1
|
Global Investigation of Cytochrome P450 Genes in the Chicken Genome. Genes (Basel) 2019; 10:genes10080617. [PMID: 31416226 PMCID: PMC6723978 DOI: 10.3390/genes10080617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Cytochrome P450 (CYP) superfamily enzymes are broadly involved in a variety of physiological and toxicological processes. However, genome-wide analysis of this superfamily has never been investigated in the chicken genome. In this study, genome-wide analyses identified 45 chicken CYPs (cCYPs) from the chicken genome, and their classification and evolutionary relationships were investigated by phylogenetic, conserved protein motif, and gene structure analyses. The comprehensive evolutionary data revealed several remarkable characteristics of cCYPs, including the highly divergent and rapid evolution of the cCYPs, and the loss of cCYP2AF in the chicken genome. Furthermore, the cCYP expression profile was investigated by RNA-sequencing. The differential expression of cCYPs in developing embryos revealed the involvement of cCYPs in embryonic development. The significantly regulated cCYPs suggested its potential role in hepatic metabolism. Additionally, 11 cCYPs, including cCYP2AC1, cCYP2C23a, and cCYP2C23b, were identified as estrogen-responsive genes, which indicates that these cCYPs are involved in the estrogen-signaling pathway. Meanwhile, an expression profile analysis highlights the divergent role of different cCYPs. These data expand our view of the phylogeny and evolution of cCYPs, provide evolutionary insight, and can help elucidate the roles of cCYPs in physiological and toxicological processes in chicken.
Collapse
|
2
|
Effect of acrylamide on chick embryonic liver glutathione S-transferases. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2010. [DOI: 10.1007/s12349-009-0070-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Perrone CE, Ahr HJ, Duan JD, Jeffrey AM, Schmidt U, Williams GM, Enzmann HH. Embryonic turkey liver: activities of biotransformation enzymes and activation of DNA-reactive carcinogens. Arch Toxicol 2004; 78:589-98. [PMID: 15167984 DOI: 10.1007/s00204-004-0580-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 03/24/2004] [Indexed: 10/26/2022]
Abstract
Avian embryos are a potential alternative model for chemical toxicity and carcinogenicity research. Because the toxic and carcinogenic effects of some chemicals depend on bioactivation, activities of biotransformation enzymes and formation of DNA adducts in embryonic turkey liver were examined. Biochemical analyses of 22-day in ovo turkey liver post-mitochondrial fractions revealed activities of the biotransformation enzymes 7-ethoxycoumarin de-ethylase (ECOD), 7-ethoxyresorufin de-ethylase (EROD), aldrin epoxidase (ALD), epoxide hydrolase (EH), glutathione S-transferase (GST), and UDP-glucuronyltransferase (GLUT). Following the administration of phenobarbital (24 mg/egg) on day 21, enzyme activities of ECOD, EROD, ALD, EH and GLUT, but not of GST, were increased by two-fold or higher levels by day 22. In contrast, acute administration of 3-methylcholanthrene (5 mg/egg) induced only ECOD and EROD activities. Bioactivation of structurally diverse pro-carcinogens was also examined using (32)P-postlabeling for DNA adducts. In ovo exposure of turkey embryos on day 20 of gestation to 2-acetylaminofluorene (AAF), 4,4'-methylenebis(2-chloroaniline) (MOCA), benzo[a]pyrene (BaP), and 2-amino-3,8-dimethylimidazo[4,5- f]quinoxaline (MeIQx) resulted in the formation of DNA adducts in livers collected by day 21. Some of the DNA adducts had (32)P-postlabeling chromatographic migration patterns similar to DNA adducts found in livers from Fischer F344 rats exposed to the same pro-carcinogens. We conclude that 21-day embryonic turkey liver is capable of chemical biotransformation and activation of genotoxic carcinogens to form DNA adducts. Thus, turkey embryos could be utilized to investigate potential chemical toxicity and carcinogenicity.
Collapse
Affiliation(s)
- Carmen E Perrone
- Department of Pathology, New York Medical College,Valhalla, NY 10595, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
Hu R, Zhai Q, Liu W, Liu X. An insight into the mechanism of cytotoxicity of ricin to hepatoma cell: roles of Bcl-2 family proteins, caspases, Ca(2+)-dependent proteases and protein kinase C. J Cell Biochem 2001; 81:583-93. [PMID: 11329613 DOI: 10.1002/jcb.1076] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ability of ricin, a type II ribosome-inactivating protein, to induce hepatoma cell (BEL7404) to apoptosis in vitro was examined by fluorescence microscopy, flow cytometry, and DNA fragmentation assay. As a Bcl-2 lacking model, BEL7404 bore unique advantage to study the effect of over-expressing Bcl-2 on the apoptosis induced by the inhibitor of protein synthesis. By establishing a Bcl-2 over-expressing cell line (BEL7404/ Bcl-2), we found that Bcl-2 could promote the survival of the hepatoma cell against ricin insult. The ricin-induced apoptosis of BEL7404 was accompanied by increased expression of Bak and decreased levels of Bcl-xl and Bax. Caspases and PARP cleavage activity were found to be implicated in the death process. Through the inhibitor tests, our results excluded the participation of calcium-dependent proteases or protein kinase C in the apoptotic process induced by ricin, though an elevation of intracellular calcium did occur as an immediate response to ricin treatment. Cycloheximide, another protein synthesis inhibitor, did synergistically enhance rather than inhibit the cytotoxicity of ricin to hepatoma cell BEL7404. Actually, cycloheximide alone was able to induce hepatoma cell BEL7404 to death that could also be inhibited by over-expressing Bcl-2. The elevation of apoptotic protein Bak was discussed to challenge the notion that ricin exerted its cytotoxicity through nonspecific inhibition of all the de novo protein synthesis.
Collapse
Affiliation(s)
- R Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20031, China
| | | | | | | |
Collapse
|
5
|
Sueyoshi T, Negishi M. Phenobarbital response elements of cytochrome P450 genes and nuclear receptors. Annu Rev Pharmacol Toxicol 2001; 41:123-43. [PMID: 11264453 DOI: 10.1146/annurev.pharmtox.41.1.123] [Citation(s) in RCA: 297] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phenobarbital (PB) response elements are composed of various nuclear receptor (NR)-binding sites. A 51-bp distal element PB-responsive enhancer module (PBREM) conserved in the PB-inducible CYP2B genes contains two NR-binding direct repeat (DR)-4 motifs. Responding to PB exposure in liver, the NR constitutive active receptor (CAR) translocates to the nucleus, forms a dimer with the retinoid X receptor (RXR), and activates PBREM via binding to DR-4 motifs. For CYP3A genes, a common NR site [DR-3 or everted repeat (ER)-6] is present in proximal promoter regions. In addition, the distal element called the xenobiotic responsive module (XREM) is found in human CYP3A4 genes, which contain both DR-3 and ER-6 motifs. Pregnane X receptor (PXR) could bind to all of these sites and, upon PB induction, a PXR:RXR heterodimer could transactivate XREM. These response elements and NRs are functionally versatile, and capable of responding to distinct but overlapping groups of xenochemicals.
Collapse
Affiliation(s)
- T Sueyoshi
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
6
|
Sugimoto H, Kataoka T, Igarashi M, Hamada M, Takeuchi T, Nagai K. E-73, an acetoxyl analogue of cycloheximide, blocks the tumor necrosis factor-induced NF-kappaB signaling pathway. Biochem Biophys Res Commun 2000; 277:330-3. [PMID: 11032726 DOI: 10.1006/bbrc.2000.3680] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proinflammatory cytokines such as tumor necrosis factor (TNF) and interleukin (IL)-1 activate the NF-kappaB signaling pathway which induces the expression of a variety of genes such as the encoding intercellular adhesion molecule (ICAM)-1. We have found that E-73, an acetoxyl analogue of cycloheximide, specifically blocks TNF-induced ICAM-1 expression even at concentrations unable to affect protein synthesis. By contrast, cycloheximide inhibited both TNF- and IL-1-induced ICAM-1 expression primarily due to the blockage of protein synthesis. The nuclear translocation of NF-kappaB as well as the IkappaB degradation induced by TNF, but not by IL-1, was significantly prevented by E-73. These observations suggest that E-73 blocks the TNF-induced NF-kappaB signaling pathway upstream of IkappaB degradation.
Collapse
Affiliation(s)
- H Sugimoto
- Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Louis CA, Wood SG, Walton HS, Sinclair PR, Sinclair JF. Mechanism of the synergistic induction of CYP2H by isopentanol plus ethanol: comparison to glutethimide and relation to induction of 5-aminolevulinate synthase. Arch Biochem Biophys 1998; 360:239-47. [PMID: 9851836 DOI: 10.1006/abbi.1998.0956] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We had previously found that combined treatment with isopentanol and ethanol synergistically induced CYP2H protein and activity in cultured chick nepatoytes. Here we investigated the mechanism of induction of CYP2H by the alcohols and whether they caused a coordinate induction of 5-aminolevulinate synthase (ALAS) mRNA. Treatment with isopentanol alone or in combination with ethanol resulted in coordinate increases in CYP2H1 and ALAS mRNAs. With isopentanol alone, the amounts of CYP2H1 and ALAS mRNAs at 4 to 6 h were similar to those observed after treatment with the alcohol combination, but declined by 11 h. Readdition of isopentanol at 11 h again increased the expression of both mRNAs, indicating that the decreases at 11 h were due to limiting amounts of inducer. Similar results were observed in cells exposed to low concentrations of glutethimide. In the combined alcohol treatment, increases in CYP2H1 and ALAS mRNAs were sustained from 4 h to 11 h after addition of the alcohols, but decreased to control levels by 24 h. Using pulse labeling to measure de novo synthesis of CYP2H1/2 protein, we found that the increases in CYP2H1/2 protein reflected the increases in CYP2H1 mRNA. The half-life of CYP2H1/2 protein, measured from pulse-chase experiments, was approximately twofold greater than the half-life of CYP2H1 mRNA. Our results indicate that the alcohols and glutethimide coordinately increase ALAS and CYP2H1 mRNA, and that increases in CYP2H1/2 protein arise from increases in its mRNA.
Collapse
Affiliation(s)
- C A Louis
- Veterans Administration Medical Center, White River Junction, Vermont, 05009, USA
| | | | | | | | | |
Collapse
|
8
|
Hamilton JW, Kaltreider RC, Bajenova OV, Ihnat MA, McCaffrey J, Turpie BW, Rowell EE, Oh J, Nemeth MJ, Pesce CA, Lariviere JP. Molecular basis for effects of carcinogenic heavy metals on inducible gene expression. ENVIRONMENTAL HEALTH PERSPECTIVES 1998; 106 Suppl 4:1005-15. [PMID: 9703486 PMCID: PMC1533345 DOI: 10.1289/ehp.98106s41005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Certain forms of the heavy metals arsenic and chromium are considered human carcinogens, although they are believed to act through very different mechanisms. Chromium(VI) is believed to act as a classic and mutagenic agent, and DNA/chromatin appears to be the principal target for its effects. In contrast, arsenic(III) is considered nongenotoxic, but is able to target specific cellular proteins, principally through sulfhydryl interactions. We had previously shown that various genotoxic chemical carcinogens, including chromium (VI), preferentially altered expression of several inducible genes but had little or no effect on constitutive gene expression. We were therefore interested in whether these carcinogenic heavy metals might target specific but distinct sites within cells, leading to alterations in gene expression that might contribute to the carcinogenic process. Arsenic(III) and chromium(VI) each significantly altered both basal and hormone-inducible expression of a model inducible gene, phosphoenolpyruvate carboxykinase (PEPCK), at nonovertly toxic doses in the chick embryo in vivo and rat hepatoma H411E cells in culture. We have recently developed two parallel cell culture approaches for examining the molecular basis for these effects. First, we are examining the effects of heavy metals on expression and activation of specific transcription factors known to be involved in regulation of susceptible inducible genes, and have recently observed significant but different effects of arsenic(III) and chromium(VI) on nuclear transcription factor binding. Second, we have developed cell lines with stably integrated PEPCK promoter-luciferase reporter gene constructs to examine effects of heavy metals on promoter function, and have also recently seen profound effects induced by both chromium(VI) and arsenic(III) in this system. These model systems should enable us to be able to identify the critical cis (DNA) and trans (protein) cellular targets of heavy metal exposure leading to alterations in expression of specific susceptible genes. It is anticipated that such information will provide valuable insight into the mechanistic basis for these effects as well as provide sensitive molecular biomarkers for evaluating human exposure.
Collapse
Affiliation(s)
- J W Hamilton
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755-3835, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bentivegna CS, Ihnat MA, Baptiste NS, Hamilton JW. Developmental regulation of the 3-methylcholanthrene- and dioxin-inducible CYP1A5 gene in chick embryo liver in vivo. Toxicol Appl Pharmacol 1998; 151:166-73. [PMID: 9705900 DOI: 10.1006/taap.1998.8439] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cDNA sequences for two dioxin-inducible cytochrome P450s in chicken, CYP1A4 and CYP1A5, have recently been reported which correspond to two dioxin-inducible forms of P450 previously designated as TCDDAHH and TCDDAA, respectively. The developmental expression of CYP1A4-associated aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH) activity and its association with expression of the Ah receptor had previously been characterized in chick embryo liver. The purpose of this study was to examine the developmental regulation of the second dioxin-inducible P450 gene, CYP1A5, in chick embryo liver. A partial gene sequence for CYP1A5 indicated that the intron/exon organization of this gene was identical to that of the CYP1A1 and CYP1A2 mammalian genes and was present in a single copy in the genome. CYP1A5 mRNA was expressed basally in chick embryo liver and was highly inducible by the Ah receptor ligands, 3-methylcholanthrene, beta-naphthoflavone, and 3,4,3', 4'-tetrachlorobiphenyl (TCB), but not by the phenobarbital analog, glutethimide. CYP1A5 mRNA levels were increased 40- to 50-fold within 5 h after a single TCB treatment, corresponding to a 30- to 40-fold increase in the transcription rate of the CYP1A5 gene at this time point. In contrast to a previous report that CYP1A5 mRNA expression was inducible by estradiol, we observed no effects of estradiol or dexamethasone on CYP1A5 mRNA expression, either alone or in combination with TCB. Basal and TCB-inducible CYP1A5 mRNA expression was maximal in liver at 8 days of development and remained high throughout the remainder of embryonic development. Thus, CYP1A5 appears to be regulated in a very similar manner to CYP1A4 in chick embryo liver.
Collapse
Affiliation(s)
- C S Bentivegna
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire, 03755-3835, USA
| | | | | | | |
Collapse
|
10
|
Fujii T, Ohba M. The Ipecac Alkaloids and Related Bases. THE ALKALOIDS: CHEMISTRY AND BIOLOGY 1998. [DOI: 10.1016/s0099-9598(08)60007-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Caron RM, Hamilton JW. Preferential effects of the chemotherapeutic DNA crosslinking agent mitomycin C on inducible gene expression in vivo. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1995; 25:4-11. [PMID: 7875125 DOI: 10.1002/em.2850250103] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The immediate effects of a single dose of the chemotherapeutic DNA crosslinking agent, mitomycin C (MMC), on the expression of several constitutive and drug-inducible genes were examined in a simple in vivo system, the 14 day chick embryo. We observed no effect of MMC on the steady-state mRNA expression of the constitutively expressed beta-actin, transferrin, or albumin genes. In contrast, MMC treatment significantly altered both the basal and drug-inducible mRNA expression of two glutethimide-inducible genes, 5-aminolevulinic acid (ALA) synthase and cytochrome P450 CYP2H1. The basal expression of these genes was transiently but significantly increased over a 24 hr period following a single dose of MMC. Conversely, MMC significantly suppressed the glutethimide-inducible expression of these genes when administered 1 to 24 hr prior to the inducing drug. The effects of MMC on both basal and drug-inducible ALA synthase and CYP2H1 mRNA expression were principally a result of changes in the transcription rates of these genes. In contrast, MMC treatment had little or no effect on glutethimide-induced expression of ALA synthase or CYP2H1 when administered 1 hr after the inducing drug, suggesting that a very early event in the induction process represents the target for these MMC effects. Covalent binding studies demonstrated that the effects of MMC on gene expression were closely correlated temporally with formation of [3H]-porfiromycin-DNA adducts. These results support the hypothesis that genotoxic chemicals specifically target their effects to inducible genes in vivo.
Collapse
Affiliation(s)
- R M Caron
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755-3835
| | | |
Collapse
|
12
|
McCaffrey J, Wolf CM, Hamilton JW. Effects of the genotoxic carcinogen chromium(VI) on basal and hormone-inducible phosphoenolpyruvate carboxykinase gene expression in vivo: correlation with glucocorticoid- and developmentally regulated expression. Mol Carcinog 1994; 10:189-98. [PMID: 8068179 DOI: 10.1002/mc.2940100403] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous studies have shown that a number of different genotoxic carcinogens that induce different types of DNA damage preferentially alter the expression of inducible genes in vivo. To investigate further the mechanistic basis for these effects, we examined the effects of the human lung carcinogen chromium(VI) on expression of the hormone-inducible cytosolic phosphoenolpyruvate carboxykinase (PEPCK) gene in chick embryo liver. Chromium(VI) pretreatment had significant effects on both basal and glucocorticoid-inducible PEPCK expression in 14-d-old embryo liver. These effects were principally a result of changes in PEPCK transcription. In contrast, treatment with chromium(VI) 1 h after treatment with glucocorticoid had no effect on PEPCK induction, suggesting that an early event in the induction process is the target for carcinogen effects. In 16-d-old liver, in which PEPCK expression is no longer responsive to glucocorticoid induction, both basal and inducible PEPCK expression were also refractory to chromium(VI) effects, indicating that carcinogen responsiveness is a phenotypic rather than an inherent property of inducible genes and is related to their competence for induction. Chromium(VI) had no effect on cAMP induction of PEPCK expression, demonstrating that carcinogens target their effects to specific regulatory pathways. Comparison of the effects of chromium(VI) with those of cycloheximide suggests that chromium(VI) targets its effects to a labile, constitutively expressed repressor involved in PEPCK gene regulation.
Collapse
Affiliation(s)
- J McCaffrey
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755-3835
| | | | | |
Collapse
|
13
|
McCaffrey J, Hamilton JW. Comparison of effects of direct-acting DNA methylating and ethylating agents on inducible gene expression in vivo. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1994; 23:164-170. [PMID: 8162889 DOI: 10.1002/em.2850230303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Our laboratory is interested in whether chemical carcinogen-induced DNA damage is non-randomly distributed in the genome, i.e., "targeted," at the level of individual genes. As one means of investigating this, we have examined whether carcinogen treatment differentially alters the expression of specific genes in vivo. In this study, we have compared the effects of four direct-acting simple alkylating agents (methyl methanesulfonate, ethyl methanesulfonate, methylnitrosourea, and ethylnitrosourea) on the steady-state mRNA expression of a model inducible gene, phosphoenolpyruvate carboxykinase (PEPCK), using the chick embryo as a simple in vivo test system. We observed no effect of any of these four carcinogens on the steady-state mRNA expression of the constitutively expressed beta-actin, transferrin, or albumin genes in chick embryo liver following a single dose of carcinogen. In contrast, these same treatments significantly altered both the basal and inducible expression of the glucocorticoid-inducible PEPCK gene. These results support the hypothesis that inducible gene expression is a target for the effects of chemical carcinogens in vivo. In addition, the direction, magnitude, and time course of these effects were agent-specific. Qualitative and quantitative differences in effects between the methylating and ethylating agents and between the methanesulfonates and nitrosoureas were correlated with differences in their specific patterns of DNA adduct formation, suggesting that different DNA lesions have different effects on inducible gene expression.
Collapse
Affiliation(s)
- J McCaffrey
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 05755-3835
| | | |
Collapse
|
14
|
Hamilton JW, Louis CA, Doherty KA, Hunt SR, Reed MJ, Treadwell MD. Preferential alteration of inducible gene expression in vivo by carcinogens that induce bulky DNA lesions. Mol Carcinog 1993; 8:34-43. [PMID: 7688968 DOI: 10.1002/mc.2940080109] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Our laboratory is interested in whether chemical carcinogen-induced DNA damage is nonrandomly distributed in the genome, i.e., "targeted," at the level of individual genes. To examine this, we have been investigating whether carcinogen treatment in vivo differentially alters the expression of specific genes. In this study, we examined the effects of four model carcinogens that induce bulky lesions in DNA--benzo[a]pyrene (B[a]P), aflatoxin B1 (AFB1), 7,12-dimethylbenz[a]anthracene (DMBA), and 2-acetylaminofluorene (AAF)--on the steady-state mRNA expression of several constitutive and drug-inducible genes in vivo. We specifically tested the hypothesis that carcinogen-induced DNA damage is preferentially targeted to inducible genes relative to constitutively expressed genes using the chick embryo as a simple in vivo test system. In summary, the four carcinogens had no effect on the steady-state mRNA expression of constitutively expressed beta-actin, transferrin, or albumin genes over a 24-h period after a single dose of each carcinogen. In contrast, each of these same treatments significantly altered the mRNA expression of two glutethimide-inducible genes, ALA synthase and CYP2H1. Both the basal expression of these genes and their drug-inducible expression was altered. B[a]P and AFB1 had similar effects on expression of the two inducible genes and caused similar levels of covalent adducts in total DNA, even though the administered doses differed by 30-fold. B[a]P binding to DNA, and the basal expression of CYP2H1 were similar in liver and lung. However, B[a]P significantly altered basal CYP2H1 mRNA expression in liver, a tissue in which this gene is highly inducible by glutethimide, and had no effect on basal CYP2H1 mRNA expression in lung, a tissue in which this gene is not drug-inducible. These data support the hypothesis that inducible gene expression is a target for carcinogen-induced DNA damage in vivo.
Collapse
Affiliation(s)
- J W Hamilton
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755-3835
| | | | | | | | | | | |
Collapse
|