1
|
Inhibition of Dephosphorylation of Dolichyl Diphosphate Alters the Synthesis of Dolichol and Hinders Protein N-Glycosylation and Morphological Transitions in Candida albicans. Int J Mol Sci 2019; 20:ijms20205067. [PMID: 31614738 PMCID: PMC6829516 DOI: 10.3390/ijms20205067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 11/17/2022] Open
Abstract
The essential role of dolichyl phosphate (DolP) as a carbohydrate carrier during protein N-glycosylation is well established. The cellular pool of DolP is derived from de novo synthesis in the dolichol branch of the mevalonate pathway and from recycling of DolPP after each cycle of N-glycosylation, when the oligosaccharide is transferred from the lipid carrier to the protein and DolPP is released and then dephosphorylated. In Saccharomyces cerevisiae, the dephosphorylation of DolPP is known to be catalyzed by the Cwh8p protein. To establish the role of the Cwh8p orthologue in another distantly related yeast species, Candida albicans, we studied its mutant devoid of the CaCWH8 gene. A double Cacwh8∆/Cacwh8∆ strain was constructed by the URA-blaster method. As in S. cerevisiae, the mutant was impaired in DolPP recycling. This defect, however, was accompanied by an elevation of cis-prenyltransferase activity and higher de novo production of dolichols. Despite these compensatory changes, protein glycosylation, cell wall integrity, filamentous growth, and biofilm formation were impaired in the mutant. These results suggest that the defects are not due to the lack of DolP for the protein N-glycosylation but rather that the activity of oligosacharyltransferase could be inhibited by the excess DolPP accumulating in the mutant.
Collapse
|
2
|
Kanehara K, Cho Y, Lin YC, Chen CE, Yu CY, Nakamura Y. Arabidopsis DOK1 encodes a functional dolichol kinase involved in reproduction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:292-303. [PMID: 25406445 DOI: 10.1111/tpj.12727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 05/08/2023]
Abstract
Dolichol phosphate (Dol-P) serves as a carrier of complex polysaccharides during protein glycosylation. Dol-P is synthesized by the phosphorylation of dolichol or the monodephosphorylation of dolichol pyrophosphate (Dol-PP); however, the enzymes that catalyze these reactions remain unidentified in Arabidopsis thaliana. We performed a genome-wide search for cytidylyltransferase motif-containing proteins in Arabidopsis, and found that At3g45040 encodes a protein homologous with Sec59p, a dolichol kinase (DOK) in Saccharomyces cerevisiae. At3g45040, designated AtDOK1, complemented defects in the growth and N-linked glycosylation of the S. cerevisiae sec59 mutant, suggesting that AtDOK1 encodes a functional DOK. To characterize the physiological roles of AtDOK1 in planta, we isolated two independent lines of T-DNA-tagged AtDOK1 mutants, dok1-1 and dok1-2. The heterozygous plants showed developmental defects in male and female gametophytes, including an aberrant pollen structure, low pollen viability, and short siliques. Additionally, the mutations had incomplete penetrance. These results suggest that AtDOK1 is a functional DOK required for reproductive processes in Arabidopsis.
Collapse
Affiliation(s)
- Kazue Kanehara
- Academia Sinica, Institute of Plant and Microbial Biology, No. 128 Sec. 2 Academia Rd., Nankang Taipei, 11529, Taiwan; Molecular and Biological Agricultural Sciences Program, Academia Sinica, Taiwan International Graduate Program, No. 128 Sec. 2 Academia Rd., Nankang, Taipei, 11529, Taiwan; Biotechnology Center, National Chung-Hsing University, 250 Kuo-Kuang Rd., Taichung, 402, Taiwan; Department of Applied Science and Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido, 050-8585, Japan
| | | | | | | | | | | |
Collapse
|
3
|
Han GS, O'Hara L, Carman GM, Siniossoglou S. An unconventional diacylglycerol kinase that regulates phospholipid synthesis and nuclear membrane growth. J Biol Chem 2008; 283:20433-42. [PMID: 18458075 PMCID: PMC2459266 DOI: 10.1074/jbc.m802903200] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Indexed: 11/21/2022] Open
Abstract
Changes in nuclear size and shape during the cell cycle or during development require coordinated nuclear membrane remodeling, but the underlying molecular events are largely unknown. We have shown previously that the activity of the conserved phosphatidate phosphatase Pah1p/Smp2p regulates nuclear structure in yeast by controlling phospholipid synthesis and membrane biogenesis at the nuclear envelope. Two screens for novel regulators of phosphatidate led to the identification of DGK1. We show that Dgk1p is a unique diacylglycerol kinase that uses CTP, instead of ATP, to generate phosphatidate. DGK1 counteracts the activity of PAH1 at the nuclear envelope by controlling phosphatidate levels. Overexpression of DGK1 causes the appearance of phosphatidate-enriched membranes around the nucleus and leads to its expansion, without proliferating the cortical endoplasmic reticulum membrane. Mutations that decrease phosphatidate levels decrease nuclear membrane growth in pah1Delta cells. We propose that phosphatidate metabolism is a critical factor determining nuclear structure by regulating nuclear membrane biogenesis.
Collapse
Affiliation(s)
- Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | | | | | | |
Collapse
|
4
|
Han GS, O'Hara L, Siniossoglou S, Carman GM. Characterization of the yeast DGK1-encoded CTP-dependent diacylglycerol kinase. J Biol Chem 2008; 283:20443-53. [PMID: 18458076 PMCID: PMC2459283 DOI: 10.1074/jbc.m802866200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae DGK1 gene encodes a diacylglycerol kinase enzyme that catalyzes the formation of phosphatidate from diacylglycerol. Unlike the diacylglycerol kinases from bacteria, plants, and animals, the yeast enzyme utilizes CTP, instead of ATP, as the phosphate donor in the reaction. Dgk1p contains a CTP transferase domain that is present in the SEC59-encoded dolichol kinase and CDS1-encoded CDP-diacylglycerol synthase enzymes. Deletion analysis showed that the CTP transferase domain was sufficient for diacylglycerol kinase activity. Point mutations (R76A, K77A, D177A, and G184A) of conserved residues within the CTP transferase domain caused a loss of diacylglycerol kinase activity. Analysis of DGK1 alleles showed that the in vivo functions of Dgk1p were specifically due to its diacylglycerol kinase activity. The DGK1-encoded enzyme had a pH optimum at 7.0-7.5, required Ca(2+) or Mg(2+) ions for activity, was potently inhibited by N-ethylmaleimide, and was labile at temperatures above 40 degrees C. The enzyme exhibited positive cooperative (Hill number = 2.5) kinetics with respect to diacylglycerol (apparent K(m) = 6.5 mol %) and saturation kinetics with respect to CTP (apparent K(m) = 0.3 mm). dCTP was both a substrate (apparent K(m) = 0.4 mm) and competitive inhibitor (apparent K(i) = 0.4 mm) of the enzyme. Diacylglycerol kinase activity was stimulated by major membrane phospholipids and was inhibited by CDP-diacylglycerol and sphingoid bases.
Collapse
Affiliation(s)
- Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | | | | | | |
Collapse
|
5
|
Orłowski J, Machula K, Janik A, Zdebska E, Palamarczyk G. Dissecting the role of dolichol in cell wall assembly in the yeast mutants impaired in early glycosylation reactions. Yeast 2007; 24:239-52. [PMID: 17397129 DOI: 10.1002/yea.1479] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Evidence is presented that temperature-sensitive Saccharomyces cerevisiae mutants, impaired in dolichol kinase (Sec59p) or dolichyl phosphate mannose synthase (Dpm1p) activity have an aberrant cell wall composition and ultrastructure. The mutants were oversensitive to Calcofluor white, an agent interacting with the cell wall chitin. In accordance with this, chemical analysis of the cell wall alkali-insoluble fraction indicated an increased amount of chitin and changes in the quantity of beta1,6- and beta1,3-glucan in sec59-1 and dpm1-6 mutants. In order to unravel the link between the formation of dolichyl phosphate and dolichyl phosphate mannose and the cell wall assembly, we screened a yeast genomic library for a multicopy suppressors of the thermosensitive phenotype. The RER2 and SRT1 genes, encoding cis-prenyltransferases, were isolated. In addition, the ROT1 gene, encoding protein involved in beta1,6-glucan synthesis (Machi et al., 2004) and protein folding (Takeuchi et al., 2006) acted as a multicopy suppressor of the temperature-sensitive phenotype of the sec59-1 mutant. The cell wall of the mutants and of mutants bearing the multicopy suppressors was analysed for carbohydrate and mannoprotein content. We also examined the glycosylation status of the plasma membrane protein Gas1p, a beta1,3-glucan elongase, and the degree of phosphorylation of the Mpk1/Slt2 protein, involved in the cell wall integrity pathway.
Collapse
Affiliation(s)
- Jacek Orłowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, Poland
| | | | | | | | | |
Collapse
|
6
|
Human Dolichol Kinase, a Polytopic Endoplasmic Reticulum Membrane Protein with a Cytoplasmically Oriented CTP-binding Site. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84083-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Shridas P, Waechter CJ. Human dolichol kinase, a polytopic endoplasmic reticulum membrane protein with a cytoplasmically oriented CTP-binding site. J Biol Chem 2006; 281:31696-704. [PMID: 16923818 DOI: 10.1074/jbc.m604087200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dolichol kinase (DK) catalyzes the CTP-dependent phosphorylation of dolichol in the biosynthesis de novo and possibly the recycling of dolichyl monophosphate in yeast and mammals. A cDNA clone from human brain encoding the mammalian homologue, hDKp, of the yeast enzyme has recently been identified. In this study hDK has been overexpressed in Chinese hamster ovary cells and shown to be a polytopic membrane protein localized in the endoplasmic reticulum with an N terminus extended into the lumen and a cytoplasmically oriented C terminus. A conserved sequence, DXXAXXXGXXXGX(8)KKTXEG, found in several enzymes utilizing CTP as substrate including DKs, phytol kinases, and several CDP-diacylglycerol synthetases has been identified, and the possibility that it is part of the CTP-binding domain of hDKp has been investigated. Topological studies indicate that the loop between transmembrane domains (TMD) 11 and TMD12 of hDKp, containing the putative CTP binding domain, faces the cytoplasm. Deletion of the loop between TMD11-12, hDK(Delta459-474), or mutation of selected conserved residues within the cytoplasmic loop results in either a partial or total loss of activity and significant reductions in the affinity for CTP. In addition, the SEC59 gene in the yeast DK mutant was sequenced, and a G420D substitution was found. Conversion of the corresponding residue Gly-443 in hDKp to aspartic acid resulted in inactivation of the mammalian enzyme. These results extend the information on the topological arrangement of hDKp and indicate that the cytoplasmic loop between TMDs 11-12, containing the critical conserved residues, lysine 470 and lysine 471 in the (470)KKTXEG(475) motif, is part of the CTP-binding site in hDK.
Collapse
Affiliation(s)
- Preetha Shridas
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
8
|
Fernandez F, Shridas P, Jiang S, Aebi M, Waechter CJ. Expression and characterization of a human cDNA that complements the temperature-sensitive defect in dolichol kinase activity in the yeast sec59-1 mutant: the enzymatic phosphorylation of dolichol and diacylglycerol are catalyzed by separate CTP-mediated kinase activities in Saccharomyces cerevisiae. Glycobiology 2002; 12:555-62. [PMID: 12213788 DOI: 10.1093/glycob/cwf068] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dolichol kinase (DK) catalyzes the CTP-mediated phosphorylation of dolichol in eukaryotic cells, the terminal step in dolichyl monophosphate (Dol-P) biosynthesis de novo. In S. cerevisiae, the SEC59 gene encodes a protein essential for the expression of DK, an enzyme activity that is required for cell viability and normal rates of lipid intermediate synthesis and protein N-glycosylation. This study identifies a cDNA clone from human brain that encodes the mammalian homolog of DK (hDK1p). hDK1 is capable of complementing the growth defect, elevating DK activity, and consequently increasing Dol-P levels in vivo and restoring normal N-glycosylation of carboxypeptidase Y at the restrictive temperature in the temperature-sensitive mutant sec59-1. The CTP-mediated phosphorylation of diacylglycerol (DAG) is unaffected by either the temperature-sensitive mutation in the sec59-1 strain, overexpression of the SEC59 gene, or the mammalian homolog hDK1 under conditions that produced a loss or elevation in the level of DK activity. Additionally, overexpression of hDK1p in Sf-9 cells resulted in a 15-fold increase in DK activity but not DAG kinase activity in crude microsomal fractions. The cloned cDNA contains an open reading frame that would encode a protein with 538 amino acids and a molecular weight of 59,268 kDa. Consistent with this prediction, new polypeptides were detected with an apparent molecular weight of 59-60 kDa when His(6)-tagged constructs of hDK1 or the SEC59 gene were expressed in Sf-9 cells or the temperature-sensitive sec59-1 mutant cells, respectively. These results identify the first cDNA clone encoding a protein required for the expression of DK activity, possibly the catalytic subunit, in a mammalian cell, and establish that the phosphorylation of dolichol and DAG are catalyzed by separate kinase activities in yeast.
Collapse
Affiliation(s)
- Fabiana Fernandez
- Institut fur Mikrobiologie, ETH Zentrum, CH-8092 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
9
|
Müller MO, Meylan-Bettex M, Eckstein F, Martinoia E, Siegenthaler PA, Bovet L. Lipid phosphorylation in chloroplast envelopes. Evidence for galactolipid CTP-dependent kinase activities. J Biol Chem 2000; 275:19475-81. [PMID: 10777505 DOI: 10.1074/jbc.m002575200] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid phosphorylation takes place within the chloroplast envelope. In addition to phosphatidic acid, phosphatidylinositol phosphate, and their corresponding lyso-derivatives, we found that two novel lipids underwent phosphorylation in envelopes, particularly in the presence of carrier-free [gamma-(32)P]ATP. These two lipids incorporated radioactive phosphate in chloroplasts in the presence of [gamma-(32)P]ATP or [(32)P]P(i) and light. Interestingly, these two lipids were preferentially phosphorylated in envelope membranes in the presence [gamma-(32)P]CTP, as the phosphoryl donor, or [gamma-(32)P]ATP, when supplemented with CDP and nucleoside diphosphate kinase II. The lipid kinase activity involved in this reaction was specifically inhibited in the presence of cytosine 5'-O-(thiotriphosphate) (CTPgammaS) and sensitive to CTP chase, thereby showing that both lipids are phosphorylated by an envelope CTP-dependent lipid kinase. The lipids were identified as phosphorylated galactolipids by using an acid hydrolysis procedure that generated galactose 6-phosphate. CTPgammaS did not affect the import of the small ribulose-bisphosphate carboxylase/oxygenase subunit into chloroplasts, the possible physiological role of this novel CTP-dependent galactolipid kinase activity in the chloroplast envelope is discussed.
Collapse
Affiliation(s)
- M O Müller
- Laboratory of Plant Physiology, University of Neuchâtel, 2007 Neuchâtel, Switzerland
| | | | | | | | | | | |
Collapse
|
10
|
Grassi D, Lippuner V, Aebi M, Brunner J, Vasella A. Synthesis and Enzymatic Phosphorylation of a Photoactivatable Dolichol Analogue. J Am Chem Soc 1997. [DOI: 10.1021/ja9721677] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- D. Grassi
- Contribution from the Institutes of Microbiology, Biochemistry, and Organic Chemistry, Swiss Federal Institute of Technology, CH-8092 Zürich, Switzerland
| | - V. Lippuner
- Contribution from the Institutes of Microbiology, Biochemistry, and Organic Chemistry, Swiss Federal Institute of Technology, CH-8092 Zürich, Switzerland
| | - M. Aebi
- Contribution from the Institutes of Microbiology, Biochemistry, and Organic Chemistry, Swiss Federal Institute of Technology, CH-8092 Zürich, Switzerland
| | - J. Brunner
- Contribution from the Institutes of Microbiology, Biochemistry, and Organic Chemistry, Swiss Federal Institute of Technology, CH-8092 Zürich, Switzerland
| | - A. Vasella
- Contribution from the Institutes of Microbiology, Biochemistry, and Organic Chemistry, Swiss Federal Institute of Technology, CH-8092 Zürich, Switzerland
| |
Collapse
|
11
|
Polyprenol formation in the yeast Saccharomyces cerevisiae: effect of farnesyl diphosphate synthase overexpression. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)37220-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Abstract
Products of cis-prenyltransferase activity, the first committed enzyme of the dolichol biosynthetic pathway, have been characterized in Saccharomyces cerevisiae. The evidence based on the results of ion exchange, HPTLC chromatography and acid phosphatase digestion has been presented indicating that the final product of the enzyme action in vitro is free polyprenol and not polyprenol mono- or diphosphate. On the other hand, the results of HPLC analysis confirmed that in vivo yeast accumulate alpha-saturated polyprenols (dolichols). Phosphorylation of endogenous dolichols by cytidine triphosphate (CTP)-dependent kinase is demonstrated. The hypothesis is put forth that in S cerevisiae free polyprenol is the substrate for the alpha-reductase responsible for its conversion to dolichol which in turn is phosphorylated into its active form: dolichyl phosphate.
Collapse
Affiliation(s)
- A Szkopińska
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | | | | |
Collapse
|
13
|
Szkopińska A, Rytka J, Karst F, Palamarczyk G. The deficiency of sterol biosynthesis in Saccharomyces cerevisiae affects the synthesis of glycosyl derivatives of dolichyl phosphates. FEMS Microbiol Lett 1993; 112:325-8. [PMID: 8224798 DOI: 10.1111/j.1574-6968.1993.tb06470.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutants deficient in sterol (thermosensitive ergosterol auxotrophs) erg 8, 9, 12 and heme synthesis hem 1, 12 were screened for the level of free dolichol and dolichyl phosphate synthesized in the mevalonate pathway as well as for the activity of dolichyl phosphate-dependent glycosyl transferases. The amount of DolP synthesized via CTP-dependent phosphorylation was the same in mutants and parental strains. However, mannosylation and glucosylation of endogenous dolichyl phosphates in ergosterol mutants was about four times lower compared to parental strains, while the same reactions carried out with exogenous Dol24P reached 80% of the level observed in parental strains indicating that activities of DolPMan and DolPGlc synthases are not the rate-limiting factors. It is postulated that the de novo synthesis of DolP is impaired in the ergosterol mutants. Moreover, a block in the ergosterol branch of the metabolic pathway (erg 9) causes an increase in the de novo synthesis of dolichyl phosphate.
Collapse
Affiliation(s)
- A Szkopińska
- Institute of Biochemistry and Biophysics PAN, Warsaw, Poland
| | | | | | | |
Collapse
|
14
|
Heller L, Orlean P, Adair WL. Saccharomyces cerevisiae sec59 cells are deficient in dolichol kinase activity. Proc Natl Acad Sci U S A 1992; 89:7013-6. [PMID: 1323123 PMCID: PMC49635 DOI: 10.1073/pnas.89.15.7013] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The temperature-sensitive Saccharomyces cerevisiae mutant sec59 accumulates inactive and incompletely glycosylated protein precursors in its endoplasmic reticulum at the restrictive temperature. O-mannosylation and glycosyl phosphatidylinositol membrane anchoring of protein are also abolished, consistent with a deficiency in dolichyl phosphate mannose. Membranes prepared from sec59 cells that had been shifted to the restrictive temperature, however, made normal amounts of dolichyl phosphate mannose when exogenous dolichyl phosphate was supplied, but dolichyl phosphate mannose synthesis was severely depressed in the absence of exogenous dolichyl phosphate. Quantitative measurements of dolichyl phosphate in sec59 cells showed that the levels were decreased to 48% of wild type at the permissive temperature and to less than 10% at the restrictive temperature. Assays of enzymes from the dolichyl phosphate synthetic pathway, cis-prenyltransferase and dolichyl pyrophosphate phosphatase, gave wild-type levels. However, dolichol kinase activity was greatly decreased. When sec59 cells were transformed with a plasmid that overexpresses the wild-type gene, dolichol kinase activity increased 10-fold over wild-type levels. These results strongly suggest that the sec59 gene encodes dolichol kinase.
Collapse
Affiliation(s)
- L Heller
- Department of Biochemistry and Molecular Biology, University of South Florida College of Medicine, Tampa 33612
| | | | | |
Collapse
|
15
|
Szkopińska A, Swiezewska E, Chojnacki T. On the specificity of dolichol kinase and DolPMan synthase towards isoprenoid alcohols of different chain length in rat liver microsomal membrane. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:1151-7. [PMID: 1327890 DOI: 10.1016/0020-711x(92)90386-f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. A wide range of dolichols differing in the length of hydrocarbon chain (from 11 to 32 isoprene residues) were found to be phosphorylated in the presence of CTP in rat liver microsomes. 2. Fully unsaturated polyprenols of the same chain length as dolichols were poor substrates for dolichol kinase at low detergent (Nonidet P-40) concentration. At higher concentration of detergent, both dolichols and polyprenols were equally effective. 3. In the transfer of mannosyl residues from GDPMan, the dolichyl phosphates generated in rat liver microsomes were all good lipid acceptors, while fully unsaturated polyprenyl phosphates were not.
Collapse
Affiliation(s)
- A Szkopińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa
| | | | | |
Collapse
|
16
|
Ardail D, Lermé F, Louisot P. Dolichol kinase activity: a key factor in the control of N-glycosylation in inner mitochondrial membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1024:131-8. [PMID: 2159801 DOI: 10.1016/0005-2736(90)90216-b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inner mitochondrial membranes from liver contain a dolichol kinase which required CTP as a phosphoryl donor. Kinase activity was linear with protein concentration and unlike other reported kinases, activated almost equally well by Mg2+, Mn2+ or Ca2+. Thin-layer chromatography showed that the reaction product co-migrated with authentic dolichyl monophosphate. The phosphorylation of dolichol did not occur in presence of ATP, GTP or UTP but required exogenous dolichol for maximal activity. Newly synthesized [3H]dolichyl monophosphate has been shown to be glycosylated in the presence of GDP[14C]mannose or UDP[14C]glucose. The double labeled lipids formed by the sugar nucleotide-dependent reactions were identified respectively as [14C]mannosylphosphoryl[3H]dolichol and [14C]glucosylphosphoryl [3H]dolichol. These results are discussed in terms of regulation of N-glycosylation processes in inner mitochondrial membranes from liver.
Collapse
Affiliation(s)
- D Ardail
- Department of Biochemistry, University of Lyon, INSERM-CNRS U. 189, Lyon-Sud Medical School, Oullins, France
| | | | | |
Collapse
|