1
|
Park EJ, Park SJ, Kim S, Lee K, Chang J. Lung fibroblasts may play an important role in clearing apoptotic bodies of bronchial epithelial cells generated by exposure to PHMG-P-containing solution. Toxicol Lett 2018; 286:108-119. [DOI: 10.1016/j.toxlet.2018.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/26/2017] [Accepted: 01/02/2018] [Indexed: 02/04/2023]
|
2
|
Adhauliya N, Kalappanavar AN, Ali IM, Annigeri RG. Autophagy: A boon or bane in oral cancer. Oral Oncol 2016; 61:120-6. [PMID: 27688114 DOI: 10.1016/j.oraloncology.2016.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 02/06/2023]
Abstract
Autophagy is a catabolic process involving cellular recycling and is believed to play a distinct role in cell survival especially when exposed to stressors, rendering it comparable to the elixir sustaining life. It plays a significant role in various conditions like cancers, neuropathies, heart diseases, auto-immune diseases, etc. Its role in tumorigenesis and cancer therapeutics is worth exploring. Autophagy is believed to help in survival and longevity of cancer cells by buffering metabolic stress. Inhibition of autophagy in an environment of nutrient deprivation leads to cell death. Autophagy is also seen to facilitate metastasizing tumor cells in surviving the conditions of metabolic deprivation and in recovery when conditions turn favorable. Many current cancer therapies tend to inflict metabolic stress, thus autophagy inhibitors may be useful in cancer treatment. As per the adage, "excess of anything is bad", the autophagy promoters can also be exploited as beneficial tools in the fight against cancer. Another method for tumor-cell elimination can be by inducing autophagic cell death through over-stimulation. Oral cancers are becoming a leading cause of deaths worldwide. Much remains to be explored about the role autophagy plays in progression of head and neck cancers, so as to harness it in the therapeutics of these cancers. Research on autophagy is still in its infancy. There are knowledge gaps in understanding this complex process. But there is no doubt that understanding exact mechanism behind autophagy will open up new avenues in cancer therapeutics and even prevention.
Collapse
Affiliation(s)
- Namrata Adhauliya
- Department of Oral Medicine and Radiology, College of Dental Sciences, Davangere, Karnataka, India.
| | - Anupama N Kalappanavar
- Department of Oral Medicine and Radiology, College of Dental Sciences, Davangere, Karnataka, India
| | - I M Ali
- Department of Oral Medicine and Radiology, College of Dental Sciences, Davangere, Karnataka, India
| | - Rajeshwari G Annigeri
- Department of Oral Medicine and Radiology, College of Dental Sciences, Davangere, Karnataka, India
| |
Collapse
|
3
|
Park EJ, Lee GH, Han BS, Lee BS, Lee S, Cho MH, Kim JH, Kim DW. Toxic response of graphene nanoplatelets in vivo and in vitro. Arch Toxicol 2014; 89:1557-68. [DOI: 10.1007/s00204-014-1303-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
|
4
|
Park EJ, Zahari NEM, Kang MS, Lee SJ, Lee K, Lee BS, Yoon C, Cho MH, Kim Y, Kim JH. Toxic response of HIPCO single-walled carbon nanotubes in mice and RAW264.7 macrophage cells. Toxicol Lett 2014; 229:167-77. [PMID: 24929217 DOI: 10.1016/j.toxlet.2014.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 01/08/2023]
Abstract
In this study, we identified the toxic response of pristine single-walled carbon nanotubes (P-SWCNTs) synthesized by HIPCO method in mice and RAW264.7 cells, a murine peritoneal macrophage cell line. P-SWCNT contained a large amount of Fe ion (36 wt%). In the lungs of mice 24 h after intratracheal administration, P-SWCNTs increased the secretion of IL-6 and MCP-1, and the number of total cells, the portion of neutrophils, lymphocytes, and eosinophils, also significantly increased at a 100 μg/mL of concentration. In RAW264.7 cells, cell viability and ATP production decreased in a dose-dependent manner at 24 h after exposure, whereas the generations of ROS and NO were enhanced at all concentrations together with the activation of the MAP kinase pathway. Moreover, the levels of both apoptosis- and autophagy-related proteins and ER stress-related proteins clearly increased, and the concentrations of Fe, Cu, and Zn ions, but not of Mn ions, increased in a dose-dependent manner. TEM images also revealed that P-SWCNTs induced the formation of autophagosome-like vacuoles, the dilatation of the ER, the generation of mitochondrial flocculent densities, and the separation of organelle by disappearance of the cell membrane. Taken together, we suggest that P-SWCNTs cause acute inflammatory response in the lungs of mice, and induce autophagy accompanied with apoptosis through mitochondrial dysfunction and ER stress in RAW264.7 cells. Furthermore, further study is required to elucidate how the physicochemical properties of SWCNTs determine the cell death pathway and an immune response.
Collapse
Affiliation(s)
- Eun-Jung Park
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea.
| | - Nur Elida M Zahari
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Min-Sung Kang
- Inhalation Toxicology Center, Korea Institute of Toxicology, Jeongeup 580-185, Republic of Korea
| | - Sang jin Lee
- Inhalation Toxicology Center, Korea Institute of Toxicology, Jeongeup 580-185, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center, Korea Institute of Toxicology, Jeongeup 580-185, Republic of Korea
| | - Byoung-Seok Lee
- Toxicologic Pathology Center, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Cheolho Yoon
- Seoul Center, Korea Basic Science Institute, Seoul 126-16, Republic of Korea
| | - Myung-Haing Cho
- College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea.
| |
Collapse
|
5
|
Park EJ, Zahari NEM, Lee EW, Song J, Lee JH, Cho MH, Kim JH. SWCNTs induced autophagic cell death in human bronchial epithelial cells. Toxicol In Vitro 2014; 28:442-50. [DOI: 10.1016/j.tiv.2013.12.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/25/2013] [Accepted: 12/23/2013] [Indexed: 01/12/2023]
|
6
|
Thomas KJ, Jacobson MR. Defects in mitochondrial fission protein dynamin-related protein 1 are linked to apoptotic resistance and autophagy in a lung cancer model. PLoS One 2012; 7:e45319. [PMID: 23028930 PMCID: PMC3447926 DOI: 10.1371/journal.pone.0045319] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/20/2012] [Indexed: 11/22/2022] Open
Abstract
Evasion of apoptosis is implicated in almost all aspects of cancer progression, as well as treatment resistance. In this study, resistance to apoptosis was identified in tumorigenic lung epithelial (A549) cells as a consequence of defects in mitochondrial and autophagic function. Mitochondrial function is determined in part by mitochondrial morphology, a process regulated by mitochondrial dynamics whereby the joining of two mitochondria, fusion, inhibits apoptosis while fission, the division of a mitochondrion, initiates apoptosis. Mitochondrial morphology of A549 cells displayed an elongated phenotype–mimicking cells deficient in mitochondrial fission protein, Dynamin-related protein 1 (Drp1). A549 cells had impaired Drp1 mitochondrial recruitment and decreased Drp1-dependent fission. Cytochrome c release and caspase-3 and PARP cleavage were impaired both basally and with apoptotic stimuli in A549 cells. Increased mitochondrial mass was observed in A549 cells, suggesting defects in mitophagy (mitochondrial selective autophagy). A549 cells had decreased LC3-II lipidation and lysosomal inhibition suggesting defects in autophagy occur upstream of lysosomal degradation. Immunostaining indicated mitochondrial localized LC3 punctae in A549 cells increased after mitochondrial uncoupling or with a combination of mitochondrial depolarization and ectopic Drp1 expression. Increased inhibition of apoptosis in A549 cells is correlated with impeded mitochondrial fission and mitophagy. We suggest mitochondrial fission defects contribute to apoptotic resistance in A549 cells.
Collapse
Affiliation(s)
- Kelly Jean Thomas
- Biological Sciences Department, Colorado Mesa University, Grand Junction, Colorado, United States of America.
| | | |
Collapse
|
7
|
Othman EQG, Kaur G, Mutee AF, Muhammad TST, Tan ML. Immunohistochemical expression of MAP1LC3A and MAP1LC3B protein in breast carcinoma tissues. J Clin Lab Anal 2009; 23:249-58. [PMID: 19623642 DOI: 10.1002/jcla.20309] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Autophagy is a protein degradation process within the cell and its deregulation has been linked to various diseases and the formation of cancer. One of the important proteins involved in the autophagy process is microtubule-associated protein 1 light chain 3 (MAP1LC3). The aims of this study were to determine the MAP1LC3A and MAP1LC3B protein expression in both normal and cancer breast tissues and to determine the relationship between the expression of these proteins and type of tissues. Immunohistochemistry assessments were carried out on tissue microarrays consisting of breast tissues. MAP1LC3A expression was detected in 52/56 of normal breast tissue cores and 65/67 of breast cancer tissue cores. MAP1LC3B expression was detected in 55/56 of normal breast tissue cores and 67/67 of breast cancer tissue cores. MAP1LC3A and MAP1LC3B protein are expressed in the majority of normal and cancer breast tissues. A large number of MAP1LC3A and MAP1LC3B positive breast cancer tissues cores have high proportion of stained cells (81-100%) as compared with normal breast tissues. However, a significantly higher number of breast cancer tissues were found to express the MAP1LC3A protein with strong immunoreactivity as compared with the normal tissues, suggesting that MAP1LC3A may play a role in breast cancer development.
Collapse
Affiliation(s)
- Ekhlas Qaid Gazem Othman
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | | | | | | | | |
Collapse
|
8
|
Tan ML, Ooi JP, Ismail N, Moad AIH, Muhammad TST. Programmed Cell Death Pathways and Current Antitumor Targets. Pharm Res 2009; 26:1547-60. [DOI: 10.1007/s11095-009-9895-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 04/11/2009] [Indexed: 12/19/2022]
|
9
|
Sato K, Tsuchihara K, Fujii S, Sugiyama M, Goya T, Atomi Y, Ueno T, Ochiai A, Esumi H. Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res 2007; 67:9677-84. [PMID: 17942897 DOI: 10.1158/0008-5472.can-07-1462] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several types of cancer cells, including colorectal cancer-derived cell lines, show austerity, the resistance to nutrient starvation, but exactly how cancer cells obtain energy sources under conditions in which their external nutrient supply is extremely limited remains to be clarified. Because autophagy is a catabolic process by which cells supply amino acids from self-digested organelles, cancer cells are likely to use autophagy to obtain amino acids as alternative energy sources. Amino acid deprivation-induced autophagy was assessed in DLD-1 and other colorectal cancer-derived cell lines. The autophagosome-incorporated LC3-II protein level increased after treatment with a combination of autolysosome inhibitors, which interferes with the consumption of autophagosomes. Autophagosome formation was also morphologically confirmed using ectopically expressed green fluorescent protein-LC3 fusion proteins in DLD-1 and SW480 cells. These data suggest that autophagosomes were actively produced and promptly consumed in colorectal cancer cells under nutrient starvation. Autolysosome inhibitors and 3-methyl adenine, which suppresses autophagosome formation, remarkably enhanced apoptosis under amino acid-deprived and glucose-deprived condition. Similar results were obtained in the cells with decreased ATG7 level by the RNA interference. These data suggest that autophagy is pivotal for the survival of colorectal cancer cells that have acquired austerity. Furthermore, autophagosome formation was seen only in the tumor cells but not in the adjacent noncancerous epithelial cells of colorectal cancer specimens. Taken together, autophagy is activated in colorectal cancers in vitro and in vivo, and autophagy may contribute to the survival of the cancer cells in their microenvironment.
Collapse
Affiliation(s)
- Kazunori Sato
- Cancer Physiology Project and Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Chiba, and Department of Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 2005; 5:726-34. [PMID: 16148885 DOI: 10.1038/nrc1692] [Citation(s) in RCA: 1351] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy is a process in which subcellular membranes undergo dynamic morphological changes that lead to the degradation of cellular proteins and cytoplasmic organelles. This process is an important cellular response to stress or starvation. Many studies have shed light on the importance of autophagy in cancer, but it is still unclear whether autophagy suppresses tumorigenesis or provides cancer cells with a rescue mechanism under unfavourable conditions. What is the present state of our knowledge about the role of autophagy in cancer development, and in response to therapy? And how can the autophagic process be manipulated to improve anticancer therapeutics?
Collapse
Affiliation(s)
- Yasuko Kondo
- Department of Neurosurgery, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
11
|
Abstract
Autophagy is characterized by sequestration of bulk cytoplasm and organelles in double or multimembrane autophagic vesicles, and their delivery to and subsequent degradation by the cell's own lysosomal system. Autophagy has multiple physiological functions in multicellular organisms, including protein degradation and organelle turnover. Genes and proteins that constitute the basic machinery of the autophagic process were first identified in the yeast system and some of their mammalian orthologues have been characterized as well. Increasing lines of evidence indicate that these molecular mechanisms may be recruited by an alternative, caspase-independent form of programmed cell death, named autophagic type II cell death. In some settings, autophagy and apoptosis seem to be interconnected positively or negatively, introducing the concept of 'molecular switches' between them. Additionally, mitochondria may be central organelles integrating the two types of cell death. Malignant transformation is frequently associated with suppression of autophagy. The recent implication of tumor suppressors like Beclin 1, DAP-kinase and PTEN in autophagic pathways indicates a causative role for autophagy deficiencies in cancer formation. Autophagic cell death induction by some anticancer agents underlines the potential utility of its induction as a new cancer treatment modality.
Collapse
Affiliation(s)
- Devrim Gozuacik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
12
|
Ogier-Denis E, Codogno P. Autophagy: a barrier or an adaptive response to cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1603:113-28. [PMID: 12618311 DOI: 10.1016/s0304-419x(03)00004-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Macroautophagy or autophagy is a degradative pathway terminating in the lysosomal compartment after the formation of a cytoplasmic vacuole that engulfs macromolecules and organelles. The recent discovery of the molecular controls of autophagy that are common to eukaryotic cells from yeast to human suggests that the role of autophagy in cell functioning is far beyond its nonselective degradative capacity. The involvement of proteins with properties of tumor suppressor and oncogenic properties at different steps of the pathway implies that autophagy must be considered in tumor progression. Autophagy as a stress response mechanism protects cancer cells from low nutrient supply or therapeutic insults. Autophagy is also involved in the elimination of cancer cells by triggering a non-apoptotic cell death program, suggesting a negative role in tumor development. These two aspects of autophagy will be discussed in this review.
Collapse
Affiliation(s)
- Eric Ogier-Denis
- INSERM U504 Glycobiologie et Signalisation cellulaire, Institut André Lwoff, 16 avenue Paul-Vaillant-Couturier, 94807 Villejuif Cedex, France
| | | |
Collapse
|
13
|
Bandi N, Kompella UB. Budesonide reduces multidrug resistance-associated protein 1 expression in an airway epithelial cell line (Calu-1). Eur J Pharmacol 2002; 437:9-17. [PMID: 11864633 DOI: 10.1016/s0014-2999(02)01267-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The objective of this study was to determine the expression and activity of multidrug resistance-associated protein (MRP1) in a human airway epithelial cell line (Calu-1) and to further assess whether budesonide, a potent antiasthma corticosteroid, alters the expression and activity of MRP1 in these cells. Reverse transcriptase polymerase chain reaction (RT-PCR) and the Western blot analysis demonstrated the MRP1 mRNA and MRP1 protein in Calu-1 cells. Indomethacin, probenecid, and verapamil significantly enhanced the fluorescein accumulation and reduced the fluorescein efflux, consistent with the MRP1 activity in the Calu-1 cells. Following 14-day budesonide treatment, fluorescein accumulation increased and fluorescein efflux decreased, consistent with the inhibition of MRP1 activity by budesonide. At a concentration (10 microM) devoid of cytotoxicity, budesonide treatment decreased MRP1 mRNA and MRP1 protein expression in Calu-1 cells by 38% and 42%, respectively. In addition, budesonide (10 microM) enhanced the sensitivity of the MRP1 overexpressing COR-L23R cells to vincristine, suggesting the chemosensitizing effect of budesonide. Thus, budesonide inhibits MRP1 expression and may be useful as a chemosensitizer in tumor chemotherapy.
Collapse
Affiliation(s)
- Nagesh Bandi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | | |
Collapse
|
14
|
Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402:672-6. [PMID: 10604474 DOI: 10.1038/45257] [Citation(s) in RCA: 2676] [Impact Index Per Article: 102.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The process of autophagy, or bulk degradation of cellular proteins through an autophagosomic-lysosomal pathway, is important in normal growth control and may be defective in tumour cells. However, little is known about the genetic mediators of autophagy in mammalian cells or their role in tumour development. The mammalian gene encoding Beclin 1, a novel Bcl-2-interacting, coiled-coil protein, has structural similarity to the yeast autophagy gene, apg6/vps30, and is mono-allelically deleted in 40-75% of sporadic human breast cancers and ovarian cancers. Here we show, using gene-transfer techniques, that beclin 1 promotes autophagy in autophagy-defective yeast with a targeted disruption of agp6/vps30, and in human MCF7 breast carcinoma cells. The autophagy-promoting activity of beclin 1 in MCF7 cells is associated with inhibition of MCF7 cellular proliferation, in vitro clonigenicity and tumorigenesis in nude mice. Furthermore, endogenous Beclin 1 protein expression is frequently low in human breast epithelial carcinoma cell lines and tissue, but is expressed ubiquitously at high levels in normal breast epithelia. Thus, beclin 1 is a mammalian autophagy gene that can inhibit tumorigenesis and is expressed at decreased levels in human breast carcinoma. These findings suggest that decreased expression of autophagy proteins may contribute to the development or progression of breast and other human malignancies.
Collapse
Affiliation(s)
- X H Liang
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Marzella L, Lee HK. Chapter 5 Role of lysosomes in cell injury. PRINCIPLES OF MEDICAL BIOLOGY A MULTI-VOLUME WORK, VOLUME 13 1998. [PMCID: PMC7149001 DOI: 10.1016/s1569-2582(98)80007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lysosomes are acidic intracellular vacuoles of heterogeneous shape, size, and content. Lysosomes contain hydrolytic enzymes that degrade proteins, lipids, carbohydrates, and nucleic acids derived from intracellular (through autophagy) and extracellular (through heterophagy) sources. Lysosomal degradation regulates several physiological cell functions. These include turnover of cellular organelles and extracellular constituents; amino acid and glucose homeostasis; processing of proteins; lipid metabolism; cell growth, differentiation, and involution; host defenses against microorganisms and other pathogens; and removal of necrotic and foreign material from the circulation and from tissues. Lysosomal degradation also plays an important role in the pathophysiology of acute and chronic cell injury, inflammation and repair, and tumor growth and metastasis. The participation of the lysosomes in the specific types of cell injury we have discussed is due to altered regulation of one or more of the following processes: turnover of cellular organelles by autophagic degradation; levels and activities of lysosomal hydrolases; levels of intracellular and extracellular lysosomal hydrolase inhibitors; transport of degradation products from the lysosomal matrix to the cytosol; permeability of the lysosomal membrane to hydrolases; lysosomal vacuolar acidification; transport of degradable substrates and of pathogens to the lysosomes; transport and processing of secretory proteins and lysosomal hydrolases during biogenesis; traffic and fusion of lysosomal vacuoles and vesicles; secretion of lysosomal hydrolases; and accumulation of metals, particularly iron, acidotropic agents, and undegraded and/or undegradable materials in lysosomes.
Collapse
|
16
|
Abstract
Macroautophagy is a major cellular catabolic pathway involved in the regulation of cell homeostasis. It is initiated by the sequestration of intracellular material by a wrapping membrane and terminates with the fusion of autophagic vacuoles with the lysosomal compartment. Macroautophagy has been extensively studied at the morphological level and in terms of environmental responses (nutrient deprivation, hormones). Recently a burst of data has emerged concerning the intracellular molecular events involved in the control of macroautophagic sequestration. It is becoming clear that the initial sequestration step of macroautophagy is under the control of different signalling pathways.
Collapse
Affiliation(s)
- P Codogno
- INSERM U410 Neuroendocrinologie et Biologie Cellulaire Digestives, Faculté de Medecine Xavier Bichat, Paris, France
| | | | | |
Collapse
|
17
|
Lah TT, Calaf G, Kalman E, Shinde BG, Somers R, Estrada S, Salero E, Russo J, Daskal I. Cathepsins D, B, and L in transformed human breast epithelial cells. Breast Cancer Res Treat 1996; 39:221-33. [PMID: 8872331 DOI: 10.1007/bf01806189] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To investigate the regulation of lysosomal enzymes during carcinogenesis, we measured cathepsins (Cats) D, B, and L in MCF-10F, which is a human breast epithelial cell line, and cells evolved after treatment with carcinogen and transfected with c-Ha-ras oncogene. The clones used in this study, MCF-10FTras, D3, D3-1, and D3-1Tras, expressed no estrogen receptors and gradually increased invasive potential, while oncogene-transfected lines were also tumorigenic in SCID mice [16, 19]. Cats D, B, and L were determined in the cells and in cell media using enzyme-linked immunosorbent assay (ELISA), specific enzyme activity measurements, and immunocytochemistry. The major intra- and extracellular lysosomal proteinase in these cells was Cat D (30-180 pm/mg), followed by Cat B (2-10 pm/mg) and Cat L (1-5 pm/mg). An inverse relationship between intracellular Cat D levels and invasive potential of carcinogen-treated and c-Ha-ras oncogene-transfected cell lines was observed. No significant changes in extracellular concentration of Cat D precursor in this series of cell lines was observed. Intracellular levels of Cats B and L were unchanged or slightly lower in carcinogen-treated D3 and D3-1 cells, as well as in MCF-10FTras. On the other hand, in D3-1Tras cell line, evolving from c-Ha-ras transfected D3-1 line, 3.5 fold and 4.4 fold increases in Cat B and Cat L, respectively, but a 2 fold decrease in Cat D, were observed compared to the parental cell line. Immunocytochemical staining showed a granular, polarized perinuclear and cytoplasmic staining of cathepsins in all cell lines. Cysteine proteinases stained more frequently and more intensely in D3-1Tras compared to other lines, confirming the immunochemical assays. We hypothesize that several molecular events, caused by a carcinogen and an oncogene such as c-Ha-ras, are needed to increase Cat B and Cat L, but not Cat D, expression. Therefore, the cysteine and aspartic lysosomal proteinases are differentially expressed in the breast cell lines with more invasive phenotype.
Collapse
Affiliation(s)
- T T Lah
- Department of Pathology and Laboratory Medicine, Albert Einstein Medical Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|