultures (2.65 mg/L). The present study indicates the potential of this biotechnology-based methodology for the large-scale production of withaferin A.
Collapse
|
10
|
Tyler BM. Molecular basis of recognition between phytophthora pathogens and their hosts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2002; 40:137-167. [PMID: 12147757 DOI: 10.1146/annurev.phyto.40.120601.125310] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recognition is the earliest step in any direct plant-microbe interaction. Recognition between Phytophthora pathogens, which are oomycetes, phylogenetically distinct from fungi, has been studied at two levels. Recognition of the host by the pathogen has focused on recognition of chemical, electrical, and physical features of plant roots by zoospores. Both host-specific factors such as isoflavones, and host-nonspecific factors such as amino acids, calcium, and electrical fields, influence zoospore taxis, encystment, cyst germination, and hyphal chemotropism in guiding the pathogen to potential infection sites. Recognition of the pathogen by the host defense machinery has been analyzed using biochemical and genetic approaches. Biochemical approaches have identified chemical elicitors of host defense responses, and in some cases, their cognate receptors from the host. Some elicitors, such as glucans and fatty acids, have broad host ranges, whereas others such as elicitins have narrow host ranges. Most elicitors identified appear to contribute primarily to basic or nonhost resistance. Genetic analysis has identified host resistance (R) genes and pathogen avirulence (Avr) genes that interact in a gene-for-gene manner. One Phytophthora Avr gene, Avr1b from P. sojae, has been cloned and characterized. It encodes a secreted elicitor that triggers a system-wide defense response in soybean plants carrying the cognate R gene, Rps1b.
Collapse
Affiliation(s)
- Brett M Tyler
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA.
| |
Collapse
|
11
|
Smith CJ. Tansley Review No. 86 Accumulation of phytoalexins: defence mechanism and stimulus response system. THE NEW PHYTOLOGIST 1996; 132:1-45. [PMID: 33863060 DOI: 10.1111/j.1469-8137.1996.tb04506.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phytoalexin synthesis is a defence-response- that is characterized by a requirement for a number of distinct elements, all of which must be present for the response to be expressed fully. These same elements: a signal, a cellular receptor, a signal transduction system and a responsive metabolic system, are also used to describe a stimulus-response system. A number of molecular species can function as signal molecules or elicitors of phytoalexin synthesis, including poly- and oligosaccharides, proteins and polypeptides, and fatty acids. Few receptors for elicitors have been identified but those that have been are proteins located on the plasma membrane of the plant. Induction of phytoalexin synthesis involves selective and co-ordinated activation of specific defence response genes, including those encoding the enzymes of phytoalexin synthesis, and these genes constitute the responsive metabolic system. The separate, and distant, locations of the receptor and the responsive genes means that the event in which the signal is perceived by the receptor must be relayed to the genes by means of a second messenger system. Several second messengers are candidates for such a coupling- or signal transduction-system, including udenosine-3',5'-cyclic monophosphate, Ca2+ , diacylglycerol and inositol 1,4,5-trisphosphate, active oxygen species and jasmonic acid. Each has been examined as a possible component of the signal transduction system mediating between the elicitor receptor interaction and the phytoalexin synthesis it induces. Analysis of the signalling events is made complex by the simultaneous solicitation by the invading micro-organism of several defence responses, each of which might involve elements of a different signal system. The same complexity is evident which the role of phytoalexin accumulation in resistance is analysed. Evaluation of the contribution made by phytoalexin accumulation towards resistance has been attempted by the use of various inhibitors and enhancers of the process. Transgenic and mutant plants with specific alterations in one or more ot those elements necessary for the plant to respond to the signals for phytoalexin synthesis and other defence responses, are beginning to aid resolution of the complex pattern ot signalling events and the respective roles of the inducible defence mechanisms in resistance. CONTENTS Summary 1 I. Introduction 2 II. Chemistry of phytoalexins 3 III. Phytoalexin accumulation as a determinant of resistance 6 IV. Elicitation of phytoalexin accumulation 11 References 34.
Collapse
Affiliation(s)
- C J Smith
- Biochemistry Research Croup, School of Biological Scietices, University of Wales, Swansea, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
12
|
Hanagata N, Uehara H, Ito A, Takeuchi T, Karube I. Elicitor for red pigment formation in Carthamus tinctorius cultured cells. J Biotechnol 1994. [DOI: 10.1016/0168-1656(94)90167-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Choi D, Bostock RM, Avdiushko S, Hildebrand DF. Lipid-derived signals that discriminate wound- and pathogen-responsive isoprenoid pathways in plants: methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum L. Proc Natl Acad Sci U S A 1994; 91:2329-33. [PMID: 11607466 PMCID: PMC43364 DOI: 10.1073/pnas.91.6.2329] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Induction of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR; EC 1.1.1.34) is essential for the synthesis of steroid derivatives and sesquiterpenoid phytoalexins in solanaceous plants following mechanical injury or pathogen infection. Gene-specific probes corresponding to different HMGR genes (hmg1 and hmg2) were used to study HMGR expression in potato tissue following treatment with methyl jasmonate, a lipoxygenase product of linolenic acid, or arachidonic acid, an elicitor present in the lipids of the potato late blight fungus Phytophthora infestans. Treatment of potato discs (2.2 cm in diameter) with low concentrations (0.45-45 nmol per disc surface) of methyl jasmonate nearly doubled the wound-induced accumulation of hmg1 transcripts and steroid-glycoalkaloid (SGA) accumulation, reduced the abundance of hmg2 transcripts, and did not induce phytoalexins. High concentrations of methyl jasmonate (2-4.5 mol per disc surface) suppressed hmg1 mRNA and SGA accumulation but did not affect hmg2 mRNA abundance or induce phytoalexins. In contrast, arachidonate treatment strongly suppressed hmg1 and strongly induced hmg2 mRNA in a concentration-dependent manner. There was a corresponding suppression of SGA accumulation and an induction of sesquiterpene phytoalexin accumulation by this elicitor. Lipoxygenase inhibitors reduced the wound-induced accumulation of hmg1 transcripts and suppressed SGA levels, effects that were overcome by exogenous methyl jasmonate (45 nmol per disc surface). The results (i) suggest that methyl jasmonate can function as a signal for hmg1 expression and SGA induction following wounding and (ii) indicate that the arachidonate- and jasmonate-response pathways are distinct in relation to HMGR gene expression and isoprenoid product accumulation. The results also are consistent with placement of the HMGR activities encoded by hmg1 and hmg2 within discrete steroid and sesquiterpenoid biosynthetic channels.
Collapse
Affiliation(s)
- D Choi
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
14
|
Fanelli C, Castoria R, Fabbri AA, Passi S. Novel study on the elicitation of hypersensitive response by polyunsaturated fatty acids in potato tuber. ACTA ACUST UNITED AC 1992; 1:136-46. [PMID: 1344908 DOI: 10.1002/nt.2620010213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A GC-MS procedure was carried out for the simultaneous and unequivocal quantitation of both potato phytoalexin (rishitin and lubimin) accumulation and the rate of disappearance of polyunsaturated fatty acids (PUFA) and some of their esters tested as possible elicitors. Potato 5-lipoxygenase and lipolytic acyl hydrolase play a key role in hypersensitive response (HR) induction. As expected, arachidonic acid, its hydrolysable esters, and eicosapentaenoic acid elicited much higher HR than the other PUFA tested, although the latter were equally affected by potato 5-lipoxygenase. Hydroxyl radicals appear to be actively involved in the browning process. The polyaminoacid poly-L-lysine did not show any eliciting activity.
Collapse
Affiliation(s)
- C Fanelli
- Instituti Fisioterapici Ospedalieri, Ospedale S. Gallicano, Rome, Italy
| | | | | | | |
Collapse
|
15
|
|
16
|
Marineau C, Matton DP, Brisson N. Differential accumulation of potato tuber mRNAs during the hypersensitive response induced by arachidonic acid elicitor. PLANT MOLECULAR BIOLOGY 1987; 9:335-342. [PMID: 24277086 DOI: 10.1007/bf00014908] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/1987] [Accepted: 06/12/1987] [Indexed: 06/02/2023]
Abstract
Accumulation of messenger RNAs in potato tuber discs was analysed during the hypersensitive response induced by treatment with the biotic elicitor arachidonic acid. In vitro translation of polysomal poly(A)(+) RNAs indicated that the accumulation of some sixteen mRNAs varied following treatment with arachidonic acid, and that the level of thirteen of these was increased. Two cDNA closes (pSTH-1 and-2) were isolated from a library of elicitor-treated tissue cDNAs. Northern blot analysis using these clones as molecular probes indicated that the levels of at least two mRNAs were markedly increased after elicitor treatment. In hybrid-released translation experiments, each of the cDNA clones selected more than one mRNA. Translation of these mRNAs yielded two polypeptides of Mr 45 000 (for the pSTH-1 clone), and three polypeptides of Me 17 000 (for the pSTH-2 clone). The low molecular weight polypeptides may correspond to potato pathogenesis-related (PR) proteins.
Collapse
Affiliation(s)
- C Marineau
- Department of Biochemistry, University of Montreal, Station A, P.O. Box 6128, H3C 3J7, Montreal, Quebec, Canada
| | | | | |
Collapse
|
17
|
|
18
|
DIXON RICHARDA. THE PHYTOALEXIN RESPONSE: ELICITATION, SIGNALLING AND CONTROL OF HOST GENE EXPRESSION. Biol Rev Camb Philos Soc 1986. [DOI: 10.1111/j.1469-185x.1986.tb00719.x] [Citation(s) in RCA: 246] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
|
20
|
Di Luzio NR. Update on the immunomodulating activities of glucans. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1985; 8:387-400. [PMID: 4089757 DOI: 10.1007/bf01857392] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|