1
|
Eraso-Pichot A, Brasó-Vives M, Golbano A, Menacho C, Claro E, Galea E, Masgrau R. GSEA of mouse and human mitochondriomes reveals fatty acid oxidation in astrocytes. Glia 2018; 66:1724-1735. [PMID: 29575211 DOI: 10.1002/glia.23330] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 12/18/2022]
Abstract
The prevalent view in neuroenergetics is that glucose is the main brain fuel, with neurons being mostly oxidative and astrocytes glycolytic. Evidence supporting that astrocyte mitochondria are functional has been overlooked. Here we sought to determine what is unique about astrocyte mitochondria by performing unbiased statistical comparisons of the mitochondriome in astrocytes and neurons. Using MitoCarta, a compendium of mitochondrial proteins, together with transcriptomes of mouse neurons and astrocytes, we generated cell-specific databases of nuclear genes encoding for mitochondrion proteins, ranked according to relative expression. Standard and in-house Gene Set Enrichment Analyses (GSEA) of five mouse transcriptomes revealed that genes encoding for enzymes involved in fatty acid oxidation (FAO) and amino acid catabolism are consistently more expressed in astrocytes than in neurons. FAO and oxidative-metabolism-related genes are also up-regulated in human cortical astrocytes versus the whole cortex, and in adult astrocytes versus fetal astrocytes. We thus present the first evidence of FAO in human astrocytes. Further, as shown in vitro, FAO coexists with glycolysis in astrocytes and is inhibited by glutamate. Altogether, these analyses provide arguments against the glucose-centered view of energy metabolism in astrocytes and reveal mitochondria as specialized organelles in these cells.
Collapse
Affiliation(s)
- Abel Eraso-Pichot
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, i Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
| | - Marina Brasó-Vives
- Institute of Evolutionary Biology (Universitat Pompeu Fabra - CSIC), PRBB, Barcelona, 08003, Spain
| | - Arantxa Golbano
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, i Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
| | - Carmen Menacho
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, i Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
| | - Enrique Claro
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, i Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
| | - Elena Galea
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, i Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain.,ICREA, Passeig Lluís Companys 23, Barcelona, 08010, Spain
| | - Roser Masgrau
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, i Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
| |
Collapse
|
2
|
L-Carnitine and Acetyl-L-carnitine Roles and Neuroprotection in Developing Brain. Neurochem Res 2017; 42:1661-1675. [PMID: 28508995 DOI: 10.1007/s11064-017-2288-7] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/30/2022]
Abstract
L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. Treatment with L-carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism. In recent years there has been considerable interest in the therapeutic potential of L-carnitine and its acetylated derivative acetyl-L-carnitine (ALCAR) for neuroprotection in a number of disorders including hypoxia-ischemia, traumatic brain injury, Alzheimer's disease and in conditions leading to central or peripheral nervous system injury. There is compelling evidence from preclinical studies that L-carnitine and ALCAR can improve energy status, decrease oxidative stress and prevent subsequent cell death in models of adult, neonatal and pediatric brain injury. ALCAR can provide an acetyl moiety that can be oxidized for energy, used as a precursor for acetylcholine, or incorporated into glutamate, glutamine and GABA, or into lipids for myelination and cell growth. Administration of ALCAR after brain injury in rat pups improved long-term functional outcomes, including memory. Additional studies are needed to better explore the potential of L-carnitine and ALCAR for protection of developing brain as there is an urgent need for therapies that can improve outcome after neonatal and pediatric brain injury.
Collapse
|
3
|
Murphy MG, Jollimore C, Crocker JF, Her H. Beta-oxidation of [1-14C]palmitic acid by mouse astrocytes in primary culture: effects of agents implicated in the encephalopathy of Reye's syndrome. J Neurosci Res 1992; 33:445-54. [PMID: 1469746 DOI: 10.1002/jnr.490330310] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
beta-Oxidation of [1-14C]palmitic acid was examined in homogenates of astrocytes cultured from neonatal mouse brain. Under optimal reaction conditions (< or = 50 micrograms protein, 10 min at 37 degrees C), oxidation increased as a function of palmitate concentration (15 microM to 2 mM) and reached a maximum rate of 1.98 +/- 0.29 nmol/min/mg protein (mean +/- SEM) at 0.2 mM substrate. Eadie-Hofstee analysis of data from four experiments yielded apparent values for Vmax of 1.87 nmol/min/mg protein, and for Km, 35-40 microM. There were no dramatic changes in the oxidation rate in cells between 10 and 36 days in culture. During the 10-min assays, less than 0.05% of the radioactivity was converted to 14CO2 by the astrocytes; water-soluble products accounted for 1-2% of the total substrate added. Studies with KCN indicated that 60-70% of the total activity occurred in the mitochondria. We have been studying the structural and functional changes associated with the cerebral encephalopathy of Reye's syndrome (RS). Three-week-old astrocytes exposed to serum from RS children for the final 7 days of culture exhibited minor mitochondrial pleomorphism and had increased numbers of other intracellular organelles. Examination of the effects of agents implicated in RS indicated that oxidation of [1-14C]palmitate was not altered by Na+ salicylate (1-3 mM), but was inhibited by the industrial surfactant, Toximul MP-8 (> or = 10 micrograms/ml), 4-pentenoic acid (> or = 0.1 microM), or with 4 days' exposure to ammonia (10 nM). The latter treatment also resulted in an increase in protein synthesis, cell volume, and malondialdehyde formation. These results suggest that some of the "toxins" implicated in RS inhibit fatty-acid oxidation in the astrocytes and produce other lipid-related abnormalities that could be related to encephalopathy.
Collapse
Affiliation(s)
- M G Murphy
- Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|